Mobile Radio Communications

Second Edition
Second and Third Generation Cellular and WATM Systems

Edited and co-authored by

Raymond Steele and Lajos Hanzo
Contents

Preface to the Second Edition ... xix
Acknowledgements ... xxiii
Contributors ... xxv

1 Introduction to Digital Cellular Radio 1
 1.1 The Background to Digital Cellular Mobile Radio 1
 1.2 Mobile Radio Propagation 3
 1.2.1 Gaussian Channel 5
 1.2.2 Rayleigh Fading Channel 5
 1.2.3 Rician Channel ... 10
 1.2.4 Wideband Channels 14
 1.2.4.1 GSM Wideband Channels 20
 1.2.4.2 The Two-ray Rayleigh Fading Channel 21
 1.2.4.3 Real Channel Impulse Responses 22
 1.2.5 Path Loss .. 22
 1.2.6 Propagation in Microcells for Highways and City Streets ... 24
 1.2.6.1 Path Loss ... 24
 1.2.6.2 Fading in Street Microcells 29
 1.2.7 Indoor Radio Propagation 35
 1.2.7.1 Path Loss ... 36
 1.2.7.2 Fading Properties 37
 1.2.7.3 60 GHz Propagation 39
 1.3 Principles of Multiple Access Communications 42
 1.3.1 Frequency Division Multiple Access 42
 1.3.2 Time Division Multiple Access 43
 1.3.3 Code Division Multiple Access 45
 1.4 First-Generation Mobile Radio Systems 51
 1.4.1 Network Aspects 54
1.4.1.1 Control Channels .. 57
1.4.1.2 Supervision ... 58
1.4.1.3 Call Origination ... 59
1.4.1.4 Call Receipt ... 59
1.4.2 Power Levels and Power Control 60
1.4.2.1 Call Termination ... 60
1.5 Digital Cellular Mobile Radio Systems 60
 1.5.1 Communication Sub-systems 61
 1.5.1.1 Speech Codec ... 61
 1.5.1.2 Channel Codec 62
 1.5.1.3 Modulation ... 63
 1.5.2 FDMA Digital Link .. 66
 1.5.3 TDMA Digital Link .. 67
1.6 Second-Generation Cellular Mobile Systems 69
 1.6.1 Qualcomm CDMA ... 70
 1.6.1.1 Qualcomm CDMA Down-link 70
 1.6.1.2 Qualcomm CDMA Up-link 74
1.7 Cordless Telecommunications 76
 1.7.1 CT2 System .. 76
 1.7.2 Digital European Cordless Telecommunications System 78
 1.7.3 Parameters of CTs and Cellular Systems 80
1.8 Teletraffic Considerations 82

Bibliography ... 86

2 Mobile Radio Channels ... 91
 2.1 Complex Baseband Representation 92
 2.1.1 Bandpass Signals 92
 2.1.2 Linear Bandpass Systems 95
 2.1.3 Response of a Linear Bandpass System 98
 2.1.4 Noise in Bandpass Systems 101
 2.2 Mobile Radio Channel Types 102
 2.2.1 The Propagation Channel 103
 2.2.2 The Radio Channel 103
 2.2.3 The Modulation Channel 104
 2.2.4 The Digital Channel 104
 2.2.5 A Channel Naming Convention 105
 2.3 Physical Description of the Channels 105
 2.3.1 The Propagation Channel 105
 2.3.1.1 The Received Signal 107
 2.3.1.2 The Impulse Response of the Channel 107
 2.3.1.3 The Effect of Time Variations on the Channel .. 108
 2.3.1.4 Channel Effects on Systems of Finite Delay Resolution 111
2.3.1.5 Channel Effects on Systems of Finite
Doppler Resolution .. 114
2.3.2 The Radio Channel 114
2.3.3 The Modulation Channel 117
2.3.4 The Digital Channel 118
2.4 Classification of Channels 118
2.4.1 Time Dispersion and Frequency-Selective Fading 118
2.4.2 Frequency Dispersion and Time-Selective Fading 122
2.4.3 Channel Classifications 123
2.5 Linear Time-Variant Channels 126
2.5.1 The Variables Used For System Characterisation 126
2.5.2 The Bello System Functions 127
2.5.3 Description of Randomly Time-Variant Channels 137
2.5.3.1 Autocorrelation of a Bandpass Stochastic Process .. 137
2.5.3.2 General Randomly Time-Variant Channels 139
2.5.3.3 Wide-Sense Stationary Channels 142
2.5.3.4 Uncorrelated Scattering Channels 144
2.5.3.5 Wide-Sense Stationary Uncorrelated Scattering Channels 147
2.5.3.6 Quasi-Wide-Sense Stationary Uncorrelated Scattering Channels 147
2.6 Characterisation by Bello Functions 148
2.6.1 Space-variance .. 148
2.6.2 Statistical Characteristics 149
2.6.3 Small-Area Characterisation 150
2.6.4 Large-Area Characterisation 152
2.7 Practical Channel Description 152
2.7.1 Propagation Pathloss Law 154
2.7.1.1 The Hata Pathloss Models 156
2.7.2 Slow Fading Statistics 162
2.7.3 Fast Fading Evaluation 163
2.7.3.1 Analysis of Fast Fading Statistics 163
2.7.3.2 The Relation of Rician and Gaussian PDFs 169
2.7.3.3 Extracting Fast Fading Characteristics 169
2.7.3.4 Goodness-of-fit Techniques 172
2.7.3.4.1 Chi-square Goodness-of-fit Test 173
2.7.3.4.2 Kolmogorov-Smirnov (KS) Goodness-
of-fit Test .. 173
2.7.3.4.3 Goodness-of-fit of the Hypothesis
Distribution .. 174
2.7.4 Summary .. 177

Bibliography ... 181
3 Speech Coding

3.1 Introduction .. 187
3.2 Model for Analysis-by-Synthesis Coding 190
 3.2.1 The Short-Term Predictor 191
 3.2.1.1 The Autocorrelation Method 194
 3.2.1.2 The Covariance Method 196
 3.2.1.3 Considerations in the Choice of LPC Analysis Conditions ... 198
 3.2.1.4 Quantization of the LPC parameters 200
 3.2.1.4.1 Reflection Coefficients 201
 3.2.1.4.2 Line Spectrum Pairs 204
 3.2.1.4.3 Interpolation of LPC parameters 206
 3.2.2 The Long-Term Predictor 209
 3.2.2.1 Adaptive Codebook Approach 213
 3.2.2.2 Quantization of LTP parameters 218
 3.2.3 The Error Weighting Filter 219
3.3 Multi-pulse and Regular-pulse Excitation 222
 3.3.1 Formulation of the Pulse Amplitudes and Positions
 Computation .. 222
 3.3.2 The Multi-pulse Approach 228
 3.3.3 Modification of the MPE Algorithm 232
 3.3.4 Evaluation of the Multi-pulse Algorithm 234
 3.3.4.1 Number of Pulses per Excitation Frame 234
 3.3.4.2 The Length of the Excitation Frame 237
 3.3.5 Regular-Pulse Excitation Approach 239
 3.3.6 Evaluation of the RPE Algorithm 240
 3.3.6.1 Pulse Spacing 240
 3.3.6.2 Excitation Search Frame Length 243
 3.3.7 Simplification of the RPE Algorithm 244
 3.3.7.1 The Autocorrelation Approach 245
 3.3.7.2 Eliminating the Matrix Inversion 245
 3.3.8 Quantization of the Excitation in MPE and RPE Coders 252
3.4 Code-Excited Linear Prediction 258
 3.4.1 CELP Principle .. 262
 3.4.2 Simplification of the CELP Search Procedure Using
 the Autocorrelation Approach 266
 3.4.2.1 Using Structured Codebooks 268
 3.4.2.2 Sparse Excitation Codebooks 269
 3.4.2.3 Ternary Codebooks 270
 3.4.2.4 Algebraic codebooks 271
 3.4.2.5 Overlapping Codebooks 273
 3.4.2.6 Self-Excitation 276
 3.4.3 CELP Performance 277
3.5 Binary Pulse Excitation 278
3.5.1 Transformed Binary Pulse Excitation 283
3.5.2 Excitation Determination 286
 3.5.2.1 Efficient Exhaustive Search: The Gray Code
 Approach ... 288
 3.5.2.2 Non-exhaustive Search 289
3.5.3 Evaluation of the BPE Coder 291
3.5.4 Complexity Comparison Between BPE and CELP Codes ... 296
3.6 Postfiltering .. 298
3.7 Speech Coding at Rates Below 2.4 kbps 301
 3.7.1 Overview and Background 301
 3.7.2 Wavelet-Based Pitch Detection 303
 3.7.3 Voiced-Unvoiced Decisions 307
 3.7.4 Pitch Detection 307
 3.7.5 Basic Zinc-excited Coding Algorithm 309
 3.7.6 Pitch Prototype Segment 310
 3.7.7 Zinc Function Excitation 311
 3.7.8 Excitation Optimization 313
 3.7.9 Complexity Reduction 313
 3.7.10 Voiced-Unvoiced Transition 316
 3.7.11 Excitation Interpolation 316
 3.7.12 1.9 kbps ZFE-WI Codec Performance 318
 3.7.13 Multiband Excited Codec 320
 3.7.14 The MMBE Coding Algorithm 320
 3.7.15 2.35 kbps ZFE-MMBE-WI Codec Performance 321
 3.7.16 Summary and Conclusions 323

Bibliography ... 325

4 Channel Coding .. 335
 4.1 Introduction 335
 4.2 Interleaving Techniques 336
 4.2.1 Diagonal Interleaving 337
 4.2.2 Block Interleaving 338
 4.2.3 Inter-Block Interleaving 340
 4.2.4 Convolutional Interleaving 341
 4.2.5 Discrete Memoryless Channel 342
 4.2.6 The Effect of Interleaving on Symbol Error
 Distribution 343
 4.2.7 Effect of Symbol Size on Symbol Error Probability
 ... 346
 4.3 Convolutional Codes 346
 4.3.1 Convolutional Encoding 347
 4.3.2 State and Trellis Diagrams 350
 4.3.3 Maximum Likelihood Decoding 353
 4.3.3.1 Hard-decision Decoding 354
 4.3.3.1.1 Correct Decoding 356
CONTENTS

4.3.3.1.2 Incorrect Decoding 356
4.3.3.2 Soft-decision Decoding 357
4.3.3.3 The Viterbi Algorithm 359
4.3.4 Distance Properties of Convolutional Codes 363
4.3.5 Punctured Convolutional Codes 369
4.3.6 Hard-decision Decoding Theory 372
4.3.7 Soft-decision Decoding Theory 375
4.3.8 Convolutional Code Performance 377
 4.3.8.1 Convolutional Code Performance via Gaussian Channels .. 378
 4.3.8.2 Convolutional Code Performance via Rayleigh Channels .. 381
4.3.9 Conclusions on Convolutional Coding 386
4.4 Block Codes .. 388
 4.4.1 The Structure of Block Codes 388
 4.4.1.1 Finite Fields 389
 4.4.1.2 Vector Spaces 391
 4.4.1.3 Extension Fields 393
 4.4.1.4 Primitive Polynomials 395
 4.4.1.5 Minimal Polynomials 398
 4.4.2 Cyclic Codes ... 405
 4.4.3 BCH Codes ... 408
 4.4.3.1 Binary BCH Codes 409
 4.4.3.2 non-binary BCH Codes 410
 4.4.3.2.1 Reed-Solomon Codes 411
 4.4.4 Encoding of Block Codes 413
 4.4.4.1 Binary BCH Encoder 415
 4.4.4.2 Reed-Solomon Encoder 417
 4.4.5 Decoding Algorithms for Block Codes 419
 4.4.5.1 The Syndrome Equations 420
 4.4.5.2 Peterson-Gorenstein-Zierler Decoding 422
 4.4.5.3 Berlekamp-Massey Algorithm 428
 4.4.5.4 Forney Algorithm 437
 4.4.6 Trellis Decoding for Block Codes 442
 4.4.6.1 Trellis Construction 442
 4.4.6.2 Trellis Decoding 444
 4.4.7 Block Decoding Theory 445
 4.4.7.1 Probability of Correct Decoding 446
 4.4.7.2 Probability of Incorrect Decoding 447
 4.4.7.2.1 Number of Weight-h Codewords 451
 4.4.7.3 Post-decoding Bit and Symbol Error Probabilities .. 452
 4.4.8 Block Coding Performance 453
 4.4.8.1 Block Coding Performance via Gaussian Channels .. 454
CONTENTS

4.4.8.2 Block Coding Performance via Rayleigh Fading Channels ... 459
4.4.8.3 Soft/Hard Decisions via Gaussian Channels ... 462
4.4.9 Conclusions on Block Coding ... 465

4.5 Concatenated Codes ... 467
4.5.1 Nested Codes ... 467
4.5.2 Product Codes ... 469

4.6 Comparison of Error Control Codes ... 470

Bibliography

5 Quaternary Frequency Shift Keying ... 481
5.1 An S000-D Like System .. 481
5.2 QFSK Transmissions Over Gaussian Channels ... 489
 5.2.1 Demodulation in the Absence of Cochannel Interference ... 490
 5.2.1.1 Coherent Demodulation ... 490
 5.2.1.2 Non-coherent Demodulation .. 495
 5.2.2 Single Cochannel Interferer with Non-coherent Demodulation 502
 5.2.3 Multiple Cochannel Interferers .. 506
 5.2.3.1 Coherent Demodulation .. 506
 5.2.3.2 Non-Coherent Demodulation ... 507
5.3 QFSK Transmission Over Rayleigh Channels .. 509
 5.3.1 Coherent Demodulation .. 511
 5.3.2 Non-Coherent Demodulation .. 511

Bibliography

6 Partial-response Modulation ... 515
6.1 Generalised Phase Modulation .. 515
 6.1.1 Digital Phase Modulation .. 516
 6.1.2 Digital Frequency Modulation .. 521
 6.1.3 Power Spectra .. 531
 6.1.3.1 Modulated Signal Power Spectral Density Estimation 534
 6.1.4 TDMA Format for DPM and DFM Transmissions ... 534
 6.1.5 Hardware Aspects .. 536
6.2 CPM Receivers ... 537
 6.2.1 Optimal Receiver .. 537
 6.2.2 Probability of Symbol Error .. 541
 6.2.3 Principle of Viterbi Equalisation .. 545
 6.2.4 RF to Baseband Conversion .. 552
 6.2.5 Baseband Processing ... 553
 6.2.6 Viterbi Equalisation of Digital Phase Modulation .. 569
 6.2.7 Viterbi Equalisation of GMSK Signals ... 576
 6.2.8 Simulation of DPM Transmissions ... 580
6.2.8.1 DPM Transmissions over an AWGN Channel 581
6.2.8.2 DPM Transmissions over Non-Frequency Selective Rayleigh and Rician Channels 583
6.2.8.3 DPM Transmissions over Frequency Selective Two-Ray Static Channels 585
6.2.8.4 DPM Transmissions over Frequency Selective Two-Ray Fading Channels 585
6.2.9 Simulations of GMSK Transmissions 588
6.2.9.1 GMSK Transmissions over an AWGN Channel 588
6.2.9.2 GMSK Transmissions over Frequency Selective Rayleigh Fading Channels 589
6.2.9.3 Comment 590

