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Prologue
Motivation of the Book

In recent years the concept of intelligent multi-mode, multimedia transceivers (IMMT) has
emerged in the context of wireless systems [1–6]. The range of various existing solutions
that have found favour in already operational standard systems was summarised in the ex-
cellent overview by Nanda et al. [3]. The aim of these adaptive transceivers is to provide
mobile users with the best possible compromise amongst a number of contradicting design
factors, such as the power consumption of the hand-held portable station (PS), robustness
against transmission errors, spectral efficiency, teletraffic capacity, audio/video quality and
so forth [2].

The fundamental limitation of wireless systems is constituted by their time- and frequency-
domain channel fading, as illustrated in Figure 13.39 in terms of the Signal-to-Noise Ratio
(SNR) fluctuations experienced by a modem over a dispersive channel. The violent SNR fluc-
tuations observed both versus time and versus frequency suggest that over these channels no
fixed-mode transceiver can be expected to provide an attractive performance, complexity and
delay trade-off. Motivated by the above mentioned performance limitations of fixed-mode
transceivers, IMMTs have attracted considerable research interest in the past decade [1–6].
Some of these research results are collated in this monograph.

In Figure 1 we show the instantaneous channel SNR experienced by the 512-subcarrier
OFDM symbols for a single-transmitter, single-receiver scheme and for the space-time block
codeG2 [7] using one, two and six receivers over the shortened WATM channel. The average
channel SNR is 10 dB. We can see in Figure 1 that the variation of the instantaneous channel
SNR for a single transmitter and single receiver is severe. The instantaneous channel SNR
may become as low as 4 dB due to deep fades of the channel. On the other hand, we can see
that for the space-time block code G2 using one receiver the variation in the instantaneous
channel SNR is slower and less severe. Explicitly, by employing multiple transmit antennas
as shown in Figure 1, we have reduced the effect of the channels’ deep fades significantly.
This is advantageous in the context of adaptive modulation schemes, since higher-order mod-
ulation modes can be employed, in order to increase the throughput of the system. However,
as we increase the number of receivers, i.e. the diversity order, we observe that the variation
of the channel becomes slower. Effectively, by employing higher-order diversity, the fading
channels have been converted to AWGN-like channels, as evidenced by the scenario employ-
ing the space-time block code G2 using six receivers. Since adaptive modulation only offers
advantages over fading channels, we argue that using adaptive modulation might become
unnecessary, as the diversity order is increased. Hence, adaptive modulation can be viewed
as a lower-complexity alternative to space-time coding, since only a single transmitter and
receiver is required.

1
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Figure 1: Instantaneous channel SNR versus time and frequency for a 512-subcarrier OFDM modem
in the context of a single-transmitter single-receiver as well as for the space-time block code
G2 [7] using one, two and six receivers when communicating over an indoor wireless chan-
nel. The average channel SNR is 10 dB. c
IEEE, Liew and Hanzo [8], 2001

Our intention with the book is multifold:

1. Firstly, to pay tribute to all researchers, colleagues and valued friends, who contributed
to the field. Hence this book is dedicated to them, since without their quest for better
transmission solutions for wireless communications this monograph could not have
been conceived. They are too numerous to name here, hence they appear in the author
index of the book.

2. Although the potential of adaptive modulation and transmission was recognised some
30 years ago by Cavers [9] and during the nineties the associated research efforts in-
tensified, to date there is no monograph on the topic. Hence it is our hope that the
conception of this monograph on the topic will provide an adequate portrayal of the
last decade of research and fuel this innovation process.

3. As argued above, adaptive modulation only offers advantages when communicating
over fading wireless channels. However, since the space-time coding assisted employ-
ment of transmit and receive diversity mitigates the effects of fading, we would like
to portray adaptive modulation as a lower-complexity alternative to space-time coding,
since only a single transmitter and receiver is required.
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4. We expect to stimulate further research by exposing not only the information theoret-
ical limitations of such IMMTs, but also by collating a range of practical problems
and design issues for the practitioners. The coherent further efforts of the wireless
research community is expected to lead to the solution of the vast range of outstand-
ing problems, ultimately providing us with flexible wireless transceivers exhibiting a
performance close to information theoretical limits.

The above mentioned calamities inflicted by the wireless channel can be mitigated by
contriving a suite of near-instantaneously adaptive or Burst-by-Burst Adaptive (BbBA)
wideband single-carrier [4], multi-carrier or Orthogonal Frequency Division Multi-
plex [4] (OFDM) as well as Code Division Multiple Access (CDMA) transceivers. The
aim of these IMMTs is to communicate over hostile mobile channels at a higher integrity
or higher throughput, than conventional fixed-mode transceivers. A number of existing
wireless systems already support some grade of adaptivity and future research is likely
to promote these principles further by embedding them into the already existing stan-
dards. For example, due to their high control channel rate and with the advent of the
well-known Orthogonal Variable Spreading Factor (OVSF) codes the thrid-generation
UTRA/IMT2000 systems are amenable to not only long-term spreading factor reconfig-
uration, but also to near-instantaneous reconfiguration on a 10ms transmission burst-
duration basis.

With the advent of BbBA QAM, OFDM or CDMA transmissions it becomes possible for
mobile stations (MS) to invoke for example in indoor scenarios or in the central propagation
cell region - where typically benign channel conditions prevail - a high-throughput modula-
tion mode, such as 4 bit/symbol Quadrature Amplitude Modulation (16QAM). By contrast, a
robust, but low-throughput modulation mode, such as 1 bit/symbol Binary Phase Shift Key-
ing (BPSK) can be employed near the edge of the propagation cell, where hostile propagation
conditions prevail. The BbBA QAM, OFDM or CDMA mode switching regime is also ca-
pable of reconfiguring the transceiver at the rate of the channel’s slow- or even fast-fading.
This may prevent premature hand-overs and - more importantly - unnecessary powering up,
which would inflict an increased interference upon co-channel users, resulting in further po-
tential power increments. This detrimental process could result in all mobiles operating at
unnecessarily high power levels.

A specific property of these transceivers is that their bit rate fluctuates, as a function of
time. This is not an impediment in the context of data transmission. However, in interactive
speech [5] or video [6] communications appropriate source codecs have to be designed, which
are capable of promptly reconfiguring themselves according to the near-instantaneous bitrate
budget provided by the transceiver.

The expected performance of our BbBA transceivers can be characterised with the aid of
a whole plethora of performance indicators. In simple terms, adaptive modems outperform
their individual fixed-mode counterparts, since given an average number of transmitted bits
per symbol (BPS), their average BER will be lower than that of the fixed-mode modems.
From a different perspective, at a given BER their BPS throughput will be always higher.
In general, the higher the tolerable BER, the closer the performance to that of the Gaussian
channel capacity. Again, this fact underlines the importance of designing programmable-rate,
error-resilient source codecs - such as the Advanced Multi-Rate (AMR) speech codec to be
employed in UMTS - which do not expect a low BER.

Similarly, when employing the above BbBA or AQAM principles in the frequency do-
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main in the context of OFDM [4] or in conjunction with OVSF spreading codes in CDMA
systems, attractive system design trade-offs and a high over-all performance can be attained [6].
However, despite the extensive research in the field by the international community, there is
a whole host of problems that remain to be solved and this monograph intends to contribute
towards these efforts.

Adaptation Principles

AQAM is suitable for duplex communication between the MS and BS, since the AQAM
modes have to be adapted and signalled between them, in order to allow channel quality
estimates and signalling to take place. The AQAM mode adaptation is the action of the
transmitter in response to time–varying channel conditions. In order to efficiently react to the
changes in channel quality, the following steps have to be taken:

� Channel quality estimation: In order to appropriately select the transmission param-
eters to be employed for the next transmission, a reliable estimation of the channel
transfer function during the next active transmit timeslot is necessary.

� Choice of the appropriate parameters for the next transmission: Based on the predic-
tion of the channel conditions for the next timeslot, the transmitter has to select the
appropriate modulation and channel coding modes for the subcarriers.

� Signalling or blind detection of the employed parameters: The receiver has to be in-
formed, as to which demodulator parameters to employ for the received packet. This
information can either be conveyed within the OFDM symbol itself, at the cost of loss
of effective data throughput, or the receiver can attempt to estimate the parameters
employed by the remote transmitter by means of blind detection mechanisms [4].

Channel Quality Metrics

The most reliable channel quality estimate is the bit error rate (BER), since it reflects the
channel quality, irrespective of the source or the nature of the quality degradation. The BER
can be estimated invoking a number of approaches.

Firstly, the BER can be estimated with a certain granularity or accuracy, provided that
the system entails a channel decoder or - synonymously - Forward Error Correction (FEC)
decoder employing algebraic decoding [10].

Secondly, if the system contains a soft-in-soft-out (SISO) channel decoder, the BER can
be estimated with the aid of the Logarithmic Likelihood Ratio (LLR), evaluated either at the
input or the output of the channel decoder. A particularly attractive way of invoking LLRs
is employing powerful turbo codecs, which provide a reliable indication of the confidence
associated with a particular bit decision in the context of LLRs.

Thirdly, in the event that no channel encoder / decoder (codec) is used in the system, the
channel quality expressed in terms of the BER can be estimated with the aid of the mean-
squared error (MSE) at the output of the channel equaliser or the closely related metric of
Pseudo-Signal-to-Noise-Ratio (Pseudo-SNR) [6]. The MSE or pseudo-SNR at the output of
the channel equaliser have the important advantage that they are capable of quantifying the
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severity of the inter-symbol-interference (ISI) and/or Co-channel Interference (CCI) experi-
enced, in other words quantifying the Signal to Interference plus Noise Ratio (SINR).

As an example, let us consider OFDM. In OFDM modems [4] the bit error probability
in each subcarrier can be determined by the fluctuations of the channel’s instantaneous fre-
quency domain channel transfer function Hn, if no co-channel interference is present. The
estimate Ĥn of the channel transfer function can be acquired by means of pilot–tone based
channel estimation [4]. For CDMA transceivers similar techniques are applicable, which
constitute the topic of this monograph.