Bibliography 592

7 Frequency Hopping 595
7.1 Introduction 595
7.2 Principles of SFHMA 596
7.2.1 SFHMA Protocols 597
7.2.2 Reuse Cellular Structures 598
7.2.3 Propagation Factors 602
7.3 Description of an SFHMA System 605
7.3.1 Multiple Access Protocol 605
7.3.2 Time Division Multiplexing 605
7.3.3 Modulation and Equalisation 605
7.3.4 Speech and Channel Coding 606
7.3.5 Transmitted Signal Structure 607
7.3.6 Frequency Reuse 607
7.4 BER Performance 608
7.4.1 BER Performance of the MLSE Detector 608
7.4.2 BER Performance of the MSK-Type Detector 610
7.4.3 Channel Models and System Assumptions 614
7.4.4 BER Analysis of the SFHMA System in a Static AWGN Channel 617
7.4.5 BER Analysis in a Rayleigh Fading Channel 621
7.5 BER Performance 623
7.5.1 BER Analysis in a Noiseless Static Channel 624
7.5.2 BER Analysis in a Static AWGN Channel 627
7.5.3 BER Analysis in a Rayleigh Fading AWGN Channel 630
7.5.4 BER Analysis of a Noiseless Rayleigh Fading Channel 632
7.6 Estimation of Spectral Efficiency 634
7.6.1 Spectral Efficiency of the SFHMA System: Method A 636
7.6.2 Spectral Efficiency of the SFHMA System: Method B 646
7.6.3 Spectral Efficiency of the TD/FDMA System 650
7.7 Conclusions ... 655
7.8 Appendix A: ... 656

Bibliography .. 659

8 GSM ... 661
 8.1 Introduction ... 661
 8.2 Overview of the GSM System 665
 8.3 Mapping Logical Channels 668
 8.3.1 Logical Channels 668
 8.3.2 Physical Channels 671
 8.3.2.1 Mapping the TCH/FS and its SACCH as well as FACH onto Physical Channels 672
 8.3.2.2 Mapping Broadcast and Common Control Channels onto Physical Channels 678
 8.3.2.3 Broadcast Control Channel Messages 682
 8.3.3 Carrier and Burst Synchronisation 683
 8.3.4 Frequency Hopping 685
 8.4 Full-rate 13 kbps Speech Coding 687
 8.4.1 Candidate Codecs 687
 8.4.2 The RPE-LTP Speech Encoder 688
 8.4.3 The RPE-LTP Speech Decoder 692
 8.5 The Half-rate 5.6 kbps GSM Codec 695
 8.5.1 Half-rate GSM Codec Outline 695
 8.5.2 Half-rate GSM Codec Spectral Quantisation 698
 8.5.3 Half-rate GSM Error Protection 699
 8.6 The Enhanced GSM Codec 700
 8.6.1 EFR Codec Outline 700
 8.6.2 Operation of the EFR-GSM Encoder 702
 8.6.2.1 Spectral Quantisation in the EFR-GSM Codec 702
 8.6.2.2 Adaptive Codebook Search 704
 8.6.2.3 Fixed Codebook Search 705
 8.7 Channel Coding and Interleaving 706
 8.7.1 FEC for the 13kbps Speech Channel 707
 8.7.2 FEC for Data Channels 712
 8.7.2.1 Low-Rate Data Transmission 714
 8.7.3 FEC in Control Channels 714
 8.7.4 FEC Performance 716
 8.8 Transmission and Reception 720
 8.9 Wideband Channels and Viterbi Equalisation 727
 8.9.1 Channel Models 727
 8.9.2 Viterbi Equaliser 729
 8.9.3 GSM System Performance 731
 8.10 Radio Link Control 733
9 Wireless QAM-based Multi-media Systems

9.1 Motivation and Background

9.2 Speech Coding Aspects

9.2.1 Recent Speech Coding Advances

9.2.2 The 4.8 kbit/s Speech Codec

9.2.3 Speech Quality Measures

9.2.4 Bit Sensitivity Analysis

9.3 Video Coding Issues

9.3.1 Recent Video Coding Advances

9.3.2 Motion Compensation

9.3.3 A Fixed-rate Videophone Codec

9.3.3.1 The Intra-Frame Mode

9.3.3.2 Cost/Gain Controlled Motion Compensation

9.3.3.3 Transform Coding

9.3.3.4 Gain Controlled Quadruple-Class DCT

9.3.4 The H.263 Standard Video Codec

9.4 Graphical Source Compression

9.4.1 Introduction to Graphical Communications

9.4.2 Fixed-Length Differential Chain Coding

9.4.3 FL-DCC Graphical Codec Performance

9.5 Modulation Issues

9.5.1 Choice of Modulation

Bibliography

Glossary

CONTENTS

8.10.1 Link Control Concept

8.10.2 A Link Control Algorithm

8.10.2.1 BS Preprocessing and Averaging

8.10.2.2 RF Power Control and HO Initiation

8.10.2.3 Decision Algorithm

8.10.2.4 HO Decisions in the MSC

8.10.2.5 Handover Scenarios

8.11 Discontinuous Transmission

8.11.1 DTX Concept

8.11.2 Voice Activity Detection

8.11.3 DTX Transmitter Functions

8.11.4 DTX Receiver Functions

8.11.5 Comfort Noise Insertion and Speech/Noise Extrapolation

8.12 Ciphering

8.13 Telecommunication Services

8.14 Summary

733

740

740

741

741

745

746

747

747

748

752

753

756

757

759

765

768

771

777

780

780

781

784

785

789

789

790

794

794

797

797

801

803

806

806

806

809

810

810
9.5.2 Quadrature Amplitude Modulation 813
 9.5.2.1 Background 813
 9.5.2.2 Modem Schematic 814
 9.5.2.2.1 Gray Mapping and Phasor Constellation 814
 9.5.2.2.2 Nyquist Filtering 817
 9.5.2.2.3 Modulation and Demodulation 819
 9.5.2.2.4 Data Recovery 821
 9.5.2.3 QAM Constellations 822
 9.5.2.4 16-QAM BER versus SNR Performance over AWGN Channels 825
 9.5.2.4.1 Decision Theory 825
 9.5.2.4.2 QAM Modulation and Transmission 828
 9.5.2.4.3 16-QAM Demodulation in AWGN 828
 9.5.2.5 Reference Assisted Coherent QAM for Fading Channels 832
 9.5.2.5.1 PSAM System Description 832
 9.5.2.5.2 Channel Gain Estimation in PSAM 834
 9.5.2.5.3 PSAM Performance 837
 9.5.2.6 Differentially Detected QAM 837
 9.5.2.7 Burst-by-burst Adaptive Modems 841
 9.5.2.8 Summary of Multi-level Modulation 845
9.6 Packet Reservation Multiple Access 845
9.7 Multi-mode Multi-media Transceivers 847
 9.7.1 Flexible Transceiver Architecture 847
 9.7.2 A 30 kHz Bandwidth Multi-media System 850
 9.7.2.1 Channel-coding and Bit-mapping 850
 9.7.2.2 Performance of a 30-kHz Bandwidth Multi-media System 853
 9.7.3 A 200 kHz Bandwidth Multi-mode, Multi-media System 857
 9.7.3.1 Low-quality Speech Mode 858
 9.7.3.2 High-quality Speech Mode 860
 9.7.3.3 Multi-mode Video Transmission 861
 9.7.3.4 PRMA-assisted Multi-level Graphical Communications 862
 9.7.3.4.1 Graphical Transmission Issues 862
 9.7.3.4.1.1 Graphical Packetisation Aspects 863
 9.7.3.4.2 Graphics, Voice and Video Multiplexing using PRMA 865
 9.7.3.5 Performance of the 200 kHz Bandwidth Multi-mode, Multi-media System 865
 9.7.3.5.1 Speech Performance 865
 9.7.3.5.2 Video Performance 869
10.3 The cdma2000 Terrestrial Radio Access 939
 10.3.1 Characteristics of cdma2000 939
 10.3.2 Physical Channels in cdma2000 941
 10.3.3 Service Multiplexing and Channel Coding 944
 10.3.4 Spreading and Modulation 944

Bibliography .. 879

Glossary .. 893

10 Third-Generation Systems 897
 10.1 Introduction 897
 10.2 UMTS/IMT-2000 Terrestrial Radio Access 900
 10.2.1 Characteristics of UTRA/IMT-2000 900
 10.2.2 Transport Channels 904
 10.2.3 Physical Channels 905
 10.2.3.1 UTRA Physical Channels 907
 10.2.3.2 IMT-2000 Physical Channels 910
 10.2.4 Service Multiplexing and Channel Coding
 in UTRA/IMT-2000 914
 10.2.4.1 Mapping Several Speech Services to
 the Physical Channels in FDD Mode ...
 916
 10.2.4.2 Mapping a 2.048 Mbps Data Service to
 the Physical Channels in TDD Mode ...
 918
 10.2.5 Variable Rate and Multicode Transmission
 in UTRA/IMT-2000 .. 920
 10.2.6 Spreading and Modulation 922
 10.2.6.1 Orthogonal Variable Spreading Factor
 Codes in UTRA/IMT-2000 923
 10.2.6.2 Uplink Spreading and Modulation 925
 10.2.6.3 Downlink Spreading and Modulation 927
 10.2.7 Random Access 928
 10.2.8 Power Control 931
 10.2.8.1 Closed-Loop Power Control in
 UTRA/IMT-2000 931
 10.2.8.2 Open-Loop Power Control During
 the Mobile Station's Access 932
 10.2.9 Cell Identification 933
 10.2.10 Handover 936
 10.2.10.1 Intra-frequency Handover or Soft
 Handover 936
 10.2.10.2 Inter-frequency Handover or Hard
 Handover 936
 10.2.11 Inter-cell Time Synchronization in the
 UTRA/IMT-2000 TDD mode 937

9.8 Summary and Conclusions 875
9.9 Acknowledgement 877

9.7.3.5.3 Graphical System Performance 870
10.3.4.1 Downlink Spreading and Modulation
10.3.4.2 Uplink Spreading and Modulation
10.3.5 Random Access
10.3.6 Handover
10.4 Performance Enhancement Features
10.4.1 Adaptive Antennas
10.4.2 Multiuser Detection/Interference Cancellation
10.4.3 Transmit Diversity
10.4.3.1 Time Division Transmit Diversity
10.4.3.2 Orthogonal Transmit Diversity

Bibliography
Glossary

11 Wireless ATM
11.1 Introduction
11.2 Overview of ATM
11.2.1 ATM Cell
11.2.2 Service Classes
11.2.3 Statistical Multiplexing
11.2.4 Virtual Connections
11.2.5 Service Parameters
11.3 Wireless ATM Mobility
11.3.1 Network Architectures for ATM Mobility
11.3.2 Handover Schemes
11.3.2.1 Cell Forwarding
11.3.2.2 Virtual Connection Tree
11.3.2.3 Dynamic Re-routing
11.3.3 Quality-of-Service
11.3.4 Location Management and Routing
11.4 Radio Access Infrastructure
11.4.1 Medium Access Control
11.4.1.1 Adaptive PRMA
11.4.1.2 Dynamic Slot Assignment
11.4.1.3 Distributed Queueing Request Update Multiple Access
11.4.2 Polling Scheme for Adaptive Antenna Arrays
11.4.3 Data Link Control Layer
11.4.4 Radio Physical Layer
11.5 Microcellular Architecture
11.5.1 Dedicated Link to BSs from a Remote ATM Node
11.5.2 BSs as Simple Private ATM Nodes
11.5.3 BSs as Full ATM Nodes
11.5.4 BSC for Semi-intelligent BSs
11.5.5 BSC for Dumb BSs
11.6.1 WATM Simulation Tool 1002
 11.6.1.1 Medium Access Control 1002
 11.6.1.2 Service Characteristics 1003
 11.6.1.3 Call Admission Control 1004
 11.6.1.4 Handover 1006
11.6.2 Rectilinear Grid Network Simulations 1006
 11.6.2.1 Dynamic versus Fixed Slot Assignment
 Schemes Transporting GSM-based Voice Traffic 1007
 11.6.2.2 DSA Scheme Transporting Voice Traffic
 With WATM Characteristics 1009
 11.6.2.3 DSA With A Mixture of Voice and Video
 Services 1011
 11.6.2.4 Dynamic versus Fixed Slot Assignment
 with Voice and Video Traffic 1013
 11.6.2.5 Allowing Call Attempts on a Secondary BS 1016
 11.6.2.6 Allowing Handover on Cell Loss 1016
 11.6.2.7 Accept All Calls Algorithm 1019
 11.6.2.8 Accept All Calls Algorithm Combined with
 the Handover on Cell Loss Algorithm 1021
11.6.3 Campus Network Simulations 1024
 11.6.3.1 Combined Voice, Video and Data Services 1026
 11.6.3.2 Dynamic versus Fixed Slot Assignment
 Scheme with Voice, Video, and Data Traffic ... 1028
 11.6.3.3 The Absence of Handover on Cell Loss 1030
 11.6.3.4 High-Priority Video 1031
 11.6.3.5 Equal Priority Services 1032
 11.6.3.6 Delay Buffering 1033
 11.6.3.7 Speed of Handover 1033
 11.6.3.8 Increased Handover Hysteresis 1035
 11.6.3.9 Absence of Minicell Coverage 1035
11.7 Summary of WATM Simulations 1037
11.8 WATM Conclusions 1038

Bibliography 1040

Index 1044

Author Index 1054
Preface to the Second Edition

Second generation (2G) digital cellular mobile radio systems have taken root in many countries, un tethering the telephone and enabling people to conduct conversations away from the home or office and while on the move. The systems are spectrally efficient with the frequency bands assigned by the regulatory bodies being reused repeatedly over countries and even continents. At the time of writing the standardisation of third generation (3G) systems is also well under way in Europe, the United States and in Japan. This book aims to portray the evolutionary avenue bridging the second and third generation systems.

The fixed networks have also become digital, enabling the introduction of the integrated digital service network (ISDN). No longer are communications to be restricted to voice. Instead a range of services, such as fax, video conferencing and computer data transfer is becoming increasingly available. The second generation digital cellular networks have complex radio links, connecting the mobile users to their base stations. Mobile voice and data communications are supported by elaborate network protocols that support registration and location of mobile users, handovers between base stations as the mobiles roam, call initiation and call clear-down, and so forth. In addition there are management, maintenance, and numerous other functions unseen by the user that combine to facilitate high quality mobile communications. Some of these network issues are considered in the context of the Global System of Mobile (GSM) communications in Chapter 8 and in Wireless Asynchronous Transfer Mode (WATM) systems in Chapter 11, but this book principally addresses the so-called physical layer aspects of mobile communications.

Chapter 1 is a bottom-up approach to cellular radio. Commencing with the propagation environment of a single mobile communicating with a base station, Chapter 1 progresses via multiple access methods, first generation and second generation mobile systems, to cordless telecommunications and concludes with a discussion on the traffic aspects of mobile radio systems. The chapter is designed to equip the reader with a range of concepts that will prepare her or him for the more focused in-depth chapters which follow.

Chapter 2 considers mobile radio propagation in a quantitative manner, establishing the background material that is the backbone of mobile radio communications. A prerequisite to digital telephony is the selection of an appropriate speech encoder, converting the analogue speech signal into a
digital format. Chapter 3 provides an in-depth discourse on analysis-by-synthesis codecs.

Having encoded the speech signal, forward error correction coding is applied together with interleaving of the coded speech bits, in order to combat the channel error bursts that occur due to the fading inflicted by the mobile radio channel. Chapter 4 addresses these issues. The interleaved data are transmitted via a suitable modulator over a mobile radio channel to a distant receiver which recovers the data. There are many different methods of modulation but we opted for describing those, which are particularly appropriate for mobile communications. In Chapter 5 we consider quaternary frequency shift keying (QFSK), which was a contending modern for the pan-European cellular network. Chapter 6 deals with a more complex family of modulation schemes, which are known as generalised phase modulation arrangements. In this chapter we consider Viterbi equalisation of wideband dispersive mobile radio channels.

Frequency hopping is an important technique in mobile radio communications, whereby a user's channel hops from one frequency carrier to another in order to avoid being in a deep fade for long periods of time. Chapter 7 is devoted to slow frequency hopping cellular systems, and an estimation of their spectral efficiency is presented. This is followed by a description of the pan-European mobile radio system in Chapter 8, which is now known as the Global System of Mobile communications, or GSM. This chapter guides the reader through the complexities of this mobile radio network, providing an overall system study and amalgamating the system components introduced in the preceding chapters.