The delay between the channel quality estimation and the actual transmission of a burst in
relation to the maximal Doppler frequency of the channel is crucial as regards to the adaptive
system’s performance. If the channel estimate is obsolete at the time of transmission, then
poor system performance will result [6].

Transceiver Parameter Adaptation

Different transmission parameters - such as the modulation and coding modes - of the AQAM
single- and multi-carrier as well as CDMA transceivers can be adapted to the anticipated
channel conditions. For example, adapting the number of modulation levels in response to
the anticipated SNR encountered in each OFDM subcarrier can be employed, in order to
achieve a wide range of different trade–offs between the received data integrity and through-
put. Corrupted subcarriers can be excluded from data transmission and left blank or used for
example for Crest–factor reduction. A range of different algorithms for selecting the appro-
priate modulation modes have to be investigated by future research. The adaptive channel
coding parameters entail code rate, adaptive interleaving and puncturing for convolu-
tional and turbo codes, or varying block lengths for block codes [4].

Based on the estimated frequency–domainchannel transfer function, spectral pre–distortion
at the transmitter of one or both communicating stations can be invoked, in order to par-
tially of fully counteract the frequency–selective fading of the time–dispersive channel.
Unlike frequency–domain equalisation at the receiver — which corrects for the amplitude–
and phase–errors inflicted upon the subcarriers by the channel, but which cannot improve the
SNR in poor quality OFDM subchannels — spectral pre–distortion at the OFDM transmit-
ter can deliver near–constant signal–to–noise levels for all subcarriers and can be viewed as
power control on a subcarrier–by–subcarrier basis.

In addition to improving the system’s BER performance in time–dispersive channels,
spectral pre–distortion can be employed in order to perform all channel estimation and equal-
isation functions at only one of the two communicating duplex stations. Low–cost, low power
consumption mobile stations can communicate with a base station that performs the channel
estimation and frequency–domain equalisation of the uplink, and uses the estimated channel
transfer function for pre–distorting the down–link OFDM symbol. This setup would lead
to different overall channel quality on the up– and downlink, and the superior pre-equalised
downlink channel quality could be exploited by using a computationally less complex chan-
nel decoder, having weaker error correction capabilities in the mobile station than in the base
station.

If the channel’s frequency–domain transfer function is to be fully counteracted by the
spectral pre-distortion upon adapting the subcarrier power to the inverse of the channel trans-
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Figure 2: Parameter signalling in BbBA OFDM, CDMA and AQAM modems, IEEE Press-John Wiley,
2000, Hanzo, Webb, Keller [4].

fer function, then the output power of the transmitter can become excessive, if heavily faded
subcarriers are present in the system’s frequency range. In order to limit the transmitter’s
maximal output power, hybrid channel pre–distortion and adaptive modulation schemes can
be devised, which would de–activate transmission in deeply faded subchannels, while retain-
ing the benefits of pre–distortion in the remaining subcarriers.

BbBA mode signalling plays an important role in adaptive systems and the range of sig-
nalling options is summarised in Figure 2 for closed–loop signalling. If the channel quality
estimation and parameter adaptation have been performed at the transmitter of a particular
link, based on open–loop adaptation, then the resulting set of parameters has to be commu-
nicated to the receiver in order to successfully demodulate and decode the OFDM symbol.
Once the receiver determined the requested parameter set to be used by the remote trans-
mitter, then this information has to be signalled to the remote transmitter in the reverse link.
If this signalling information is corrupted, then the receiver is generally unable to correctly
decode the OFDM symbol corresponding to the incorrect signalling information, yielding an
OFDM symbol error.

Unlike adaptive serial systems, which employ the same set of parameters for all data
symbols in a transmission packet [4], adaptive OFDM systems [4] have to react to the fre-
quency selective nature of the channel, by adapting the modem parameters across the subcar-
riers. The resulting signalling overhead may become significantly higher than that for serial
modems, and can be prohibitive for example for subcarrier–by–subcarrier based modulation
mode adaptation. In order to overcome these limitations, efficient and reliable signalling
techniques have to be employed for practical implementation of adaptive OFDM modems.

If some flexibility in choosing the transmission parameters is sacrificed in an adaptation
scheme, like in sub–band adaptive OFDM schemes [4], then the amount of signalling can
be reduced. Alternatively, blind parameter detection schemes can be devised, which require
little or no signalling information, respectively [4].

In conclusion, fixed mode transceivers are incapable of achieving a good trade-off in
terms of performance and complexity. The proposed BbB adaptive system design paradigm
is more promising in this respect. A range of problems and solutions were highlighted in
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conceptual terms with reference to an OFDM-based example, indicating the areas, where
substantial future research is required. A specific research topic, which raised substantial
research interest recently is invoking efficient channel quality prediction techniques [11].
Before we commence our indepth discourse in the forthcoming chapters, in the next section
we provide a brief historical perspective on adaptive modulation.

Milestones in Adaptive Modulation History

Adaptive Single- and Multi-carrier Modulation

Following Cavers’ classic contribution [9], BbB-AQAM has been suggested by Webb and
Steele [1], stimulating further research in the wireless community for example by Sampei
et al. [12], showing promising advantages, when compared to fixed modulation in terms of
spectral efficiency, BER performance and robustness against channel delay spread. Various
systems employing AQAM were also characterised in [4]. The numerical upper bound perfor-
mance of narrow-band BbB-AQAM over slow Rayleigh flat-fading channels was evaluated
by Torrance et al. [13], while over wide-band channels by Wong et al. [14, 15]. Following
these developments, the optimization of the BbB-AQAM switching thresholds was carried
employing Powell-optimization using a cost-function, which was based on the combination
of the target BER and target Bit Per Symbol (BPS) performance [16]. Adaptive modula-
tion was also studied in conjunction with channel coding and power control techniques by
Matsuoka et al. [17] as well as Goldsmith and Chua [18, 19].

In the early phase of research more emphasis was dedicated to the system aspects of
adaptive modulation in a narrow-band environment. A reliable method of transmitting the
modulation control parameters was proposed by Otsuki et al. [20], where the parameters
were embedded in the transmission frame’s mid-amble using Walsh codes. Subsequently, at
the receiver the Walsh sequences were decoded using maximum likelihood detection. An-
other technique of estimating the required modulation mode used was proposed by Torrance
et al. [21], where the modulation control symbols were represented by unequal error protec-
tion 5-PSK symbols. The adaptive modulation philosophy was then extended to wideband
multi-path environments by Kamio et al. [22] by utilizing a bi-directional Decision Feedback
Equaliser (DFE) in a micro- and macro-cellular environment. This equalization technique
employed both forward and backward oriented channel estimation based on the pre-amble
and post-amble symbols in the transmitted frame. Equalizer tap gain interpolation across the
transmitted frame was also utilized, in order to reduce the complexity in conjunction with
space diversity [22]. The authors concluded that the cell radius could be enlarged in a macro-
cellular system and a higher area-spectral efficiency could be attained for micro-cellular en-
vironments by utilizing adaptive modulation. The latency effect, which occurred, when the
input data rate was higher than the instantaneous transmission throughput was studied and
solutions were formulated using frequency hopping [23] and statistical multiplexing, where
the number of slots allocated to a user was adaptively controlled [24].

In reference [25] symbol rate adaptive modulation was applied, where the symbol rate
or the number of modulation levels was adapted by using 1

8
-rate 16QAM, 1

4
-rate 16QAM,

1
2

-rate 16QAM as well as full-rate 16QAM and the criterion used to adapt the modem modes
was based on the instantaneous received signal to noise ratio and channel delay spread. The
slowly varying channel quality of the uplink (UL) and downlink (DL) was rendered similar
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by utilizing short frame duration Time Division Duplex (TDD) and the maximum normalised
delay spread simulated was 0:1. A variable channel coding rate was then introduced by Mat-
suoka et al. in conjunction with adaptive modulation in reference [17], where the transmitted
burst incorporated an outer Reed Solomon code and an inner convolutional code in order to
achieve high-quality data transmission. The coding rate was varied according to the prevalent
channel quality using the same method, as in adaptive modulation in order to achieve a cer-
tain target BER performance. A so-called channel margin was introduced in this contribution,
which adjusted the switching thresholds in order to incorporate the effects of channel quality
estimation errors. As mentioned above, the performance of channel coding in conjunction
with adaptive modulation in a narrow-band environment was also characterised by Chua and
Goldsmith [18]. In this contribution, trellis and lattice codes were used without channel in-
terleaving, invoking a feedback path between the transmitter and receiver for modem mode
control purposes. The effects of the delay in the feedback path on the adaptive modem’s
performance were studied and this scheme exhibited a higher spectral efficiency, when com-
pared to the non-adaptive trellis coded performance. Pearce, Burr and Tozer [26] as well as
Lau and McLeod [27] have also analysed the performance trade-offs associated with employ-
ing channel coding and adaptive modulation as efficient fading counter measures.

Subsequent contributions by Suzuki et al. [28] incorporated space-diversity and power-
adaptation in conjunction with adaptive modulation, for example in order to combat the ef-
fects of the multi-path channel environment at a 10Mbits/s transmission rate. The maximum
tolerable delay-spread was deemed to be one symbol duration for a target mean BER perfor-
mance of 0:1%. This was achieved in a Time Division Multiple Access (TDMA) scenario,
where the channel estimates were predicted based on the extrapolation of previous channel
quality estimates. Variable transmitted power was then applied in combination with adaptive
modulation in reference [19], where the transmission rate and power adaptation was opti-
mised in order to achieve an increased spectral efficiency. In this treatise, a slowly varying
channel was assumed and the instantaneous received power required in order to achieve a cer-
tain upper bound performance was assumed to be known prior to transmission. Power control
in conjunction with a pre-distortion type non-linear power amplifier compensator was studied
in the context of adaptive modulation in reference [29]. This method was used to mitigate the
non-linearity effects associated with the power amplifier, when QAM modulators were used.