Since the standardisation of the second generation systems, such as GSM, a decade has elapsed and the wireless community has been working towards the third generation of mobile systems. There have also been important evolutionary developments on the 2G scene, such as the definition of the half-rate Japanese Personal Digital Cellular (PDC) system's speech codec and that of the GSM half-rate speech-coding standard, the introduction of a new breed of enhanced full-rate speech codecs and the spread of advanced data, fax and email services. Further important developments have taken place in the area of high-speed wireless local area networks. Motivated by these trends and a range of other new developments in the field, this second edition incorporates three new chapters.

Chapter 9 presents a range of multimedia system components, which have the potential to provide attractive enhanced services in the context of both the existing 2G and the forthcoming 3G systems. Specifically, various video codecs and handwriting codecs are described, in order to support wireless video telephony and electronic 'white-board' services. Chapter 9 also provides an overview of the recent activities in the field of multi-level modulation schemes, which can be advantageously invoked in so-called intelligent multi-mode transceivers that are capable of re-configuring themselves on a burst-by-burst basis, supporting more robust transmissions in
hostile propagation environments while transmitting an increased number of bits per symbol in benign propagation scenarios.

Chapter 10 provides an overview of the recently proposed 3G wide-band Code Division Multiple Access (W-CDMA) standards. The systems considered are the so-called 'Intelligent Mobile Telecommunications in the year 2000' (IMT-2000), the 'Universal Mobile Telecommunications System' (UMTS) scheme and the pan-American cdma2000 arrangement. Despite the call for a common global standard, there are some differences in the proposed technologies, notably the chip rates and inter-cell operation. These differences are partly due to the 2G infrastructure already in use all over the world, specifically the GSM and the IS-95 systems; an issue elaborated in Chapter 10.

Our final chapter is rather different from the others in that it is concerned with network issues related to wireless asynchronous transfer mode (WATM) networks. With the aid of a WATM simulator numerous scenarios for the transport of multimedia traffic over cellular networks are addressed. The results verify the effectiveness of the WATM concept, successfully mixing real-time, non-real-time, constant bit rate, and variable bit rate services. A number of network control enhancements have been suggested. The simulations confirm that the medium access control protocols, data link control protocols, and network management schemes must be dynamic and intelligent, and should take into account the instantaneous traffic loading on each BS and in the surrounding network. Intelligent handover and call admission schemes can provide vast improvements in the Quality of Service (QoS). The rapid re-assignment of capacity over a wide area would be beneficial. It must be emphasised that, given current bandwidth availabilities, satisfying the QoS expected in the fixed ATM network is economically impractical in wireless networks. Therefore, acceptable mobile service grades should be defined, or the available radio spectrum increased.

To our original text dealing with many of the fundamentals of the physical aspects of mobile communications, we have added new chapters dealing with the exciting subjects of multimedia mobile communications, the proposed 3G CDMA systems, and WATM. It is our hope that you will find this second edition comprehensive, technically challenging, valuable and above all, enjoyable.

Raymond Steele
Lajos Hanzo
Acknowledgements

The book has been written by the staff in the Electronics and Computer Science Department at the University of Southampton and at Multiple Access Communications Ltd. The names of the authors of each chapter are presented at the beginning of their chapters. All of the contributors are indebted to our many colleagues who have enhanced our understanding of the subject. These colleagues and valued friends, too numerous all to be mentioned, have influenced our views concerning various aspects of wireless multimedia communications and we thank them for the enlightenment gained from our collaborations on various projects, papers and books. We are grateful to J. Brecht, Jon Blogh, Marco Brülling, M. del Buono, Clare Brooks, Peter Cherriman, Stanley Chia, Byoung Jo Choi, Joseph Cheung, Peter Fortune, Lim Dongmin, D. Didascalou, S. Ernst, Eddie Green, David Greenwood, hee Thong How, Thomas Keller, W.H. Lam, C.C. Lee, M.A. Nofal, Xiao Lin, Chee Siong Lee, Tong-Hooi Liew, Matthias Münster, V. Roger-Marchart, Redwan Salami, David Stewart, Juergen Streit, Jeff Torrance, Spiros Vlahogiannatos, William Webb, John Williams, Jason Woodard, Choong Hin Wong, Henry Wong, James Wong, Lie-Liang Yang, Bee-Leong Yeap, Mong-Suan Yee, Kai Yen, Andy Yuen and many others with whom we enjoyed an association.

We also acknowledge our valuable associations with Roke Manor Research, BT Laboratories, the Department of Trade and Industry and the Radiocommunications Agency. Our sincere thanks are also due to the EPSRC, UK; the Commission of the European Communities, Brussels; and Motorola ECID, Swindon, UK for sponsoring some of our recent research.

These authors who did not typeset their final manuscripts in Latex thank Jenny Clark, Debbie Sheridan and Denise Harvey for the work they did on their behalf in preparing the camera-ready copy. We are grateful to Phil Evans for the production of many of the drawings, and we feel particularly indebted to Peter Cherriman and Rita Hanzo for their skillful assistance with the final typesetting in Latex. Similarly, our sincere thanks are due to Juliet Booker, Mark Hammond and a number of other staff from John Wiley & Sons Ltd for their kind assistance throughout the preparation of this second edition.

Raymond Steele
Lajos Hanzo
Contributors

Editors:

R. Steele, BSc, PhD, DSc, FEng, FIEEE, FIEE,
Professor of Telecommunications, University of Southampton and
Chairman of Multiple Access Communications Ltd, UK

L. Hanzo, Dipl-Ing., PhD, MIEEE, SMIEEE,
Professor of Telecommunications, University of Southampton and
Consultant to Multiple Access Communications Ltd, UK

Co-authors

Chapter 1: R. Steele
Chapter 2: D. Greenwood, L. Hanzo
Chapter 3: R.A. Salami, L. Hanzo, F.C.A. Brooks, R. Steele
Chapter 4: K.H.H. Wong, L. Hanzo
Chapter 5: I.J. Wassell, R. Steele
Chapter 6: I.J. Wassell, R. Steele
Chapter 7: Y.F. Ko, D.G. Appleby
Chapter 8: L. Hanzo, J. Stefanov
Chapter 9: L. Hanzo
Chapter 10: K. Yen, L. Hanzo
Chapter 11: P. Pattullo, R. Steele
Bibliography

System Capacity,” IEEE Transactions on Vehicular Technology, vol. 47,
[43] M. Gustafsson, K. Jamal, and E. Dahlman, “Compressed Mode Tech-
niques for Inter-frequency measurements in a wide-band DS-CDMA sys-
tem,” in IEEE International Conference on Personal, Indoor and Mobile
231–235.
Wireless Data Services: IS-95 to cdma2000,” IEEE Communications
[46] D. N. Knisely, Q. Li, and N. S. Rames, “cdma2000: A Third Gen-
eration Radio Transmission Technology,” Bell Labs Technical Journal,
[47] Y. Okumura and F. Adachi, “Variable-Rate Data Transmission with
Blind Rate Detection for Coherent DS-CDMA Mobile Radio,” IEICE
Transactions on Communications, vol. E81B, no. 7, pp. 1365–1373, July
1998.
Improvements in CDMA,” IEEE Transactions on Vehicular Technology,
Multiple-Access Channel,” IEEE Transactions on Communications,
IEEE Communications Magazine, vol. 34, no. 10, pp. 124–136, October
1996.
Estimation in Asynchronous Multispan CDMA Detectors,” IEEE Trans-
[54] L. Wei, L. K. Rasmussen and R. Wyrwas, “Near Optimum Tree-
search Detection Schemes for Bit-synchronous Multispan CDMA Systems
over Gaussian and Two-path Rayleigh Fading Channels,” IEEE Trans-
[55] T. J. Lim and M. H. Ho, “LMS-Based Simplifications to the Kalman
Filter Multispan CDMA Detector,” Proceedings of IEEE Asia-Pacific Con-
ference on Communications/International Conference on Communication

Glossary

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>2G</td>
<td>Second Generation</td>
</tr>
<tr>
<td>3G</td>
<td>Third Generation</td>
</tr>
<tr>
<td>ACL</td>
<td>Auto Correlation</td>
</tr>
<tr>
<td>ACTS</td>
<td>Advanced Communications Technology and Services</td>
</tr>
<tr>
<td>ARIB</td>
<td>Association of Radio Industries and Businesses</td>
</tr>
<tr>
<td>AWGN</td>
<td>Additive White Gaussian Noise</td>
</tr>
<tr>
<td>BCCH</td>
<td>Broadcast Control Channel</td>
</tr>
<tr>
<td>BER</td>
<td>Bit Error Rate</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase Shift Keying</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>CAPICH</td>
<td>Common Auxiliary Pilot Channel</td>
</tr>
<tr>
<td>CCCH</td>
<td>Common Control Channel</td>
</tr>
<tr>
<td>CCL</td>
<td>Cross Correlation</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>CPHCH</td>
<td>Common Physical Channel</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>DAPICH</td>
<td>Dedicated Auxiliary Pilot Channel</td>
</tr>
<tr>
<td>DCCH</td>
<td>Dedicated Control Channel</td>
</tr>
<tr>
<td>DCH</td>
<td>Dedicated Channel</td>
</tr>
<tr>
<td>DECT</td>
<td>Digital Enhanced Cordless Telecommunications</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>DPCCH</td>
<td>Dedicated Physical Control Channel</td>
</tr>
<tr>
<td>DPDCCH</td>
<td>Dedicated Physical Data Channel</td>
</tr>
<tr>
<td>DPHCH</td>
<td>Dedicated Physical Channel</td>
</tr>
<tr>
<td>DS-CDMA</td>
<td>Direct Sequence Code Division Multiple Access</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic Compatibility</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>FACH</td>
<td>Forward Access Channel</td>
</tr>
<tr>
<td>FCCH</td>
<td>Frequency Correction Channel</td>
</tr>
<tr>
<td>FCH</td>
<td>Fundamental Channel</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplex</td>
</tr>
<tr>
<td>FDMA</td>
<td>Frequency Division Multiple Access</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
</tr>
<tr>
<td>FPLMTS</td>
<td>Future Public Land Mobile Telecommunication System</td>
</tr>
<tr>
<td>FRAMES</td>
<td>Future Radio Wideband Multiple Access System</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>HCS</td>
<td>Hierarchical Cell Structure</td>
</tr>
<tr>
<td>IMT-2000</td>
<td>International Mobile Telecommunications 2000</td>
</tr>
<tr>
<td>ISO/OSI</td>
<td>International Standardization Organization/Open Systems Interconnection</td>
</tr>
<tr>
<td>ITU</td>
<td>International Telecommunication Union</td>
</tr>
<tr>
<td>ITU-R</td>
<td>International Telecommunication Union - Radio-communication Sector</td>
</tr>
<tr>
<td>MAI</td>
<td>Multiple Access Interference</td>
</tr>
<tr>
<td>MC</td>
<td>Multicarrier</td>
</tr>
<tr>
<td>MDM</td>
<td>Modulation Division Multiplexing</td>
</tr>
<tr>
<td>MPG</td>
<td>Multiple Processing Gain</td>
</tr>
<tr>
<td>MS</td>
<td>Mobile Station</td>
</tr>
<tr>
<td>OCQPSK</td>
<td>Orthogonal Complex Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>OVSF</td>
<td>Orthogonal Variable Spreading Factor</td>
</tr>
<tr>
<td>PCSCPCH</td>
<td>Primary Common Control Physical Channel</td>
</tr>
<tr>
<td>PCH</td>
<td>Paging Channel</td>
</tr>
<tr>
<td>PCS</td>
<td>Personal Communications Services</td>
</tr>
<tr>
<td>PHCH</td>
<td>Physical Channel</td>
</tr>
<tr>
<td>PHS</td>
<td>Personal Handyphone System</td>
</tr>
<tr>
<td>PICH</td>
<td>Pilot Channel</td>
</tr>
<tr>
<td>PN</td>
<td>Pseudo Noise</td>
</tr>
<tr>
<td>PRMA</td>
<td>Packet Reservation Multiple Access</td>
</tr>
<tr>
<td>PSC</td>
<td>Primary Synchronization Code</td>
</tr>
<tr>
<td>QoS</td>
<td>Quality of Service</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Description</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RACE</td>
<td>Research in Advanced Communication Equipment</td>
</tr>
<tr>
<td>RACH</td>
<td>Random Access Channel</td>
</tr>
<tr>
<td>RI</td>
<td>Rate Information</td>
</tr>
<tr>
<td>RS</td>
<td>Reed-Solomon</td>
</tr>
<tr>
<td>RTT</td>
<td>Radio Transmission Technology</td>
</tr>
<tr>
<td>SCCPCH</td>
<td>Secondary Common Control Physical Channel</td>
</tr>
<tr>
<td>SCH</td>
<td>Synchronisation Channel</td>
</tr>
<tr>
<td>SF</td>
<td>Spreading Factor</td>
</tr>
<tr>
<td>SIR</td>
<td>Signal-to-Interference Ratio</td>
</tr>
<tr>
<td>SSC</td>
<td>Secondary Synchronisation Code</td>
</tr>
<tr>
<td>SYCH</td>
<td>Sync Channel</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplex</td>
</tr>
<tr>
<td>TDMA</td>
<td>Time Division Multiple Access</td>
</tr>
<tr>
<td>TFI</td>
<td>Transport Format Indicator</td>
</tr>
<tr>
<td>TIA</td>
<td>Telecommunications Industry Association</td>
</tr>
<tr>
<td>TPC</td>
<td>Transmit Power Control</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>UTRA</td>
<td>Universal Mobile Telecommunications System Terrestrial Radio Access</td>
</tr>
<tr>
<td>VoD</td>
<td>Video on Demand</td>
</tr>
<tr>
<td>W-CDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>WARC</td>
<td>World Administrative Radio Conference</td>
</tr>
</tbody>
</table>
Index

Symbols
Q-function 827
1.9 kbps ZLC-based codec 318-320
16-QAM constellation comparison 825
16-QAM demodulation in AWGN 828
16-QAM square constellation ... 816
1st generation mobile systems ... 51
1st-generation mobile systems ... 60
2.4 kbps coding 300-323
2nd generation mobile systems60-76
4.8 kbps speech coding 781-783
60 GHz propagation 30-42

A
ACTS (Advanced Communications Technology and Services) 900
ACTS programme 778
Adachi 845
adaptive antenna 903, 952
Advanced Time Division Multiple Access 811
analogue mobile systems ... 51-60
analysis-by-synthesis speech coding 189-222
analytical 16-QAM BER 825
ARIB (Association of Radio Industries and Businesses) 898, 900, 954
ATDMA cell types 812
ATDMA modulation schemes ... 812
ATM cell 967-969
network architectures 977-978
service classes 969-970
service parameters 973-975
statistical multiplexing 970-971
virtual connections 971-973
autocorrelation of bandpass processes 137-139