Results were also recorded concerning the performance of adaptive modulation in con-
junction with different multiple access schemes in a narrow-band channel environment. In
a TDMA system, dynamic channel assignment was employed by Ikeda et al., where in ad-
dition to assigning a different modulation mode to a different channel quality, priority was
always given to those users in reserving time-slots, which benefitted from the best channel
quality [30]. The performance was compared to fixed channel assignment systems, where
substantial gains were achieved in terms of system capacity. Furthermore, a lower call ter-
mination probability was recorded. However, the probability of intra-cell hand-off increased
as a result of the associated dynamic channel assignment (DCA) scheme, which constantly
searched for a high-quality, high-throughput time-slot for the existing active users. The ap-
plication of adaptive modulation in packet transmission was introduced by Ue, Sampei and
Morinaga [31], where the results showed improved data throughput. Recently, the perfor-
mance of adaptive modulation was characterised in conjunction with an automatic repeat
request (ARQ) system in reference [32], where the transmitted bits were encoded using a
cyclic redundant code (CRC) and a convolutional punctured code in order to increase the
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data throughput.
A recent treatise was published by Sampei, Morinaga and Hamaguchi [33] on laboratory

test results concerning the utilization of adaptive modulation in a TDD scenario, where the
modem mode switching criterion was based on the signal to noise ratio and on the normalised
delay-spread. In these experimental results, the channel quality estimation errors degraded
the performance and consequently a channel estimation error margin was devised, in order
to mitigate this degradation. Explicitly, the channel estimation error margin was defined as
the measure of how much extra protection margin must be added to the switching threshold
levels, in order to minimise the effects of the channel estimation errors. The delay-spread also
degraded the performance due to the associated irreducible BER, which was not compensated
by the receiver. However, the performance of the adaptive scheme in a delay-spread impaired
channel environment was better, than that of a fixed modulation scheme. Lastly, the exper-
iment also concluded that the AQAM scheme can be operated for a Doppler frequency of
fd = 10Hz with a normalised delay spread of 0:1 or for fd = 14Hz with a normalised delay
spread of 0:02, which produced a mean BER of 0:1% at a transmission rate of 1 Mbits/s.

Lastly, the latency and interference aspects of AQAM modems were investigated in [34,
35]. Specifically, the latency associated with storing the information to be transmitted during
severely degraded channel conditions was mitigated by frequency hopping or statistical mul-
tiplexing. As expected, the latency is increased, when either the mobile speed or the channel
SNR are reduced, since both of these result in prolonged low instantaneous SNR intervals.
It was demonstrated that as a result of the proposed measures, typically more than 4dB SNR
reduction was achieved by the proposed adaptive modems in comparison to the conventional
fixed-mode benchmark modems employed. However, the achievable gains depend strongly
on the prevalant co-channel interference levels and hence interference cancellation was in-
voked in [35] on the basis of adjusting the demodulation decision boundaries after estimating
the interfering channel’s magnitude and phase.

The associated principles can also be invoked in the context of parallel modems. This
principle was first proposed by Kalet [36] and was then further developed for example by
Czylwik et al. [37] as well as by Chow, Cioffi and Bingham [38]. The associated concepts
were detailed for example in [4] and will be also augmented in this monograph. Let us now
briefly review the recent history of the BbB adaptive concept in the context of CDMA in the
next section.

Adaptive Code Division Multiple Access

The techniques described in the context of single- and multi-carrier modulation are concep-
tually similar to multi-rate transmission [39] in CDMA systems. However, in BbB adaptive
CDMA the transmission rate is modified according to the near-instantaneous channel quality,
instead of the service required by the mobile user. BbB-adaptive CDMA systems are also
useful for employment in arbitrary propagation environments or in hand-over scenarios, such
as those encountered, when a mobile user moves from an indoor to an outdoor environment or
in a so-called ’birth-death’ scenario, where the number of transmitting CDMA users changes
frequently [40], thereby changing the interference dramatically. Various methods of multi-
rate transmission have been proposed in the research literature. Below we will briefly discuss
some of the recent research issues in multi-rate and adaptive CDMA schemes.

Ottosson and Svensson compared various multi-rate systems [39], including multiple
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spreading factor (SF) based, multi-code and multi-level modulation schemes. According
to the multi-code philosophy, the SF is kept constant for all users, but multiple spreading
codes transmitted simultaneously are assigned to users requiring higher bit rates. In this case
- unless the spreading codes’s perfect orthogonality is retained after transmission over the
channel - the multiple codes of a particular user interfere with each other. This inevitebly
reduces the system’s performance.

Multiple data rates can also be supported by a variable SF scheme, where the chip rate is
kept constant, but the data rates are varied, thereby effectively changing the SF of the spread-
ing codes assigned to the users; at a fixed chip rate the lower the SF, the higher the supported
data rate. Performance comparisons for both of these schemes have been carried out by Ot-
tosson and Svensson [39], as well as by Ramakrishna and Holtzman [41], demonstrating that
both schemes achieved a similar performance. Adachi, Ohno, Higashi, Dohi and Okumura
proposed the employment of multi-code CDMA in conjunction with pilot symbol-assisted
channel estimation, RAKE reception and antenna diversity for providing multi-rate capabil-
ities [42, 43]. The employment of multi-level modulation schemes was also investigated by
Ottosson and Svensson [39], where higher-rate users were assigned higher-order modulation
modes, transmitting several bits per symbol. However, it was concluded that the performance
experienced by users requiring higher rates was significantly worse, than that experienced
by the lower-rate users. The use of M -ary orthogonal modulation in providing variable rate
transmission was investigated by Schotten, Elders-Boll and Busboom [44]. According to this
method, each user was assigned an orthogonal sequence set, where the number of sequences,
M , in the set was dependent on the data rate required – the higher the rate required, the
larger the sequence set. Each sequence in the set was mapped to a particular combination of
b = (log2M) bits to be transmitted. The M -ary sequence was then spread with the aid of a
spreading code of a constant SF before transmission. It was found [44] that the performance
of the system depended not only on the MAI, but also on the Hamming distance between the
sequences in the M -ary sequence set.

Saquib and Yates [45] investigated the employment of the decorrelating detector in con-
junction with the multiple-SF scheme and proposed a modified decorrelating detector, which
utilized soft decisions and maximal ratio combining, in order to detect the bits of the different-
rate users. Multi-rate transmission schemes involving interference cancellation receivers have
previously been investigated amongst others by Johansson and Svensson [46, 47], as well as
by Juntti [48]. Typically, multiple users transmitting at different bit rates are supported in the
same CDMA system invoking multiple codes or different spreading factors. SIC schemes and
multi-stage cancellation schemes were used at the receiver for mitigating the MAI [46–48],
where the bit rate of the users was dictated by the user requirements. The performance com-
parison of various multiuser detectors in the context of a multiple-SF transmission scheme
was presented for example by Juntti [48], where the detectors compared were the decorrela-
tor, the PIC receiver and the so-called group serial interference cancellation (GSIC) receiver.
It was concluded that the GSIC and the decorrelator performed better than the PIC receiver,
but all the interference cancellation schemes including the GSIC, exhibited an error floor at
high SNRs due to error propagation.

The bit rate of each user can also be adapted according to the near-instantaneous channel
quality, in order to mitigate the effects of channel quality fluctuations. Kim [49] analyzed the
performance of two different methods of combating the near-instantaneous quality variations
of the mobile channel. Specifically, Kim studied the adaptation of the transmitter power or
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the switching of the information rate, in order to suit the near-instantaneous channel con-
ditions. Using a RAKE receiver [50], it was demonstrated that rate adaptation provided a
higher average information rate, than power adaptation for a given average transmit power
and a given BER [49]. Abeta, Sampei and Morinaga [51] conducted investigations into an
adaptive packet transmission based CDMA scheme, where the transmission rate was modi-
fied by varying the channel code rate and the processing gain of the CDMA user, employing
the carrier to interference plus noise ratio (CINR) as the switching metric. When the channel
quality was favourable, the instantaneous bit rate was increased and conversely, the instanta-
neous bit rate was reduced when the channel quality dropped. In order to maintain a constant
overall bit rate, when a high instantaneous bit rate was employed, the duration of the trans-
mission burst was reduced. Conversely, when the instantaneous bit rate was low, the duration
of the burst was extended. This resulted in a decrease in interference power, which translated
to an increase in system capacity. Hashimoto, Sampei and Morinaga [52] extended this work
also to demonstrate that the proposed system was capable of achieving a higher user capacity
with a reduced hand-off margin and lower average transmitter power. In these schemes the
conventional RAKE receiver [50] was used for the detection of the data symbols. A variable-
rate CDMA scheme – where the transmission rate was modified by varying the channel code
rate and, correspondingly, the M -ary modulation constellations – was investigated by Lau
and Maric [53]. As the channel code rate was increased, the bit-rate was increased by in-
creasing M correspondingly in the M -ary modulation scheme. Another adaptive system was
proposed by Tateesh, Atungsiri and Kondoz [54], where the rates of the speech and chan-
nel codecs were varied adaptively [54]. In their adaptive system, the gross transmitted bit
rate was kept constant, but the speech codec and channel codec rates were varied accord-
ing to the channel quality. When the channel quality was low, a lower rate speech codec
was used, resulting in increased redundancy and thus a more powerful channel code could
be employed. This resulted in an overall coding gain, although the speech quality dropped
with decreasing speech rate. A variable rate data transmission scheme was proposed by Oku-
mura and Adachi [55], where the fluctuating transmission rate was mapped to discontinuous
transmission, in order to reduce the interference inflicted upon the other users, when there
was no transmission. The transmission rate was detected blindly at the receiver with the
help of cyclic redundancy check decoding and RAKE receivers were employed for coherent
reception, where pilot-symbol-assisted channel estimation was performed.

The information rate can also be varied in accordance with the channel quality, as it will
be demonstrated shortly. However, in comparison to conventional power control techniques
- which again, may disadvantage other users in an effort to maintain the quality of the links
considered - the proposed technique does not disadvantage other users and increases the
network capacity [56]. The instantaneous channel quality can be estimated at the receiver
and the chosen information rate can then be communicated to the transmitter via explicit
signalling in a so-called closed-loop controlled scheme. Conversely, in an open-loop scheme
- provided that the downlink and uplink channels exhibit a similar quality - the information
rate for the downlink transmission can be chosen according to the channel quality estimate
related to the uplink and vice versa. The validity of the above channel reciprocity issues in
TDD-CDMA systems have been investigated by Miya et al. [57], Kato et al. [58] and Jeong
et al. [59].
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Outline of the book

In order to mitigate the impact of dispersive multi-path fading channels, equalization tech-
niques are introduced, which are subsequently incorporated in a wideband adaptive modula-
tion scheme. The performance of various wideband adaptive transmission scheme was then
analysed in different environments, resulting in the following outline:

� Chapter 1: Square Quadrature Amplitude Modulation (QAM) schemes are intro-
duced and their corresponding performance is analysed over Gaussian and narrow-
band Rayleigh fading channels. This is followed by an introduction to equalization
techniques with an emphasis on the Minimum Mean Square Error (MMSE) Decision
Feedback Equalizer (DFE). The performance of the DFE is then characterised using
BPSK, 4QAM, 16QAM and 64QAM modems.