B
B-ISDN 779
bandpass signals 92-95
baseband representation of signals and systems 92-102
basic video codec schematic 793
Bateman 832
Bayes’ theorem 825
BCH
correct decoding probability 446
incorrect decoding probability 446-452
post-decoding probability 452-453
trellis construction 442-444
trellis decoding 444
BCH codes 408-413
binary 409-410
decoding 419-441
encoder 415-417
encoding 413-419
non-binary 415
nonbinary 410
trellis decoding 444-445
BCH decoding theory 445-453
Bello functions 127-135, 140, 148-152
binary excitation vector 782
binary pulse excitation 278-288
<table>
<thead>
<tr>
<th>INDEX</th>
<th>1045</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit sensitivities for the 4.8 kbit/s codec</td>
<td>786</td>
</tr>
<tr>
<td>bit sensitivity analysis</td>
<td>785</td>
</tr>
<tr>
<td>block codes</td>
<td></td>
</tr>
<tr>
<td>structure</td>
<td>388–405</td>
</tr>
<tr>
<td>conclusions</td>
<td>465–466</td>
</tr>
<tr>
<td>performance</td>
<td>465–466</td>
</tr>
<tr>
<td>block coding performance</td>
<td>433-465</td>
</tr>
<tr>
<td>block interleaving</td>
<td>338-339</td>
</tr>
<tr>
<td>block-coding AWGN performance</td>
<td>453-457</td>
</tr>
<tr>
<td>block-coding Rayleigh performance</td>
<td>457-462</td>
</tr>
<tr>
<td>Bose-Chaudhuri-Hocquenghem Codes</td>
<td>408–413</td>
</tr>
<tr>
<td>BPSK</td>
<td>826</td>
</tr>
<tr>
<td>Butterworth filtering</td>
<td>817</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>call origination</td>
<td>59</td>
</tr>
<tr>
<td>call receipt</td>
<td>59–60</td>
</tr>
<tr>
<td>call supervision</td>
<td>58–59</td>
</tr>
<tr>
<td>call termination</td>
<td>60</td>
</tr>
<tr>
<td>carrier recovery</td>
<td>821</td>
</tr>
<tr>
<td>Cavers</td>
<td>832, 833, 845</td>
</tr>
<tr>
<td>CD</td>
<td>785</td>
</tr>
<tr>
<td>CDMA</td>
<td>45–54</td>
</tr>
<tr>
<td>cdma2000</td>
<td>898, 938–952</td>
</tr>
<tr>
<td>channel coding</td>
<td>944</td>
</tr>
<tr>
<td>characteristics</td>
<td>930–941</td>
</tr>
<tr>
<td>handover</td>
<td>951–952</td>
</tr>
<tr>
<td>modulation</td>
<td>944–948</td>
</tr>
<tr>
<td>downlink</td>
<td>945–947</td>
</tr>
<tr>
<td>uplink</td>
<td>947–948</td>
</tr>
<tr>
<td>physical channel</td>
<td>941–943</td>
</tr>
<tr>
<td>random access</td>
<td>949–951</td>
</tr>
<tr>
<td>service multiplexing</td>
<td>944</td>
</tr>
<tr>
<td>spreading</td>
<td>944–948</td>
</tr>
<tr>
<td>downlink</td>
<td>945–947</td>
</tr>
<tr>
<td>uplink</td>
<td>947–948</td>
</tr>
<tr>
<td>cellular reuse structures</td>
<td>598–602</td>
</tr>
<tr>
<td>CELP</td>
<td>238–278</td>
</tr>
<tr>
<td>algebraic codebooks</td>
<td>271–273</td>
</tr>
<tr>
<td>overlapping codebooks</td>
<td>273–276</td>
</tr>
<tr>
<td>performance</td>
<td>277–278</td>
</tr>
<tr>
<td>self-excitation</td>
<td>276–277</td>
</tr>
<tr>
<td>simplification</td>
<td>260–277</td>
</tr>
<tr>
<td>sparse codebooks</td>
<td>269–271</td>
</tr>
<tr>
<td>structured codebooks</td>
<td>268–269</td>
</tr>
<tr>
<td>ternary codebooks</td>
<td>270</td>
</tr>
<tr>
<td>CELP principle</td>
<td>261–266</td>
</tr>
<tr>
<td>CELP/TBPE comparison</td>
<td>296–298</td>
</tr>
<tr>
<td>cepstral distance</td>
<td>785</td>
</tr>
<tr>
<td>chain-coding</td>
<td></td>
</tr>
<tr>
<td>differential</td>
<td>805–810</td>
</tr>
<tr>
<td>channel characterisation</td>
<td>126–127</td>
</tr>
<tr>
<td>channel classification</td>
<td>123–126</td>
</tr>
<tr>
<td>channel codec</td>
<td>62–63</td>
</tr>
<tr>
<td>channel coding</td>
<td>850</td>
</tr>
<tr>
<td>channel gain estimation in PSAM</td>
<td>834</td>
</tr>
<tr>
<td>channel impulse response</td>
<td>107–108</td>
</tr>
<tr>
<td>channel impulse responses</td>
<td>22</td>
</tr>
<tr>
<td>channel segregation algorithm</td>
<td>846</td>
</tr>
<tr>
<td>Chebyshev filtering</td>
<td>817</td>
</tr>
<tr>
<td>chi-square goodness-of-fit</td>
<td>173</td>
</tr>
<tr>
<td>choice of modulation</td>
<td>810–813</td>
</tr>
<tr>
<td>class one</td>
<td>829</td>
</tr>
<tr>
<td>class two</td>
<td>829</td>
</tr>
<tr>
<td>classification of mobile channels</td>
<td>138–126</td>
</tr>
<tr>
<td>clock recovery</td>
<td>821</td>
</tr>
<tr>
<td>co-channel interference</td>
<td>845</td>
</tr>
<tr>
<td>code-excited codes</td>
<td>258–278</td>
</tr>
<tr>
<td>coding performance</td>
<td>470–474</td>
</tr>
<tr>
<td>coherent demodulation</td>
<td>832</td>
</tr>
<tr>
<td>communications subsystems</td>
<td>61</td>
</tr>
<tr>
<td>complex baseband representation of signals and systems</td>
<td>92–102</td>
</tr>
<tr>
<td>concatenated coding</td>
<td>466–470</td>
</tr>
<tr>
<td>constellation design</td>
<td>822</td>
</tr>
<tr>
<td>constellation diagram</td>
<td>814</td>
</tr>
<tr>
<td>constellations</td>
<td>822</td>
</tr>
<tr>
<td>control channels</td>
<td>57–58</td>
</tr>
<tr>
<td>convolution codes</td>
<td></td>
</tr>
<tr>
<td>conclusions</td>
<td></td>
</tr>
<tr>
<td>distance properties</td>
<td>362–369</td>
</tr>
<tr>
<td>hard-decision theory</td>
<td>372–375</td>
</tr>
<tr>
<td>maximum likelihood decoding</td>
<td>362–369</td>
</tr>
<tr>
<td>performance</td>
<td>377</td>
</tr>
<tr>
<td>soft-decision theory</td>
<td>375–377, 386</td>
</tr>
<tr>
<td>convolution decoding</td>
<td>346–386</td>
</tr>
<tr>
<td>convolution decoding</td>
<td></td>
</tr>
</tbody>
</table>
AWGN performance........378–380
hard-decisions........354–357
Rayleigh performance........380–386
soft-decisions........357–359
Viterbi algorithm........359–378
convolutional encoding........347–350
state diagram........330–353
trellis diagram........350–353
convolutional interleaving........341–342
memoryless channel........342–343
cordless telecommunications........76–82
correlation of Bessel functions........140
cost-gain controlled DCT coding801
cost-gain controlled motion compensation........794
CPM
baseband processing........553–569
error probability........541–545
optimal receiver........537–541
RF to baseband conversion551–553
Viterbi equalisation........545–551
CPM receivers........537–590
CT2 system........76–78, 81
cyclic codes........405–408

D
DCS-1800 system........81
decision theory........825
DECT (Digital European Cordless Telecommunications).........898
DECT system........78–81
demodulator........821
description of mobile channels........105–118
diagonal interleaving........337–338
differential chain-coding
differential........805–810
differentially detected QAM........837
digital channel........104–105, 118
digital frequency modulation........521–531
digital mobile systems........60–69
digital phase modulation........516–521
dispersive channel........14–21
DPM
hardware aspects........353
in AWGN........581–583
over Rayleigh channels583–585
over two-ray Rayleigh channels585
Viterbi equalisation........569–576
DPM and DFM
TDMA format........534–535
dual-rate ACELP bit-allocation858

E
error distribution and symbol size........345–346
error distribution with interleaving........343–345
error probability computation........827
error weighting filter........219–222
ETSI (European Telecommunications Standards Institute)
808, 900, 915, 954
Euclidean distance........817
evaluation of fading statistics........169
evaluation of fading statistics........172
excitation computation........222–228
excitation interpolation........316–318
extension fields........303–305

F
fading........37–39
fading in street micro-cells........35
fading in street microcells........29
fast-fading........163–177
fast-fading statistics........163–169
FDMA........42
FDMA link........66–67
finite delay-resolution........111–114
finite Doppler-resolution........114
finite fields........388–391
first-generation mobile systems........51–60
fixed-rate DCT-based codec schematic795
fixed-rate video codecs........794
FPLMTS (Future Public Land Mobile Telecommunication System)........897
FPLMTS (Future Public Land Mobile Telecommunication System)........897
frame alignment word........802
frame differentiating........792
INDEX

FRAMES 900
frequency-dispersion 122–123
frequency-selective fading 118–122

G
Gaussian channel 5, 14
generalised phase modulation . 515–537

GMSK
in AWGN 588–589
in Rayleigh channels 589–590
performance 588–590
Viterbi equalisation 576–580

goodness-of-fit techniques 172–177
GOS 846
grade of service 846
graphical source compression . 805–810
chain-coding 805–810
Gray encoding 816
Gray mapping 814

GSM
broadcast control channel messages 682–683
BS preprocessing 540–741
candidate speech codecs ... 687–688
carrier and burst synchronisation 683–685
channel coding and interleaving 706–719

ciphering 756–759
comfort noise 756
control channel FEC 714–716
data channel FEC 712–714
discontinuous transmission 746–756
DTX concept 746–747
DTX receiver functions 753–756

DTX transmitter functions 752–753
EFR adaptive codebook search 704–705
EFR decoder 706
EFR fixed codebook search 705–706
EFR spectral quantisation 702–704

enhanced full-rate speech coding .. 700–706
features 765–766
FEC performance 716–719
frequency hopping 685–687
full-rate FEC 707–712
full-rate speech coding 687–694
half-rate error protection . 699–700
half-rate speech coding 694–700
handover decisions 741–745
handover decisions in the MSC 745
handover initiation 741
handover scenarios 745–746
link control algorithm 740–746
logical channels 668–687
overview 665–666
physical channels 671–683
power control 741
radio link control 733–746
RPE-LTP speech codec 688–694
services 759–765
speech extrapolation 756
system performance 731–733
transmission and reception 719
Viterbi equalisation 729–733
voice activity detector 747–752
wideband channels 726–733

GSM (Global System for Mobile Telecommunications) 905, 906, 910, 936, 937, 954

GSM system 81
GSM wideband channel ... 20–21

H
H.263 video codec 804
Hamming distance 817
Hata pathloss model 136–163
Hertz 1
highway cells 24
history of mobile communications 1, 3
hypothesis distribution 174

I
IF spectrum 821
impulse responses 22
IMT-2000 (International Mobile Telecommunications - 2000) 897
IMT-2000 (International Mobile Telecommunications - 2000) .897,
 898, 900–938, 944, 952
cell identification 933–935
channel coding 914–920
turbo 915
covariance parameters 917
channel characteristics 900–904
handover 936–937
inter-cell time synchronization 937–938
modulation
 downlink 927–928
 uplink 925–927
multicode transmission 920–922
physical channel 910–913
power control 931–932
random access 928–931
service multiplexing .. 914–920
spreading
 downlink 927–928
 uplink 925–927
transport channel 904–905
indoor propagation 35–36
inter-block interleaving 339–341
interference cancellation .. 903, 953
interleaving 336–346
intra-frame mode 794
IS-136 898
IS-54 system 81
IS-95 . . 898, 902, 905, 923, 928–945, 954
IS-95 system 81
ITU (International Telecommunication Union) . . 897, 898, 899

J
JDC system 81

K
Kolmogorov-Smirnov goodness-of-fit 173–174

L
large-area characterisation, 151–152
linear bandpass systems 95–98
linear time-invariant channels . 126–148
long-term predictor 209
LPC
 autocorrelation method . . 193–195
 choice of parameters . . . 197–200
 covariance method 195–197
 parameter quantisation . . 200–209
LTI channels 126–148
LTF
 adaptive codebook approach 212–218
 parameter quantisation . . 218–219

M
Marconi 1
matched filtering 818
maximum likelihood decoding . 353–362
MCER 792
McGehee 832
mean opinion score 784
microcells 24
minimal polynomials 408–409
minimum distance 822
minimum Euclidean distance . . 822
mobile multimedia
 summary 874
mobile multimedia
 summary 877
mobile radio channel types 102–105
mobility versus bit-rate of mobile systems 778
modern performance in AWGN . 830
modulation 63–66
modulation channel 104, 117–118
modulation overview 810
modulator 819
motion compensation 790–793
motion translation region 790
MPE 234–239
excitation frame length 237
number of pulses 234–237
quantisation 232–258
multi-media transceiver
 200 kHz bandwidth 857
INDEX

30kHz bandwidth 860–874
30 kHz bandwidth 857
multi-pulse excitation . 222–232, 258
modifications 232–234
performance 234–239
multiband excitation 300–323
multiband excited codec ... 330–321
multicode transmission . . 916, 920, 924
multipath channel 14–21
multiple access 42–51
multiuser detection 953
N
nested codes 467–469
noise in bandpass systems . 101–102
non-coherently detected QAM . 837
non-linear filtering 818
Nyquist filtering 817
O
optimum decision threshold . 827
optimum detection theory 818
optimum ring ratio 823
OVSF (Orthogonal Variable Spreading Factor code) 923
OVSF (Orthogonal Variable Spreading Factor) code 925
P
packet dropping in PRMA 852
packet reservation multiple access 845–847
PACS system 81
pathloss 22–29, 36–37
pathloss model 156–163
pathloss models 154–162
PCN 778
perceptual error weighting. 210–222
phase jitter immunity 823
phasor constellation 814
PHS 81
PHS (Personal Handyphone System) 900
pilot symbol assisted modulation 832
pitch detection
 wavelet-based 303–307
pitch-detection 307–309
pitch-prototype segment .. 310–311
post-filtering 298–300
power control 60
power levels 60
power spectra 331
power spectral density 818
power-budget 153
power-budget design 177
practical channel characterisation 152–158
primitive polynomials 395–398
PRMA 845–847
PRMA parameters 852
product codes 469–470
propagation channel 103, 114
PSAM 832
PSAM performance 836, 841
PSAM schematic 853
PSD
modulated signal 334
punctured convolutional codes 369–372
Q
QAM
AWGN performance 824
Burst-by-burst adaptive 845
burst-by-burst adaptive 841
coherent demodulation 830–837
constellations 821–824
decision theory 824–828
demodulation 819–821
demodulation in AWGN . 828–830
differential detection 837–841
non-coherent detection 837–841
pilot-assisted 830–837
PSAM 830–837
PSAM performance 836
summary 845
QAM constellations for AWGN channels 822
QAM modem schematic 815
QAM overview 813
QFSK
 coherent, Rayleigh 511
demodulation 490–502
non-coherent, Rayleigh 511–513
with multiple interferers, non-
cohort, AWGN 506, 508
with single interferers, non-coherent, AWGN 502–506
without co-channel interference 490–492
QFSK in AWGN 489–508
QFSK in Rayleigh channels508–513
quad-class DCT coding 801
quadrature amplitude modulation 813–845
Qualcomm CDMA 70–76
Qualcomm CDMA downlink . 70–74
Qualcomm CDMA uplink 74–76
quality of service (QoS) ... 898, 903, 914
 quasi-widescense stationary uncorrelated scattering channels 147–148
R
RACE (Research in Advanced Communication Equipment) 900
RACE programme 778
radio channel 103–104, 114–117
radio propagation 3–41
raised-cosine filter characteristics 818
random time-variant channels 139–142
randomly time-variant channels 137–148
 rate matching
 dynamic 916
 static 915
Rayleigh channel 5–10
Rayleigh-fading 163–177
received signal 105–107
Reed-Solomon
 encoder 417–420
regular-pulse excitation 230–258
response of linear bandpass systems 98–101
Rician channel 10
Rician fading 163–169
roll-off 818
RPE 239–240
autocorrelation approach 244–245
eliminating matrix inversion 245–252
excitation frame length 240–244
performance 240–244
pulse spacing 240
quantisation 252–258
simplification 244–252
RS
Berlelaump-Massey decoding 428–437
encoder 417–420
Forney algorithm 437–441
Peterson-Gorenstein-Zierler decoding 452–458
syndrome equations 420–422
run-length coding 790
S
Sh00-like system 481–489
search scope 790
second generation 808
second-generation mobile systems 90
second-generation........ 910, 930, 954
segmental signal-to-noise ratio 784
SEGSNR 784
sensitivity figures for the 4.8 Kbit/s
 TBPE codec 788
SFHMA
BER in AWGN 616–621
BER in Rayleigh-fading 621–624
BER with cochannel interference 623–633
BER with MLSE 608–610
BER with MSK 610–614
BER without cochannel interference 607–623
channel models 614–616
conclusions 655–656
frequency re-use 607
propagation factors 602–605
protocol 605
protocols 596–598
spectral efficiency 633–655
speech and channel coding 606–607
system description 605–607
TDMA 605–606
transmitted signal 607
SFHMA principles 596–605
shadow-fading 162–163
short-term predictor 191–209
slow-fading 162–163
small-area characterisation 150–151
space-variance 148–149
speech codec 61–62
speech coding 780
speech coding advances ... 300–303, 780–781
speech coding at 4.8 kbps 781
speech quality measures ... 783–785
split matrix quantiser 703
square 16-QAM constellation ... 816
standard speech codecs
DoD 4.8 kbps 780
G.728 16 kbps 780
G.729 8 kbps 780
GSM 780
MELP 2.4 kbps 780
PSI CELP 780
PW1 780
VSELP 5.6 kbps 780
star 16-QAM constellation ... 822
statistical channel characteristics 149–150
Steele 818
stylised NLF waveforms 819
stylised Nyquist filters 819
system components 61