� Chapter 2: The recursive Kalman algorithm is formulated and employed in an adap-
tive channel estimator and adaptive DFE in order to combat the time-variant dispersion
of the mobile propagation channel. In this respect, the system parameters of the algo-
rithm are optimised for each application by evaluating the convergence speed of the
algorithm. Finally, two receiver structures utilizing the adaptive channel estimator and
DFE are compared.

� Chapter 3: The concept of AQAM is introduced, where the modulation mode is
adapted based on the prevalent channel conditions. Power control is then implemented
and analysed in conjunction with AQAM in a narrow-band environment. Subsequently,
a wideband AQAM scheme - which incorporates the DFE - is jointly constructed in or-
der to mitigate the effects of the dispersive multi-path fading channel. A numerical
upper bound performance is derived for this wideband AQAM scheme, which is sub-
sequently optimised for a certain target BER and transmission throughput performance.
Lastly, a comparison is made between the constituent fixed or time-invariant modula-
tion modes and the wideband AQAM scheme in terms of their transmission throughput
performance.

� Chapter 4: The performance of the wideband channel coded AQAM scheme is pre-
sented and analysed. Explicitly, turbo coding techniques are invoked, where each
modulation mode was associated with a certain code rate and turbo interleaver size.
Consequently, an adaptive code rate scheme is incorporated into the wideband AQAM
scheme. The performance of such a scheme is compared to the constituent fixed modu-
lation modes as well as the uncoded AQAM scheme, which was presented in Chapter 3.
Furthermore, the concept of turbo equalization is introduced and applied in a wideband
AQAM scheme. The iterative nature of the turbo equalizer is also exploited in estimat-
ing the channel impulse response (CIR). The chapter is concluded with a compara-
tive study of various joint coding and adaptive modulation schemes, including Trellis
Coded Modulation (TCM), turbo TCM (TTCM), Bit Interleaved Coded Modulation
(BICM) and its iteratively detected (ID) version, namely BICM-ID.

In Chapter 5: closed form expressions were derived for the average BER, the aver-
age BPS throughput and the mode selection probability of various adaptive modulation
schemes, which were shown to be dependent on the mode-switching levels as well as
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on the average SNR experienced. Furthermore, a range of techniques devised for de-
termining the adaptive mode-switching levels are studied comparatively. The optimum
switching levels achieving the highest possible BPS throughput while maintaining the
average target BER were developed based on the Lagrangian optimisation method.
The chapter is concluded with a brief comparison of space-time coding and adaptive
modulation in the context of OFDM and MC-CDMA.

� Chapter 6: This chapter presents the practical aspects of implementing wideband
AQAM schemes, which includes the effects of error propagation inflicted by the DFE
and the more detrimental channel quality estimation latency impact of the scheme.
The impact of latency is studied under different system delay and normalised Doppler
frequencies. The impact of Co-Channel Interference (CCI) on the wideband AQAM
scheme is also analysed. In this aspect, joint detection techniques and a more sophisti-
cated switching regime is utilized, in order to mitigate the impact of CCI.

� In Chapter 7 we cast channel equalisation as a classification problem. We briefly give
an overview of neural network and present the design of some neural network based
equalisers. In this chapter we opted for studying a neural network structure referred to
as the Radial Basis Function (RBF) network in more detail for channel equalisation,
since it has an equivalent structure to the so-called optimal Bayesian equalisation solu-
tion [60]. The structure and properties of the RBF network is described, followed by
the implementation of a RBF network as an equaliser. We will discuss the computa-
tional complexity issues of the RBF equaliser with respect to that of conventional lin-
ear equalisers and provide some complexity reduction methods. Finally, performance
comparisons between the RBF equaliser and the conventional equaliser are given over
various channel scenarios.

� Chapter 8 commences by summarising the concept of adaptive modulation that adapts
the modem mode according to the channel quality in order to maintain a certain tar-
get bit error rate and an improved bits per symbol throughput performance. The RBF
based equaliser is introduced in a wideband Adaptive Quadrature Amplitude Modula-
tion (AQAM) scheme in order to mitigate the effects of the dispersive multipath fading
channel. We introduce the short-term Bit Error Rate (BER) as the channel quality mea-
sure. Lastly, a comparative study is conducted between the constituent fixed mode, the
conventional DFE based AQAM scheme and the RBF based AQAM scheme in terms
of their BER and throughput performance.

� In Chapter 9 we incorporate turbo channel coding in the proposed wideband AQAM
scheme. A novel reduced-complexity RBF equaliser utilizing the so-called Jacobian
logarithmic relationship [61] is proposed and the turbo-coded performance of the Ja-
cobian RBF equaliser is presented for the various fixed QAM modes. Furthermore, we
investigate using various channel quality measures – namely the short-term BER and
the average Log-Likelihood Ratio (LLR) magnitude of the data burst generated either
by the RBF equaliser or the turbo decoder – in order to control the modem mode-
switching regime for our adaptive scheme.

� Chapter 10 introduces the principles of iterative, joint equalisation and decoding tech-
niques known as turbo equalisation. We present a novel turbo equalisation scheme,
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which employs a RBF equaliser instead of the conventional trellis-based equaliser.
The structure and computational complexity of both the RBF equaliser and trellis-
based equaliser are compared and we characterise the performance of these RBF and
trellis-based turbo-equalisers. We then propose a reduced-complexity RBF assisted
turbo equaliser, which exploits the fact that the RBF equaliser computes its output on
a symbol-by-symbol basis and the symbols of the decoded transmission burst, which
are sufficiently reliable need not be equalised in the next turbo equalisation iteration.
This chapter is concluded with the portayal and characterisation of RBF-based turbo
equalised space-time coded schemes.

� In Chapter 11 the recent history of smart CDMA MUDs is reviewed and the most
promising schemes have been comparatively studied, in order to assist in the design of
third- and fourth-generation receivers. Future transceivers may become BbB-adaptive,
in order to be able to accommodate the associated channel quality fluctuations with-
out disadvantageously affecting the system’s capacity. Hence the methods reviewed in
this chapter are advantageous, since they often assist in avoiding powering up, which
may inflict increased levels of co-channel interference and power consumption. Fur-
thermore, the techniques characterized in the chapter support an increased through-
put within a given bandwidth and will contribute towards reducing the constantly in-
creasing demand for more bandwidth. Both successive interference cancellation (SIC)
and Parallel Interference Cancellation (PIC) receivers are investigated in the context of
AQAM/CDMA schemes, along with joint-detection assisted schemes.

� In Chapter 12 we provide a brief historical perspective on Orthogonal Frequency Di-
vision Multiplex (OFDM) transmissions with reference to the literature of the past 30
years. The advantages and disadvantages of various OFDM techniques are considered
briefly and the expected performance is characterized for the sake of illustration in
the context of indoor wireless systems. Our discussions will deepen, as we approach
the subject of adaptive subcarrier modem mode allocation and turbo channel coding.
Our motivation is that of quantifying the performance benefits of employing adaptive
channel coded OFDM modems.

� In Chapter 13 we provide an introduction to the subject of space-time coding com-
bined with adaptive modulation and various channel coding techniques. A performance
study is conducted in the context of both fixed-mode and adaptive modulation schemes,
when communicating over dispersive wideband channels. We will demonstrate that in
conjunction with space-time coding the advantages of employing adaptive modulation
erode, since the associated multiple transmitter, multiple receiver assisted diversity
scheme efficiently mitigates the channel quality fluctuations of the wireless channel.

Having reviewed the historical developments in the field of AQAM, in the rest of this
monograph we will consider wideband AQAM assisted single- and multi-carrier, as
well as CDMA transceivers, communicating over dispersive wideband channels. We
will also demonstrate that the potential performance gains attained by AQAM erode,
as the diversity order of the systems is increased, although this is achieved at the cost
of an increased complexity. We will demonstrate that this is particularly true in con-
junction with space time coding assisted transmitter diversity, since Multiple-Input,
Multiple-Output (MIMO) systems substantially mitigate the effects of channel quality
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fluctuations. Hence if the added complexity of MIMOs has to be avoided, BbB-adaptive
transceivers constitute powerful wideband fading counter-measures. By contrast, there
is no need for the employment of BbB-adaptive transceivers, if the higher complexity of
MIMOs is affordable, since MIMOs substantially mitigate the effects of channel quality
fluctuations, rendering further fading counter-measuers superfluous.
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[291] T. Ojanperä and R. Prasad, “An overview of air interface multiple access for IMT-2000/UMTS,” IEEE Com-
munications Magazine, vol. 36, pp. 82–95, September 1998.

[292] J. Hagenauer and P. Hoeher, “A Viterbi algorithm with soft-decision outputs and its applications,” in IEEE
Globecom, pp. 1680–1686, 1989.

[293] M. Breiling and L. Hanzo, “Non-iterative optimum super-trellis decoding of turbo codes,” Electronics Letters,
vol. 33, pp. 848–849, May 1997.

[294] M. Breiling and L. Hanzo, “Optimum non-iterative turbo-decoding,” in IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, PIMRC, 1997, vol. 2, pp. 714–718, IEEE, 1997.

[295] P. Robertson, P. Hoeher, and E. Villebrun, “Optimal and sub-optimal maximum a posteriori algorithms suit-
able for turbo decoding,” European Transactions on Telecommunications, vol. 8, pp. 119–125, March/April
1997.

[296] J. Hagenauer, E. E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE
Transactions on Information Theory, pp. 429–437, 1996.
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