T
TACS system 81
TBPE 283–285
excitation optimization ... 285–291
exhaustive search 288–289
non-exhaustive search 289–291
performance 291–296
TBPE codec bitallocation ... 783
TDMA 43–45
TDMA link 67–70
teletraffic 82–85
terminology of channels ... 105
the peak-to-average phasor power 823
third generation, 897, 900, 910, 954
frequency allocation 897
third-generation, 897, 898, 900, 903,
905, 920, 937, 939, 952,
954
TIA (Telecommunications Industry
Association) 898, 929, 954
time-dispersion 118–122
time-selective fading 122–123
time-variant channels 108–111
transceiver architecture 850
transceiver speech performance, 855
transceiver video performance, 856
transceivers
mobile multi-media ... 847–870
transformed binary pulse excitation
283–285
transmit diversity 933–954
Orthogonal transmit diversity
954
orthogonal transmit diversity
954
Time division transmit diver-
sity 953
Time division transmit diversity
953
transmitted and received spectra 820
transparent tone in band modula-
tion 832
TTIB 832
two-path channel 21–22

U
UMTS (Universal Mobile Teleco-
mmunications System) 900, 936
uncorrelated scattering channels 144–146
Universal Mobile Telecommu-
nications System 811
urban cells 24
UTRA (UMTS Terrestrial Radio
Access) 898, 900–938
cell identification 933–935
cell identification, 933–935
channel coding 914–920
convolutional 914
Reed-Solomon 915
decoding characteristics 900–904
handover 936–937
inter-cell time synchronization
937–938
modulation
downlink 927–928
uplink 925–927
multicode transmission 920–922
physical channel 907–910
power control 931–932
random access 928–931
service multiplexing 914–920
spreading
downlink 927–928
uplink 925–927
transport channel 904–905

V
variables in channel characterisation 126–127
vector spaces 391–393
video codec PSNR performance 796
video coding 789–805
1D transform coding 797–798
2D transform coding 798–800
cost-gain quantised 794–797
DCT transform coding 800–803
fixed-rate 793–803
H.263 803–805
intra-frame 794
transform coding 797–800
video coding advances 790
video coding advances 789
Viterbi algorithm 353–362
voiced/unvoiced decisions 307
voiced/unvoiced transition 316

W
WATM
absence of handover on cell-loss 1030–1031
absence of minicell coverage 1035
accept all calls 1019–1021
accept all calls and handover on cell-loss 1021–1024
BS to ATM node link 996
BSC for BSs 997–1000
BSs as ATM nodes 997
call admission control 1004–1005
campus network 1024
cell forwarding 979–980
conclusions 1038–1039
data link control layer 994–995
delay-buffering 1033
dynamic re-routing 982–983
dynamic slot assignment 1007–1009
dynamic vs fixed slot assignment for voice, video, data 1028–1030
equal-priority services 1032–1033
handover 1005–1006
handover on cell-loss 1036–1039
handover schemes 978–983
handover speed 1033
high-priority video 1031–1032
increased handover hysteresis 1033–1035
location management 985–986
MAC 1002–1003
medium access control 989–992
micro-cells 995–1001
mobility 975–986
overview 966–975
performance summary 1035–1038
physical layer 995
polling scheme for adaptive antennas 992–994
quality of service 983–985
radio access 996–995
rectilinear grid network 1006–1024
secondary BSs 1016
service characteristics 1003–1004
simulation tool 1002–1006
teletraffic performance 1001–1035
virtual connection tree 980–982
voice and video transmission 1011–1016
voice transmission 1009–1011
voice, video, data 1026–1028
waveform interpolation 300–323
wide-sense stationary channels 142–144
wide-sense stationary uncorrelated scattering channels 146–147
wideband CDMA 898, 900, 906, 952
wideband channel 14–21
Wiener-Hopf equations 836
wireless ATM
 overview 966–975
wireless networking 54–57
WLAN 779

Z
zag-zag scanning 790
Zinc
 excitation optimization 312–313
Zinc-based excitation 311–312
Zinc-codec
 complexity reduction ... 313–316
Zinc/multiband excited codec .. 321–323
Author Index

<table>
<thead>
<tr>
<th>A</th>
<th>Atal [72] 232</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adachi.....</td>
<td>Atal [48] 205</td>
</tr>
<tr>
<td></td>
<td>Atal [10] 189</td>
</tr>
<tr>
<td></td>
<td>Atal [1] 189</td>
</tr>
<tr>
<td></td>
<td>Atal [62] 216</td>
</tr>
<tr>
<td>Adoul [22]</td>
<td>Atal [61] 216</td>
</tr>
<tr>
<td>Adoul [77]</td>
<td>Atal [29] 196</td>
</tr>
<tr>
<td>Adoul [78]</td>
<td>Atal [58] 220</td>
</tr>
<tr>
<td>Adoul [56]</td>
<td>Atal [69] 220</td>
</tr>
<tr>
<td>Aigawa.....</td>
<td>Aulin [9] 608</td>
</tr>
<tr>
<td>Alemin.....</td>
<td>Aulin [9] 521</td>
</tr>
<tr>
<td>Anderson</td>
<td>Avella [28] 729</td>
</tr>
<tr>
<td>Anderson [9]</td>
<td>.................. 608</td>
</tr>
<tr>
<td>Anderson [17]</td>
<td>.................. 534</td>
</tr>
<tr>
<td>Anderson [30]</td>
<td>.................. 729</td>
</tr>
<tr>
<td>Andrews [118]</td>
<td>.................. 301</td>
</tr>
<tr>
<td>Aoyama [44]</td>
<td>.................. 61</td>
</tr>
<tr>
<td>Appleby [22]</td>
<td>.................. 124</td>
</tr>
<tr>
<td>Appleby [107]</td>
<td>.................. 288</td>
</tr>
<tr>
<td>Arend [38]</td>
<td>.................. 757</td>
</tr>
<tr>
<td>Aresaki [74]</td>
<td>.................. 232</td>
</tr>
<tr>
<td>Arnoldi [16]</td>
<td>.................. 343</td>
</tr>
<tr>
<td>Atal [22]</td>
<td>Bacs [34] 747</td>
</tr>
<tr>
<td></td>
<td>Baghadrani [91] 261</td>
</tr>
<tr>
<td></td>
<td>Bahl [54] 445</td>
</tr>
<tr>
<td></td>
<td>Baier, A. [19] 900</td>
</tr>
<tr>
<td></td>
<td>Baier, P.W. [16] 900</td>
</tr>
<tr>
<td></td>
<td>Bajwa [35] 137</td>
</tr>
<tr>
<td></td>
<td>Bajwa [19] 121</td>
</tr>
<tr>
<td></td>
<td>Bajwa [32] 134</td>
</tr>
<tr>
<td></td>
<td>Balston [8] 602</td>
</tr>
<tr>
<td></td>
<td>Baran [34] 378</td>
</tr>
<tr>
<td></td>
<td>Baran [27] 584</td>
</tr>
<tr>
<td>Author</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------</td>
</tr>
<tr>
<td>Baran [17]</td>
<td>24, 27, 28</td>
</tr>
<tr>
<td>Barnwell [54]</td>
<td>206</td>
</tr>
<tr>
<td>Barnwell [121]</td>
<td>301</td>
</tr>
<tr>
<td>Barnwell [123]</td>
<td>301</td>
</tr>
<tr>
<td>Barnwell [99]</td>
<td>261</td>
</tr>
<tr>
<td>Bate [39]</td>
<td>469</td>
</tr>
<tr>
<td>Bedal [20]</td>
<td>33</td>
</tr>
<tr>
<td>Bello [13]</td>
<td>119</td>
</tr>
<tr>
<td>Bello [8]</td>
<td>108</td>
</tr>
<tr>
<td>Bello [31]</td>
<td>126</td>
</tr>
<tr>
<td>Bennett [4]</td>
<td>95</td>
</tr>
<tr>
<td>Bennvunto [30]</td>
<td>126</td>
</tr>
<tr>
<td>Berlekap [43]</td>
<td>386</td>
</tr>
<tr>
<td>Berlekap [4]</td>
<td>335</td>
</tr>
<tr>
<td>Berlekap [46]</td>
<td>388</td>
</tr>
<tr>
<td>Beroulti [75]</td>
<td>232</td>
</tr>
<tr>
<td>Beroulti [70]</td>
<td>220</td>
</tr>
<tr>
<td>Berruto, E. [17]</td>
<td>900</td>
</tr>
<tr>
<td>Besette [19]</td>
<td>700</td>
</tr>
<tr>
<td>Blahnt [6]</td>
<td>335</td>
</tr>
<tr>
<td>Blahnt [57]</td>
<td>62</td>
</tr>
<tr>
<td>Bliodh, J.</td>
<td>878</td>
</tr>
<tr>
<td>Blomquist [63]</td>
<td>157</td>
</tr>
<tr>
<td>Bodtman [36]</td>
<td>343</td>
</tr>
<tr>
<td>Boes [69]</td>
<td>173</td>
</tr>
<tr>
<td>Bose [36]</td>
<td>386</td>
</tr>
<tr>
<td>Bose [37]</td>
<td>386</td>
</tr>
<tr>
<td>Bosscha [81]</td>
<td>252</td>
</tr>
<tr>
<td>Boucher [65]</td>
<td>82, 83</td>
</tr>
<tr>
<td>Bouldeaux-Barlts [126]</td>
<td>302</td>
</tr>
<tr>
<td>Boyd [36]</td>
<td>747</td>
</tr>
<tr>
<td>Boyd [55]</td>
<td>206</td>
</tr>
<tr>
<td>Brecht, J.</td>
<td>878</td>
</tr>
<tr>
<td>Breiling, M.</td>
<td>878</td>
</tr>
<tr>
<td>Brind Amour [119]</td>
<td>301</td>
</tr>
<tr>
<td>Brooks [114]</td>
<td>301</td>
</tr>
<tr>
<td>Brooks [21]</td>
<td>695</td>
</tr>
<tr>
<td>Broos, FCA</td>
<td>878</td>
</tr>
<tr>
<td>Bryden [119]</td>
<td>301</td>
</tr>
<tr>
<td>Buer [24]</td>
<td>306</td>
</tr>
<tr>
<td>Buda [2]</td>
<td>515</td>
</tr>
<tr>
<td>Bullington [60]</td>
<td>157</td>
</tr>
<tr>
<td>Bullington [12]</td>
<td>23</td>
</tr>
<tr>
<td>Bulitude [28]</td>
<td>39</td>
</tr>
<tr>
<td>Bulitude [20]</td>
<td>33</td>
</tr>
<tr>
<td>Bulitude [24]</td>
<td>37, 39</td>
</tr>
<tr>
<td>Buné [60]</td>
<td>470</td>
</tr>
<tr>
<td>Burr</td>
<td>841</td>
</tr>
<tr>
<td>Buzo [35]</td>
<td>200</td>
</tr>
<tr>
<td>Buzo [34]</td>
<td>200</td>
</tr>
<tr>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Cain [30]</td>
<td>369</td>
</tr>
<tr>
<td>Campbell [66]</td>
<td>217</td>
</tr>
<tr>
<td>Causebrook [52]</td>
<td>157</td>
</tr>
<tr>
<td>Cavers</td>
<td>830</td>
</tr>
<tr>
<td>Chase [50]</td>
<td>442</td>
</tr>
<tr>
<td>Cheer [27]</td>
<td>729</td>
</tr>
<tr>
<td>Cheetlam [51]</td>
<td>205</td>
</tr>
<tr>
<td>Cheetlam [46]</td>
<td>205</td>
</tr>
<tr>
<td>Cher</td>
<td>781, 789</td>
</tr>
<tr>
<td>Chen [113]</td>
<td>298</td>
</tr>
<tr>
<td>Cherriman</td>
<td>789, 805</td>
</tr>
<tr>
<td>Cherriman, P.J.</td>
<td>789, 803, 857, 861, 862, 870, 871, 878</td>
</tr>
<tr>
<td>Cheung [26]</td>
<td>729</td>
</tr>
<tr>
<td>Cheung [29]</td>
<td>731</td>
</tr>
<tr>
<td>Cheung [26]</td>
<td>576</td>
</tr>
<tr>
<td>Cheung, JCS.</td>
<td>878</td>
</tr>
<tr>
<td>Chia [34]</td>
<td>378</td>
</tr>
<tr>
<td>Chia [27]</td>
<td>584</td>
</tr>
<tr>
<td>Chia [46]</td>
<td>155</td>
</tr>
<tr>
<td>Chia [17]</td>
<td>24, 27, 28</td>
</tr>
<tr>
<td>Chia [19]</td>
<td>27, 33</td>
</tr>
<tr>
<td>Chien [41]</td>
<td>386</td>
</tr>
<tr>
<td>Chocalingam, A. [37]</td>
<td>931</td>
</tr>
<tr>
<td>Choi, BJ</td>
<td>878</td>
</tr>
<tr>
<td>Chooninard [46].</td>
<td>155</td>
</tr>
<tr>
<td>Choudhury [5]</td>
<td>489</td>
</tr>
<tr>
<td>Chung [14]</td>
<td>531</td>
</tr>
<tr>
<td>Clapp [38]</td>
<td>152</td>
</tr>
<tr>
<td>Clark [30]</td>
<td>369</td>
</tr>
<tr>
<td>Clark [6]</td>
<td>490</td>
</tr>
<tr>
<td>Clark [23]</td>
<td>576</td>
</tr>
<tr>
<td>Clarke [17]</td>
<td>120</td>
</tr>
<tr>
<td>Cocke [54]</td>
<td>445</td>
</tr>
<tr>
<td>Cooper [39]</td>
<td>45</td>
</tr>
<tr>
<td>Cooper [4]</td>
<td>995</td>
</tr>
<tr>
<td>Copperi [87]</td>
<td>261</td>
</tr>
<tr>
<td>Cosier [36]</td>
<td>747</td>
</tr>
<tr>
<td>Costello [5]</td>
<td>335</td>
</tr>
<tr>
<td>Cox [27]</td>
<td>126</td>
</tr>
<tr>
<td>Author</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>Cox [10]</td>
<td>119</td>
</tr>
<tr>
<td>Cox [18]</td>
<td>121</td>
</tr>
<tr>
<td>Cox [48]</td>
<td>205</td>
</tr>
<tr>
<td>Cox [53]</td>
<td>61, 62</td>
</tr>
<tr>
<td>Cox [29]</td>
<td>37</td>
</tr>
<tr>
<td>Cox [1]</td>
<td>91</td>
</tr>
<tr>
<td>Cremer [54]</td>
<td>206</td>
</tr>
<tr>
<td>Cumin [18]</td>
<td>698</td>
</tr>
<tr>
<td>D'Agostino [68]</td>
<td>173</td>
</tr>
<tr>
<td>Déry [119]</td>
<td>301</td>
</tr>
<tr>
<td>Dace [27]</td>
<td>729</td>
</tr>
<tr>
<td>Dahlman, E. [8], 900, 901, 904, 915, 928, 935, 933</td>
<td></td>
</tr>
<tr>
<td>Damosso [30]</td>
<td>39</td>
</tr>
<tr>
<td>Daubecies [129]</td>
<td>303</td>
</tr>
<tr>
<td>Daumer [44]</td>
<td>61</td>
</tr>
<tr>
<td>Daut [32]</td>
<td>371</td>
</tr>
<tr>
<td>Davarian [28]</td>
<td>84</td>
</tr>
<tr>
<td>Davidson [89]</td>
<td>361</td>
</tr>
<tr>
<td>Davidson [88]</td>
<td>361</td>
</tr>
<tr>
<td>Davies [29]</td>
<td>39</td>
</tr>
<tr>
<td>de La Note [122]</td>
<td>301</td>
</tr>
<tr>
<td>Del Buono, M.</td>
<td>878</td>
</tr>
<tr>
<td>Delisle [46]</td>
<td>155</td>
</tr>
<tr>
<td>Delprat [22]</td>
<td>700</td>
</tr>
<tr>
<td>Delprat [94]</td>
<td>361</td>
</tr>
<tr>
<td>Delprat [105]</td>
<td>271</td>
</tr>
<tr>
<td>Deprettere [77]</td>
<td>239</td>
</tr>
<tr>
<td>Deprettere [85]</td>
<td>256</td>
</tr>
<tr>
<td>Devisvrahman [27]</td>
<td>39</td>
</tr>
<tr>
<td>Deygout [62]</td>
<td>157</td>
</tr>
<tr>
<td>Didascalou, D.</td>
<td>878</td>
</tr>
<tr>
<td>Didcot [78]</td>
<td>239</td>
</tr>
<tr>
<td>Dietrich [32]</td>
<td>39</td>
</tr>
<tr>
<td>Docampo [127]</td>
<td>302</td>
</tr>
<tr>
<td>Dohil [68]</td>
<td>82, 84</td>
</tr>
<tr>
<td>Dongmin, L.</td>
<td>878</td>
</tr>
<tr>
<td>Dornstetter [8]</td>
<td>596</td>
</tr>
<tr>
<td>Driscoll [23]</td>
<td>56</td>
</tr>
<tr>
<td>Dubois</td>
<td>789</td>
</tr>
<tr>
<td>Dugundji [3]</td>
<td>92</td>
</tr>
<tr>
<td>Durkin [51]</td>
<td>157</td>
</tr>
<tr>
<td>Durkin [13]</td>
<td>23</td>
</tr>
<tr>
<td>Edwards [51]</td>
<td>157</td>
</tr>
<tr>
<td>Egli [54]</td>
<td>157</td>
</tr>
<tr>
<td>Elias [2]</td>
<td>335</td>
</tr>
<tr>
<td>Epstein [61]</td>
<td>157</td>
</tr>
<tr>
<td>Ernst, S.</td>
<td>878</td>
</tr>
<tr>
<td>Evans [98]</td>
<td>261</td>
</tr>
<tr>
<td>Evans [86]</td>
<td>258</td>
</tr>
<tr>
<td>Evans [137]</td>
<td>321</td>
</tr>
<tr>
<td>Fagan [25]</td>
<td>576</td>
</tr>
<tr>
<td>Fano [19]</td>
<td>346</td>
</tr>
<tr>
<td>Farrell [28]</td>
<td>369</td>
</tr>
<tr>
<td>Farrell [59]</td>
<td>469</td>
</tr>
<tr>
<td>Farvardin [59]</td>
<td>304</td>
</tr>
<tr>
<td>Fine [38]</td>
<td>152</td>
</tr>
<tr>
<td>Fischer [132]</td>
<td>302</td>
</tr>
<tr>
<td>Flanagan [56]</td>
<td>62</td>
</tr>
<tr>
<td>Flanagan [12]</td>
<td>188</td>
</tr>
<tr>
<td>Forney [11]</td>
<td>335</td>
</tr>
<tr>
<td>Forney [21]</td>
<td>353</td>
</tr>
<tr>
<td>Forney [42]</td>
<td>386</td>
</tr>
<tr>
<td>Forney [38]</td>
<td>467</td>
</tr>
<tr>
<td>Forney, Jr [22]</td>
<td>541</td>
</tr>
<tr>
<td>Fortune [22]</td>
<td>124</td>
</tr>
<tr>
<td>Fortune [52]</td>
<td>61, 62</td>
</tr>
<tr>
<td>Fortune [32]</td>
<td>719</td>
</tr>
<tr>
<td>Fortune, P</td>
<td>878</td>
</tr>
<tr>
<td>Fransen [53]</td>
<td>206</td>
</tr>
<tr>
<td>Fransen [41]</td>
<td>204</td>
</tr>
<tr>
<td>Freeman [36]</td>
<td>747</td>
</tr>
<tr>
<td>Fujimoto</td>
<td>789</td>
</tr>
<tr>
<td>Fujiwara, A. [28]</td>
<td>915, 944</td>
</tr>
<tr>
<td>Fukuda [48]</td>
<td>157</td>
</tr>
<tr>
<td>Fukuda [14]</td>
<td>23</td>
</tr>
<tr>
<td>Fumi</td>
<td>781</td>
</tr>
<tr>
<td>Fumi [19]</td>
<td>159</td>
</tr>
<tr>
<td>Färber</td>
<td>789</td>
</tr>
<tr>
<td>Gabor [21]</td>
<td>124</td>
</tr>
<tr>
<td>Gardiner [4]</td>
<td>3, 4, 52</td>
</tr>
<tr>
<td>Garten [75]</td>
<td>232</td>
</tr>
<tr>
<td>Garyvall [69]</td>
<td>173</td>
</tr>
<tr>
<td>Geist [30]</td>
<td>369</td>
</tr>
<tr>
<td>Geji, R. R. [39]</td>
<td>931</td>
</tr>
<tr>
<td>George [123]</td>
<td>301</td>
</tr>
<tr>
<td>Author</td>
<td>Page</td>
</tr>
<tr>
<td>-----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Gersho</td>
<td>781</td>
</tr>
<tr>
<td>Gersho [113]</td>
<td>298</td>
</tr>
<tr>
<td>Gersho [19]</td>
<td>189</td>
</tr>
<tr>
<td>Gersho [89]</td>
<td>261</td>
</tr>
<tr>
<td>Gersho [88]</td>
<td>261</td>
</tr>
<tr>
<td>Gerson</td>
<td>605, 608, 781</td>
</tr>
<tr>
<td>Gerson [17]</td>
<td>698</td>
</tr>
<tr>
<td>Gerson [15]</td>
<td>695</td>
</tr>
<tr>
<td>Gerson [16]</td>
<td>695</td>
</tr>
<tr>
<td>Gerson [20]</td>
<td>189</td>
</tr>
<tr>
<td>Gerson [14]</td>
<td>695</td>
</tr>
<tr>
<td>Gerson [66]</td>
<td>284</td>
</tr>
<tr>
<td>Gerson [95]</td>
<td>261</td>
</tr>
<tr>
<td>Gharavi</td>
<td>789</td>
</tr>
<tr>
<td>Gillhausen [40]</td>
<td>45, 49</td>
</tr>
<tr>
<td>Girod</td>
<td>789</td>
</tr>
<tr>
<td>Gish [32]</td>
<td>200</td>
</tr>
<tr>
<td>Glance [45]</td>
<td>61</td>
</tr>
<tr>
<td>Goldsmith, A.</td>
<td>841</td>
</tr>
<tr>
<td>Gonzalez [127]</td>
<td>302</td>
</tr>
<tr>
<td>Goodman [62]</td>
<td>69</td>
</tr>
<tr>
<td>Goreinstein [39]</td>
<td>386</td>
</tr>
<tr>
<td>Gourvianakis [100]</td>
<td>261</td>
</tr>
<tr>
<td>Gray [35]</td>
<td>200</td>
</tr>
<tr>
<td>Gray [34]</td>
<td>200</td>
</tr>
<tr>
<td>Gray [33]</td>
<td>200</td>
</tr>
<tr>
<td>Gray, Jr [27]</td>
<td>193</td>
</tr>
<tr>
<td>Gray, Jr [25]</td>
<td>193</td>
</tr>
<tr>
<td>Gray, Jr [31]</td>
<td>202</td>
</tr>
<tr>
<td>Gray, Jr [37]</td>
<td>201</td>
</tr>
<tr>
<td>Green [34]</td>
<td>378</td>
</tr>
<tr>
<td>Green [27]</td>
<td>584</td>
</tr>
<tr>
<td>Green [17]</td>
<td>24, 27, 28</td>
</tr>
<tr>
<td>Green [67]</td>
<td>155</td>
</tr>
<tr>
<td>Green [10]</td>
<td>12, 25, 27, 29, 33</td>
</tr>
<tr>
<td>Greenwood [34]</td>
<td>41</td>
</tr>
<tr>
<td>Greenwood, D.</td>
<td>878</td>
</tr>
<tr>
<td>Griffin</td>
<td>781</td>
</tr>
<tr>
<td>Griffin [116]</td>
<td>301</td>
</tr>
<tr>
<td>Gruet [94]</td>
<td>261</td>
</tr>
<tr>
<td>Guidotti [30]</td>
<td>126</td>
</tr>
<tr>
<td>Guo, D. [66]</td>
<td>953</td>
</tr>
<tr>
<td>Gurdenli [33]</td>
<td>134</td>
</tr>
<tr>
<td>Gustafsson, M. [43]</td>
<td>936</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haagen [18]</td>
<td>189</td>
</tr>
<tr>
<td>Haavisto</td>
<td>700</td>
</tr>
<tr>
<td>Haavisto [19]</td>
<td>700</td>
</tr>
<tr>
<td>Hamming [1]</td>
<td>335</td>
</tr>
<tr>
<td>Hankau [69]</td>
<td>217</td>
</tr>
<tr>
<td>Hansen [37]</td>
<td>747</td>
</tr>
<tr>
<td>Hanzo [48]</td>
<td>388</td>
</tr>
<tr>
<td>Hanzo [114]</td>
<td>301</td>
</tr>
<tr>
<td>Hanzo [34]</td>
<td>747</td>
</tr>
<tr>
<td>Hanzo [32]</td>
<td>719</td>
</tr>
<tr>
<td>Hanzo [21]</td>
<td>695</td>
</tr>
<tr>
<td>Hanzo [13]</td>
<td>694</td>
</tr>
<tr>
<td>Harada</td>
<td>841</td>
</tr>
<tr>
<td>Harashima [27]</td>
<td>369</td>
</tr>
<tr>
<td>Hartmann [53]</td>
<td>445</td>
</tr>
<tr>
<td>Harvey [22]</td>
<td>576</td>
</tr>
<tr>
<td>Hashemi [40]</td>
<td>152</td>
</tr>
<tr>
<td>Haskell</td>
<td>789</td>
</tr>
<tr>
<td>Haskell [14]</td>
<td>61</td>
</tr>
<tr>
<td>Hassanein [119]</td>
<td>301</td>
</tr>
<tr>
<td>Hata [49]</td>
<td>155</td>
</tr>
<tr>
<td>Hata [15]</td>
<td>23</td>
</tr>
<tr>
<td>Hata [14]</td>
<td>23</td>
</tr>
<tr>
<td>Heller [24]</td>
<td>368</td>
</tr>
<tr>
<td>Heller [22]</td>
<td>357</td>
</tr>
<tr>
<td>Helwig [80]</td>
<td>251</td>
</tr>
<tr>
<td>Hess [124]</td>
<td>301</td>
</tr>
<tr>
<td>Higuchi, K. [38]</td>
<td>933</td>
</tr>
<tr>
<td>Hiotakas</td>
<td>781, 782</td>
</tr>
<tr>
<td>Hiotakas [117]</td>
<td>301</td>
</tr>
<tr>
<td>Hirade [10]</td>
<td>608</td>
</tr>
<tr>
<td>Hirade [10]</td>
<td>523</td>
</tr>
<tr>
<td>Hirata [31]</td>
<td>369</td>
</tr>
<tr>
<td>Hiro [13]</td>
<td>529</td>
</tr>
<tr>
<td>Hiasaki [125]</td>
<td>301</td>
</tr>
<tr>
<td>Hochquenghem [35]</td>
<td>386</td>
</tr>
<tr>
<td>Hodges [31]</td>
<td>732</td>
</tr>
<tr>
<td>Hoffmann [14]</td>
<td>688</td>
</tr>
<tr>
<td>Hofman [80]</td>
<td>251</td>
</tr>
<tr>
<td>Hogg [32]</td>
<td>39</td>
</tr>
<tr>
<td>Holmes [38]</td>
<td>45</td>
</tr>
<tr>
<td>Honary [59]</td>
<td>469</td>
</tr>
<tr>
<td>Hong [67]</td>
<td>82</td>
</tr>
<tr>
<td>Horn [45]</td>
<td>61</td>
</tr>
<tr>
<td>Hottinen, A. [72]</td>
<td>953</td>
</tr>
<tr>
<td>Houl [27]</td>
<td>729</td>
</tr>
<tr>
<td>How, HT</td>
<td>878</td>
</tr>
<tr>
<td>Hubing</td>
<td>789</td>
</tr>
<tr>
<td>Hughes [51]</td>
<td>206</td>
</tr>
<tr>
<td>Huish [33]</td>
<td>134</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>Ibaraki</td>
<td>789</td>
</tr>
<tr>
<td>Ibrahim</td>
<td>157</td>
</tr>
<tr>
<td>Ikegami</td>
<td>126</td>
</tr>
<tr>
<td>Ilgenner</td>
<td>899</td>
</tr>
<tr>
<td>Iretan</td>
<td>271</td>
</tr>
<tr>
<td>Itakura</td>
<td>204</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Jacobs</td>
<td>357</td>
</tr>
<tr>
<td>Jacobs</td>
<td>538</td>
</tr>
<tr>
<td>Jacobs</td>
<td>45, 49</td>
</tr>
<tr>
<td>Jager</td>
<td>523</td>
</tr>
<tr>
<td>Jain</td>
<td>789</td>
</tr>
<tr>
<td>Jakobs</td>
<td>119</td>
</tr>
<tr>
<td>Jakobs</td>
<td>630</td>
</tr>
<tr>
<td>Jakobs</td>
<td>3, 4, 22, 66</td>
</tr>
<tr>
<td>Janikowski</td>
<td>747</td>
</tr>
<tr>
<td>Jarvinen</td>
<td>700</td>
</tr>
<tr>
<td>Jasik</td>
<td>695, 698</td>
</tr>
<tr>
<td>Jasik</td>
<td>695</td>
</tr>
<tr>
<td>Jasik</td>
<td>695</td>
</tr>
<tr>
<td>Jasik</td>
<td>689</td>
</tr>
<tr>
<td>Jasik</td>
<td>84</td>
</tr>
<tr>
<td>Jasik</td>
<td>963</td>
</tr>
<tr>
<td>Jasik</td>
<td>301</td>
</tr>
<tr>
<td>Jayant</td>
<td>789</td>
</tr>
<tr>
<td>Jayant</td>
<td>187</td>
</tr>
<tr>
<td>Jayant</td>
<td>208</td>
</tr>
<tr>
<td>Jayant</td>
<td>61</td>
</tr>
<tr>
<td>Jeleneck</td>
<td>445</td>
</tr>
<tr>
<td>Jennings</td>
<td>196</td>
</tr>
<tr>
<td>Jensen</td>
<td>732</td>
</tr>
<tr>
<td>Johansson</td>
<td>953</td>
</tr>
<tr>
<td>Johnston</td>
<td>152</td>
</tr>
<tr>
<td>Jones</td>
<td>509</td>
</tr>
<tr>
<td>Jones</td>
<td>92</td>
</tr>
<tr>
<td>Juang</td>
<td>52</td>
</tr>
<tr>
<td>Juang</td>
<td>206</td>
</tr>
<tr>
<td>Juang</td>
<td>204</td>
</tr>
<tr>
<td>Juang</td>
<td>201</td>
</tr>
<tr>
<td>Juntti</td>
<td>920</td>
</tr>
<tr>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Kabal</td>
<td>44</td>
</tr>
<tr>
<td>Kabal</td>
<td>67</td>
</tr>
<tr>
<td>Kabal</td>
<td>68</td>
</tr>
<tr>
<td>Kabal</td>
<td>59</td>
</tr>
<tr>
<td>Kadambey</td>
<td>126</td>
</tr>
<tr>
<td>Kahnsari</td>
<td>789</td>
</tr>
<tr>
<td>Kamio</td>
<td>841</td>
</tr>
<tr>
<td>Kang</td>
<td>53</td>
</tr>
<tr>
<td>Kang</td>
<td>41</td>
</tr>
<tr>
<td>Kapanen</td>
<td>19</td>
</tr>
<tr>
<td>Kasumi</td>
<td>55</td>
</tr>
<tr>
<td>Kasumi, T.</td>
<td>30</td>
</tr>
<tr>
<td>Kashiki</td>
<td>31</td>
</tr>
<tr>
<td>Kawano</td>
<td>14</td>
</tr>
<tr>
<td>Kawano</td>
<td>14</td>
</tr>
<tr>
<td>Keenan</td>
<td>22</td>
</tr>
<tr>
<td>Keller, T.</td>
<td>878</td>
</tr>
<tr>
<td>Keesler</td>
<td>58</td>
</tr>
<tr>
<td>Ketchum</td>
<td>92</td>
</tr>
<tr>
<td>Ketterling</td>
<td>3</td>
</tr>
<tr>
<td>Ketterling</td>
<td>2</td>
</tr>
<tr>
<td>Khansari</td>
<td>789</td>
</tr>
<tr>
<td>Kiikuma</td>
<td>28</td>
</tr>
<tr>
<td>Kikawa</td>
<td>79</td>
</tr>
<tr>
<td>Kleijn</td>
<td>781</td>
</tr>
<tr>
<td>Kleijn</td>
<td>115</td>
</tr>
<tr>
<td>Kleijn</td>
<td>18</td>
</tr>
<tr>
<td>Kleinrock</td>
<td>66</td>
</tr>
<tr>
<td>Knisely, D.N.</td>
<td>44, 46</td>
</tr>
<tr>
<td>Ko</td>
<td>22</td>
</tr>
<tr>
<td>Ko</td>
<td>19</td>
</tr>
<tr>
<td>Komaki</td>
<td>841</td>
</tr>
<tr>
<td>Kondo</td>
<td>781</td>
</tr>
<tr>
<td>Kondo</td>
<td>16</td>
</tr>
<tr>
<td>Kondo</td>
<td>98</td>
</tr>
<tr>
<td>Kondo</td>
<td>86</td>
</tr>
<tr>
<td>Kondo</td>
<td>135</td>
</tr>
<tr>
<td>Kondo</td>
<td>137</td>
</tr>
<tr>
<td>Koornwinder</td>
<td>331</td>
</tr>
<tr>
<td>Krasinsky</td>
<td>92</td>
</tr>
<tr>
<td>Kreibel</td>
<td>60</td>
</tr>
<tr>
<td>Kroon</td>
<td>48</td>
</tr>
<tr>
<td>Kroon</td>
<td>85</td>
</tr>
<tr>
<td>Kroon</td>
<td>62</td>
</tr>
<tr>
<td>Kroon</td>
<td>61</td>
</tr>
<tr>
<td>Kroon</td>
<td>77</td>
</tr>
<tr>
<td>Kroon</td>
<td>8</td>
</tr>
<tr>
<td>Kuan, E.L.</td>
<td>23, 24, 36</td>
</tr>
<tr>
<td>Kuan, E.L.</td>
<td>908</td>
</tr>
<tr>
<td>Kuan, E.L.</td>
<td>912</td>
</tr>
<tr>
<td>Kuan, E.L.</td>
<td>933</td>
</tr>
</tbody>
</table>

Kabul [67] 219
Kabul [68] 219
Kabul [59] 212
Kadambe [126] 302
Kalnsari 789
Kamio 841
Kang [53] 206
Kang [41] 204
Kapanen [19] 700
Kasumi [55] 445
Kasumi, T. [30] 925
Kashiki [31] 309
Kawano [48] 157
Kawano [14] 23
Keenan [22] 36
Keller, T. [878]
Keesler [58] 157
Ketchum [92] 214
Ketterling [3] 482
Ketterling [2] 482
Khansari 789
Kiikuma [28] 126
Kikawa [79] 249
Kleijn 781
Kleijn [115] 301
Kleijn [18] 189
Kleijn [92] 214
Kleinrock [66] 82
Knisely, D.N. [44, 46] 939
Ko [22] 124
Ko [19] 623
Komaki 841
Kondo 781
Kondo [16] 189
Kondo [98] 261
Kondo [86] 258
Kondo [135] 316
Kondo [137] 321
Koornwinder [331] 303
Krasinsky [92] 214
Kreibel [60] 470
Kroon [48] 205
Kroon [85] 256
Kroon [62] 216
Kroon [61] 216
Kroon [77] 239
Kroon [8] 189
Kuan, E.L. [23, 24, 36] 902, 908, 911, 912, 927, 933
<table>
<thead>
<tr>
<th>Author</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kwan Truong</td>
<td>301</td>
</tr>
<tr>
<td>Lacy</td>
<td>120</td>
</tr>
<tr>
<td>Ladell</td>
<td>157</td>
</tr>
<tr>
<td>Lafamme</td>
<td>273</td>
</tr>
<tr>
<td>Lafamme</td>
<td>216</td>
</tr>
<tr>
<td>Lafamme</td>
<td>208</td>
</tr>
<tr>
<td>Lam</td>
<td>285</td>
</tr>
<tr>
<td>Lam</td>
<td>700</td>
</tr>
<tr>
<td>Lamblin</td>
<td>270</td>
</tr>
<tr>
<td>Lamblin</td>
<td>271</td>
</tr>
<tr>
<td>Lange</td>
<td>39</td>
</tr>
<tr>
<td>Lappe</td>
<td>789</td>
</tr>
<tr>
<td>Larsen</td>
<td>369</td>
</tr>
<tr>
<td>Laurent</td>
<td>301</td>
</tr>
<tr>
<td>Lavry</td>
<td>152</td>
</tr>
<tr>
<td>Le Bel</td>
<td>119</td>
</tr>
<tr>
<td>Leach</td>
<td>301</td>
</tr>
<tr>
<td>LeBel</td>
<td>37, 39</td>
</tr>
<tr>
<td>LeBlanc</td>
<td>217</td>
</tr>
<tr>
<td>Leck</td>
<td>119</td>
</tr>
<tr>
<td>Lecoins</td>
<td>155</td>
</tr>
<tr>
<td>Lee</td>
<td>117</td>
</tr>
<tr>
<td>Lee</td>
<td>119</td>
</tr>
<tr>
<td>Lee</td>
<td>339</td>
</tr>
<tr>
<td>Lee</td>
<td>369</td>
</tr>
<tr>
<td>Lee</td>
<td>45</td>
</tr>
<tr>
<td>Lee</td>
<td>3, 4, 22, 52</td>
</tr>
<tr>
<td>Lee, C. C.</td>
<td>936</td>
</tr>
<tr>
<td>Lee, CS</td>
<td>878</td>
</tr>
<tr>
<td>Lee, W. C. Y.</td>
<td>936</td>
</tr>
<tr>
<td>Lefeevre</td>
<td>155</td>
</tr>
<tr>
<td>Lefeevre</td>
<td>237</td>
</tr>
<tr>
<td>Lepeschky</td>
<td>206</td>
</tr>
<tr>
<td>Leubbers</td>
<td>157</td>
</tr>
<tr>
<td>Lever</td>
<td>261</td>
</tr>
<tr>
<td>Lever</td>
<td>271</td>
</tr>
<tr>
<td>Levesque</td>
<td>335</td>
</tr>
<tr>
<td>Levinson</td>
<td>200</td>
</tr>
<tr>
<td>Le Guyader</td>
<td>285</td>
</tr>
<tr>
<td>Liao</td>
<td>103</td>
</tr>
<tr>
<td>Libert, J. C.</td>
<td>952</td>
</tr>
<tr>
<td>Liew, TH</td>
<td>878</td>
</tr>
<tr>
<td>Lin</td>
<td>301</td>
</tr>
<tr>
<td>Lim</td>
<td>953</td>
</tr>
<tr>
<td>Lin</td>
<td>335</td>
</tr>
<tr>
<td>Lin</td>
<td>445</td>
</tr>
<tr>
<td>Lin</td>
<td>208</td>
</tr>
<tr>
<td>Lin</td>
<td>261</td>
</tr>
<tr>
<td>Lin, X</td>
<td>878</td>
</tr>
<tr>
<td>Linde</td>
<td>200</td>
</tr>
<tr>
<td>Liu</td>
<td>339</td>
</tr>
<tr>
<td>Lloyd</td>
<td>252</td>
</tr>
<tr>
<td>Lo Muzio</td>
<td>126</td>
</tr>
<tr>
<td>LoCicero</td>
<td>303</td>
</tr>
<tr>
<td>Longley</td>
<td>157</td>
</tr>
<tr>
<td>Lopes</td>
<td>729</td>
</tr>
<tr>
<td>Luntz</td>
<td>515</td>
</tr>
<tr>
<td>Lustgarten</td>
<td>157</td>
</tr>
<tr>
<td>Moller</td>
<td>285</td>
</tr>
<tr>
<td>Malbilleau</td>
<td>22</td>
</tr>
<tr>
<td>Malbilleau</td>
<td>239</td>
</tr>
<tr>
<td>Malbilleau</td>
<td>273</td>
</tr>
<tr>
<td>MacDonald</td>
<td>623</td>
</tr>
<tr>
<td>MacDonald</td>
<td>4</td>
</tr>
<tr>
<td>MacWilliams</td>
<td>335</td>
</tr>
<tr>
<td>Madison</td>
<td>157</td>
</tr>
<tr>
<td>Magill</td>
<td>191</td>
</tr>
<tr>
<td>Mahmoud</td>
<td>39</td>
</tr>
<tr>
<td>Mahmoud</td>
<td>217</td>
</tr>
<tr>
<td>Makhou</td>
<td>204</td>
</tr>
<tr>
<td>Makhou</td>
<td>220</td>
</tr>
<tr>
<td>Makhou</td>
<td>193</td>
</tr>
<tr>
<td>Makhou</td>
<td>202</td>
</tr>
<tr>
<td>Makhou</td>
<td>200</td>
</tr>
<tr>
<td>Mallat</td>
<td>303</td>
</tr>
<tr>
<td>Mallat</td>
<td>302</td>
</tr>
<tr>
<td>Mano</td>
<td>301</td>
</tr>
<tr>
<td>Marked</td>
<td>193</td>
</tr>
<tr>
<td>Marked</td>
<td>202</td>
</tr>
<tr>
<td>Maseng</td>
<td>516</td>
</tr>
<tr>
<td>Maseng</td>
<td>516</td>
</tr>
<tr>
<td>Massaloux</td>
<td>271</td>
</tr>
<tr>
<td>Massaloux</td>
<td>285</td>
</tr>
<tr>
<td>Massaro</td>
<td>503</td>
</tr>
<tr>
<td>Massey</td>
<td>335</td>
</tr>
<tr>
<td>Massey</td>
<td>386</td>
</tr>
<tr>
<td>Massey</td>
<td>386</td>
</tr>
<tr>
<td>Massye Jr</td>
<td>174</td>
</tr>
<tr>
<td>Matsumoto</td>
<td>442</td>
</tr>
<tr>
<td>Matsuyama</td>
<td>200</td>
</tr>
<tr>
<td>McAulay</td>
<td>301</td>
</tr>
<tr>
<td>Author</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>McAulay</td>
<td>321</td>
</tr>
<tr>
<td>McCarthy</td>
<td>308</td>
</tr>
<tr>
<td>McCree</td>
<td>301</td>
</tr>
<tr>
<td>McCree</td>
<td>301</td>
</tr>
<tr>
<td>McGeethan</td>
<td>39</td>
</tr>
<tr>
<td>Melan</td>
<td>119</td>
</tr>
<tr>
<td>Melaneseon</td>
<td>37-39</td>
</tr>
<tr>
<td>Mennelstein</td>
<td>789</td>
</tr>
<tr>
<td>Mian</td>
<td>206</td>
</tr>
<tr>
<td>Michelson</td>
<td>335</td>
</tr>
<tr>
<td>Michelson</td>
<td>449</td>
</tr>
<tr>
<td>Michelson</td>
<td>449</td>
</tr>
<tr>
<td>Miki</td>
<td>781</td>
</tr>
<tr>
<td>Miki</td>
<td>529-530</td>
</tr>
<tr>
<td>Miyakawa</td>
<td>369</td>
</tr>
<tr>
<td>Modena</td>
<td>61</td>
</tr>
<tr>
<td>Modestino</td>
<td>371</td>
</tr>
<tr>
<td>Mohan</td>
<td>781</td>
</tr>
<tr>
<td>Mood</td>
<td>173</td>
</tr>
<tr>
<td>Moreno</td>
<td>729</td>
</tr>
<tr>
<td>Morimoto</td>
<td>841</td>
</tr>
<tr>
<td>Moringaga</td>
<td>841</td>
</tr>
<tr>
<td>Morissette</td>
<td>700</td>
</tr>
<tr>
<td>Morissette</td>
<td>239</td>
</tr>
<tr>
<td>Morissette</td>
<td>273</td>
</tr>
<tr>
<td>Morissette</td>
<td>208</td>
</tr>
<tr>
<td>Morissette</td>
<td>285</td>
</tr>
<tr>
<td>Morissette</td>
<td>271</td>
</tr>
<tr>
<td>Moshavi</td>
<td>953</td>
</tr>
<tr>
<td>Motley</td>
<td>36</td>
</tr>
<tr>
<td>Mouly</td>
<td>596</td>
</tr>
<tr>
<td>Mouly</td>
<td>596</td>
</tr>
<tr>
<td>Mueller</td>
<td>695</td>
</tr>
<tr>
<td>Muenster</td>
<td>878</td>
</tr>
<tr>
<td>Muller</td>
<td>189</td>
</tr>
<tr>
<td>Muller</td>
<td>695</td>
</tr>
<tr>
<td>Mulligan</td>
<td>608</td>
</tr>
<tr>
<td>Munro</td>
<td>629</td>
</tr>
<tr>
<td>Munro</td>
<td>608</td>
</tr>
<tr>
<td>Munro</td>
<td>614-615</td>
</tr>
<tr>
<td>Munro</td>
<td>523</td>
</tr>
<tr>
<td>Murphy</td>
<td>157</td>
</tr>
<tr>
<td>Mussmann</td>
<td>789</td>
</tr>
<tr>
<td>Nakané</td>
<td>789</td>
</tr>
<tr>
<td>Natvig</td>
<td>687</td>
</tr>
<tr>
<td>Nelmin</td>
<td>119</td>
</tr>
<tr>
<td>Nethvale</td>
<td>789</td>
</tr>
<tr>
<td>Nettleon</td>
<td>45</td>
</tr>
<tr>
<td>Nettleon</td>
<td>595</td>
</tr>
<tr>
<td>Nikula, E.</td>
<td>900</td>
</tr>
<tr>
<td>Nilson</td>
<td>126</td>
</tr>
<tr>
<td>Noah</td>
<td>252</td>
</tr>
<tr>
<td>Nofal</td>
<td>82-84</td>
</tr>
<tr>
<td>Noll</td>
<td>789</td>
</tr>
<tr>
<td>Noell</td>
<td>187</td>
</tr>
<tr>
<td>Noell</td>
<td>61</td>
</tr>
<tr>
<td>Nowack</td>
<td>605</td>
</tr>
<tr>
<td>Nowack</td>
<td>189</td>
</tr>
<tr>
<td>Nowack</td>
<td>605</td>
</tr>
<tr>
<td>O'Keane</td>
<td>576</td>
</tr>
<tr>
<td>O'Shaughnessy</td>
<td>781</td>
</tr>
<tr>
<td>O'Shaughnessy</td>
<td>189</td>
</tr>
<tr>
<td>Ochia</td>
<td>232</td>
</tr>
<tr>
<td>Odenswaldner</td>
<td>308</td>
</tr>
<tr>
<td>Oetting</td>
<td>623</td>
</tr>
<tr>
<td>Ofgen</td>
<td>126</td>
</tr>
<tr>
<td>Ohmori</td>
<td>157</td>
</tr>
<tr>
<td>Ohmori</td>
<td>23</td>
</tr>
<tr>
<td>Ohya</td>
<td>781</td>
</tr>
<tr>
<td>Ohya</td>
<td>189</td>
</tr>
<tr>
<td>Ojaerupi, T.</td>
<td>900</td>
</tr>
<tr>
<td>Ojaerupi, T.</td>
<td>927</td>
</tr>
<tr>
<td>Ojama</td>
<td>937, 939, 954</td>
</tr>
<tr>
<td>Ohada</td>
<td>841</td>
</tr>
<tr>
<td>Okumura</td>
<td>23</td>
</tr>
<tr>
<td>Okumura</td>
<td>157</td>
</tr>
<tr>
<td>Okumura, Y.</td>
<td>942</td>
</tr>
<tr>
<td>Olivier</td>
<td>134</td>
</tr>
<tr>
<td>Omologo</td>
<td>205</td>
</tr>
<tr>
<td>Ono</td>
<td>232</td>
</tr>
<tr>
<td>Ormondroyd, R.</td>
<td>924</td>
</tr>
<tr>
<td>Osborne</td>
<td>515</td>
</tr>
<tr>
<td>Osutski</td>
<td>841</td>
</tr>
<tr>
<td>Ott</td>
<td>39</td>
</tr>
<tr>
<td>Ovesjö, F.</td>
<td>900</td>
</tr>
<tr>
<td>Owen</td>
<td>36</td>
</tr>
<tr>
<td>Owens</td>
<td>155</td>
</tr>
<tr>
<td>Owens</td>
<td>155</td>
</tr>
<tr>
<td>Owens</td>
<td>25</td>
</tr>
<tr>
<td>Ozawa</td>
<td>232</td>
</tr>
<tr>
<td>Padovani</td>
<td>45, 49</td>
</tr>
<tr>
<td>Palmer</td>
<td>157</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Pap</td>
<td>141</td>
</tr>
<tr>
<td>Papoulis</td>
<td>36</td>
</tr>
<tr>
<td>Papoulis</td>
<td>7</td>
</tr>
<tr>
<td>Parson</td>
<td>9</td>
</tr>
<tr>
<td>Parsons</td>
<td>39</td>
</tr>
<tr>
<td>Parsons</td>
<td>19</td>
</tr>
<tr>
<td>Parsons</td>
<td>32</td>
</tr>
<tr>
<td>Parsons</td>
<td>56</td>
</tr>
<tr>
<td>Parsons</td>
<td>57</td>
</tr>
<tr>
<td>Parsons</td>
<td>42</td>
</tr>
<tr>
<td>Parsons</td>
<td>4</td>
</tr>
<tr>
<td>Pasinopathy</td>
<td>[3]</td>
</tr>
<tr>
<td>Patel, P.</td>
<td>39</td>
</tr>
<tr>
<td>Pearce</td>
<td>841</td>
</tr>
<tr>
<td>Pele</td>
<td>46</td>
</tr>
<tr>
<td>Pedz.</td>
<td>335</td>
</tr>
<tr>
<td>Peterson</td>
<td>386</td>
</tr>
<tr>
<td>Peterson</td>
<td>61</td>
</tr>
<tr>
<td>Peterson</td>
<td>43</td>
</tr>
<tr>
<td>Pfitzmann</td>
<td>32</td>
</tr>
<tr>
<td>Picone</td>
<td>134</td>
</tr>
<tr>
<td>Press</td>
<td>8</td>
</tr>
<tr>
<td>Pope</td>
<td>46</td>
</tr>
<tr>
<td>Post</td>
<td>45</td>
</tr>
<tr>
<td>Prabhu</td>
<td>18</td>
</tr>
<tr>
<td>Prabhu</td>
<td>6</td>
</tr>
<tr>
<td>Prabhu</td>
<td>18</td>
</tr>
<tr>
<td>Prange</td>
<td>49</td>
</tr>
<tr>
<td>Prasad, R.</td>
<td>95</td>
</tr>
<tr>
<td>Proakis</td>
<td>[66]</td>
</tr>
<tr>
<td>Proakis</td>
<td>9</td>
</tr>
<tr>
<td>Pudney</td>
<td>23</td>
</tr>
<tr>
<td>Pulchiese</td>
<td>33</td>
</tr>
<tr>
<td>Pupolin</td>
<td>30</td>
</tr>
<tr>
<td>Pusley</td>
<td>4</td>
</tr>
<tr>
<td>Pusley, M. B.</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Q</td>
</tr>
<tr>
<td>Quatrier</td>
<td>120</td>
</tr>
<tr>
<td>Quatrier</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>R</td>
</tr>
<tr>
<td>Rabiner</td>
<td>24</td>
</tr>
<tr>
<td>Rabiner</td>
<td>23</td>
</tr>
<tr>
<td>Author</td>
<td>Page</td>
</tr>
<tr>
<td>-------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Salz [17]</td>
<td>534</td>
</tr>
<tr>
<td>Samped</td>
<td>841</td>
</tr>
<tr>
<td>Sanada, Y. [58]</td>
<td>953</td>
</tr>
<tr>
<td>Sant'Agoesino [28]</td>
<td>729</td>
</tr>
<tr>
<td>Sasuki, A. [14]</td>
<td>900</td>
</tr>
<tr>
<td>Sasuoka</td>
<td>841</td>
</tr>
<tr>
<td>Sawahashi, M. [70]</td>
<td>953</td>
</tr>
<tr>
<td>Schiffer [13]</td>
<td>388</td>
</tr>
<tr>
<td>Scheuermann [108]</td>
<td>265</td>
</tr>
<tr>
<td>Schmid [14]</td>
<td>119</td>
</tr>
<tr>
<td>Schmitz [81]</td>
<td>352</td>
</tr>
<tr>
<td>Schroeder [32]</td>
<td>302</td>
</tr>
<tr>
<td>Schroeder [10]</td>
<td>389</td>
</tr>
<tr>
<td>Schroeder [14]</td>
<td>389</td>
</tr>
<tr>
<td>Schroeder [29]</td>
<td>396</td>
</tr>
<tr>
<td>Schroeder [58]</td>
<td>220</td>
</tr>
<tr>
<td>Schroeder [69]</td>
<td>220</td>
</tr>
<tr>
<td>Schur [12]</td>
<td>690</td>
</tr>
<tr>
<td>Schwartz [4]</td>
<td>95</td>
</tr>
<tr>
<td>Schwartz [29]</td>
<td>584</td>
</tr>
<tr>
<td>Schwartz [64]</td>
<td>82, 83</td>
</tr>
<tr>
<td>Schwarz, J. [20]</td>
<td>900</td>
</tr>
<tr>
<td>Sereno [87]</td>
<td>351</td>
</tr>
<tr>
<td>Shashidhri</td>
<td>781</td>
</tr>
<tr>
<td>Shafer [24]</td>
<td>393</td>
</tr>
<tr>
<td>Shephard [34]</td>
<td>41</td>
</tr>
<tr>
<td>Simon [12]</td>
<td>527</td>
</tr>
<tr>
<td>Simon, M. K. [34]</td>
<td>925</td>
</tr>
<tr>
<td>Simpson [29]</td>
<td>39</td>
</tr>
<tr>
<td>Singhal [72]</td>
<td>232</td>
</tr>
<tr>
<td>Singhal [39]</td>
<td>213</td>
</tr>
<tr>
<td>Singhal [73]</td>
<td>197, 232</td>
</tr>
<tr>
<td>Sloane [7]</td>
<td>335</td>
</tr>
<tr>
<td>Sluyter [80]</td>
<td>251</td>
</tr>
<tr>
<td>Sluyter [8]</td>
<td>189</td>
</tr>
<tr>
<td>Sluyter [84]</td>
<td>252</td>
</tr>
<tr>
<td>Soehlil [86]</td>
<td>258</td>
</tr>
<tr>
<td>Solomon [40]</td>
<td>386</td>
</tr>
<tr>
<td>Soni [90]</td>
<td>200</td>
</tr>
<tr>
<td>Soong [32]</td>
<td>306</td>
</tr>
<tr>
<td>Soong [43]</td>
<td>304</td>
</tr>
<tr>
<td>Southcott [36]</td>
<td>747</td>
</tr>
<tr>
<td>Steede</td>
<td>841</td>
</tr>
<tr>
<td>Steede [22]</td>
<td>124</td>
</tr>
<tr>
<td>Steede [34]</td>
<td>378</td>
</tr>
<tr>
<td>Steede [15]</td>
<td>343</td>
</tr>
<tr>
<td>Steede [23]</td>
<td>361</td>
</tr>
<tr>
<td>Steede [48]</td>
<td>388</td>
</tr>
<tr>
<td>Steede [21]</td>
<td>584</td>
</tr>
<tr>
<td>Steele [32]</td>
<td>719</td>
</tr>
<tr>
<td>Steele [6]</td>
<td>729</td>
</tr>
<tr>
<td>Steele [36]</td>
<td>576</td>
</tr>
<tr>
<td>Steele [28]</td>
<td>623</td>
</tr>
<tr>
<td>Steele [4]</td>
<td>183</td>
</tr>
<tr>
<td>Steele [13]</td>
<td>694</td>
</tr>
<tr>
<td>Stegmann [332]</td>
<td>302</td>
</tr>
<tr>
<td>Stein [4]</td>
<td>95</td>
</tr>
<tr>
<td>Stein [2]</td>
<td>92</td>
</tr>
<tr>
<td>Steinbach</td>
<td>789</td>
</tr>
<tr>
<td>Stephens [68]</td>
<td>173</td>
</tr>
<tr>
<td>Stjernwall [21]</td>
<td>639</td>
</tr>
<tr>
<td>Stola [30]</td>
<td>39</td>
</tr>
<tr>
<td>Streiton [13]</td>
<td>531</td>
</tr>
<tr>
<td>Streit</td>
<td>789</td>
</tr>
<tr>
<td>Streit, J.</td>
<td>795</td>
</tr>
<tr>
<td>Streit, J.</td>
<td>791, 794, 796, 801, 802, 877, 878</td>
</tr>
<tr>
<td>Strum [79]</td>
<td>219</td>
</tr>
<tr>
<td>Su [110]</td>
<td>285</td>
</tr>
<tr>
<td>Suda</td>
<td>781</td>
</tr>
<tr>
<td>Suda [21]</td>
<td>189</td>
</tr>
<tr>
<td>Sugamura [30]</td>
<td>304</td>
</tr>
<tr>
<td>Sugamura [49]</td>
<td>306</td>
</tr>
<tr>
<td>Sugamura [47]</td>
<td>305</td>
</tr>
<tr>
<td>Sukljar [334]</td>
<td>303</td>
</tr>
<tr>
<td>Sullivan [28]</td>
<td>39</td>
</tr>
<tr>
<td>Sun, S. M. [57, 63, 65, 69]</td>
<td>953</td>
</tr>
<tr>
<td>Sunay, M. O. [27]</td>
<td>904</td>
</tr>
<tr>
<td>Sundberg [9]</td>
<td>608</td>
</tr>
<tr>
<td>Sundberg [4]</td>
<td>515</td>
</tr>
<tr>
<td>Sundberg [12]</td>
<td>608</td>
</tr>
<tr>
<td>Sundberg [9]</td>
<td>521</td>
</tr>
<tr>
<td>Sundberg [8]</td>
<td>521</td>
</tr>
<tr>
<td>Sundberg [50]</td>
<td>61, 64</td>
</tr>
<tr>
<td>Sundberg [46]</td>
<td>61</td>
</tr>
<tr>
<td>Sundberg [47]</td>
<td>61</td>
</tr>
<tr>
<td>Sundberg [48]</td>
<td>61</td>
</tr>
<tr>
<td>Sundberg [49]</td>
<td>61, 64</td>
</tr>
<tr>
<td>Sundberg [50]</td>
<td>729</td>
</tr>
<tr>
<td>Sundberg [14]</td>
<td>610</td>
</tr>
<tr>
<td>Sundberg [24]</td>
<td>576</td>
</tr>
<tr>
<td>Suzuki [39]</td>
<td>152</td>
</tr>
<tr>
<td>Svensson [14]</td>
<td>610</td>
</tr>
<tr>
<td>Svensson [21]</td>
<td>576</td>
</tr>
<tr>
<td>Sepeigles [2]</td>
<td>596</td>
</tr>
</tbody>
</table>
AUTHOR INDEX

T
Takeuchi [28] 126
Tan, P. H. [61] 953
Targett [33] 746
Tattersall [31] 732
Teague [118] 301
Thompson [31] 39
Tietgen [1] 482
Tiffon [34] 134
Torrance 833, 836, 837, 841
Torrance, J.M. 831, 836, 838, 840-844, 854, 878
Tozer 841
Trancoso [63] 216
Tremain [66] 516
Tremblay [66] 217
Turin [38] 152
Tuttlebee [63] 76, 78
Tzou 789

U
Udenfeldt [24] 126
Udenfeldt [7] 596
Un [23] 191

V
Vainio [19] 700
Valenzuela [26] 37
Varamasi, M. K. [59] 953
Vary [55] 62
Vary [80] 251
Vary [82] 252
Verdu, S. [50] 953
Verhulst [8] 596
Verhulst [2] 596
Verhulst [3] 596
Verhulst [5] 596
Viaro [50] 206
Viswanathan [123] 301
Viswanathan [38] 202
Viterbi [20] 346
Viterbi [33] 377
Viterbi [40] 45, 49
Viterbi [41] 45
Vlahogiannakis, S. 878

W
Wächter [108] 285
Wales [15] 331
Wang [12] 527
Wassell [22] 124
Watanabe 789
Waters [15] 331
Weaver [40] 45, 49
Webb, 815, 816, 819, 820, 833, 839, 841, 848, 878
Webb [58] 64
Webb [21] 35
Wei, L. [54] 953
Welch [66] 217
Welch [16] 534
Weldon [9] 335
Wheelwright [40] 45, 49
Wiggins [58] 157
Williams, JEB 878
Winter 695
Winter [20] 189
Winter [14] 605
Winters, J. H. [49] 952
Wislewski [12] 371
Wittneben, T. [71] 953
Wolf [51] 442
Wong [22] 124
Wong [23] 361
Wong [48] 388
Wong [50] 61, 64
Wong [23] 707
Wong [27] 193
Wong [43] 61
Wong [46] 61
Wong [47] 61
Wong [48] 61
Wong [49] 61, 64
Wong [68] 82, 84
Wong [37] 201
Wong [55] 206
Wong, C.H. 878
Wong, D. [41] 936
Woodard 867, 869
Woodard [21] 695
Woodard, J.P. 857, 878
Wozencraft [17] 346
AUTHOR INDEX

Wozencraft [18] 346
Wozencraft [21] 338

X
Xydeas 781, 782
Xydeas [100] 261
Xydeas [117] 301
Xydeas [104] 271
Xydeas [91] 261

Y
Yagimaie [133] 316
Yamada [27] 369
Yang, LL 878
Yasuda [31] 369
Yeap, BL 878
Yee, MS 878
Yeldner [137] 321
Yen, Kai 878
Yong [89] 261
Yoshida [28] 126
You, D. [56] 953
Young [16] 120
Yuen, Andy 806–808, 863, 864, 866, 872–876, 878

Z
Zander [20] 121
Zhang 789
Zhong [128] 302
Zierler [39] 386
Zurcher [109] 285