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Chapter 10
Maximum-Likelihood Enhanced
Sphere Decoding of
MIMO-OFDM 1 2

J. Akhtman and L. Hanzo

10.1 Classification of Smart Antennas
In recent years various smart antenna designs have emerged, which have found application
in diverse scenarios, as seen in Table 10.1. The main objective of employing smart anten-
nas is that of combating the effects of multipath fading on the desired signal and suppress-
ing interfering signals, thereby increasing both the performance and capacity of wireless
systems [351]. Specifically, in smart antenna-assisted systems, multiple antennas may be in-
voked at the transmitter and/or the receiver, where the antennas may be arranged for achieving
spatial diversity, directional beamforming or for attaining both diversity and beamforming.
In smart antenna systems the achievable performance improvements are usually a function of
the antenna spacing and that of the algorithms invoked for processing the signals received by
the antenna elements.

In beamforming arrangements [217] typically λ/2-spaced antenna elements are used for
the sake of creating a spatially selective transmitter/receiver beam. Smart antennas using
beamforming have been widely employed for mitigating the effects of various interfering
signals and for providing beamforming gain. Furthermore, the beamforming arrangement is
capable of suppressing co-channel interference, which allows the system to support multiple

1Acknowledgements: The work reported in this paper has formed part of the Wireless Enabling Techniques work
area of the Core 3 Research Programme of the Virtual Centre of Excellence in Mobile and Personal Communications,
Mobile VCE, www.mobilevce.com, whose funding support, including that of EPSRC, is gratefully acknowledged.
Fully detailed technical reports on this research are available to Industrial Members of Mobile VCE.

2OFDM and MC-CDMA: A Primer. L.Hanzo, T. Keller, c©2006 John Wiley & Sons, Ltd. ISBN 0-470-03007-0
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Beamforming [217] Typically λ/2-spaced antenna elements are used for the sake of
creating a spatially selective transmitter/receiver beam. Smart
antennas using beamforming have been employed for mitigating
the effects of co-channel interfering signals and for providing
beamforming gain.

Spatial Diver-
sity [216] and
Space-Time Spread-
ing

In contrast to the λ/2-spaced phased array elements, in spatial
diversity schemes, such as space-time block or trellis codes [216]
the multiple antennas are positioned as far apart as possible, so
that the transmitted signals of the different antennas experience
independent fading, resulting in the maximum achievable diver-
sity gain.

Space Division Mul-
tiple Access

SDMA exploits the unique, user-specific ”spatial signature” of
the individual users for differentiating amongst them. This al-
lows the system to support multiple users within the same fre-
quency band and/or time slot.

Multiple Input
Multiple Output
Systems [123]

MIMO systems also employ multiple antennas, but in contrast
to SDMA arrangements, not for the sake of supporting multiple
users. Instead, they aim for increasing the throughput of a wire-
less system in terms of the number of bits per symbol that can
be transmitted by a given user in a given bandwidth at a given
integrity.

Table 10.1: Applications of multiple antennas in wireless communications

users within the same bandwidth and/or same time-slot by separating them spatially. This
spatial separation however becomes only feasible, if the corresponding users are separable
in terms of the angle of arrival of their beams. These beamforming schemes, which employ
appropriately phased antenna array elements that are spaced at distances of λ/2 typically
result in an improved SINR distribution and enhanced network capacity [217].

In contrast to the λ/2-spaced phased array elements, in spatial diversity schemes, such
as space-time coding aided transmit diversity arrangements [216], the multiple antennas are
positioned as far apart as possible. A typical antenna element spacing of 10λ [351] may be
used, so that the transmitted signals of the different antennas experience independent fading,
when they reach the receiver. This is because the maximum diversity gain can be achieved,
when the received signal replicas experience independent fading. Although spatial diversity
can be achieved by employing multiple antennas at either the base station, mobile station, or
both, it is more cost-effective and practical to employ multiple transmit antennas at the base
station. A system having multiple receiver antennas has the potential of achieving receiver di-
versity, while that employing multiple transmit antennas exhibits transmit diversity. Recently,
the family of transmit diversity schemes based on space-time coding, either space-time block
codes or space-time trellis codes, has received wide attention and has been invoked in the
3rd-generation systems [217,352]. The aim of using spatial diversity is to provide both trans-
mit as well as receive diversity and hence enhance the system’s integrity/robustness. This
typically results in a better physical-layer performance and hence a better network-layer per-
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formance, hence space-time codes indirectly increase not only the transmission integrity, but
also the achievable spectral efficiency.

A third application of smart antennas is often referred to as Space Division Multiple Ac-
cess (SDMA), which exploits the unique, user-specific ”spatial signature” of the individual
users for differentiating amongst them. In simple conceptual terms one could argue that both
a conventional CDMA spreading code and the Channel Impulse Response (CIR) affect the
transmitted signal similarly - they are namely convolved with it. Hence, provided that the CIR
is accurately estimated, it becomes known and is certainly unique, although - as opposed to
orthogonal Walsh-Hadamad spreading codes, for example - not orthogonal to the other CIRs.
Nonetheless, it may be used for uniquely identifying users after channel estimation and hence
for supporting several users within the same bandwidth. Provided that a powerful multi-user
detector is available, one can support even more users than the number of antennas. Hence
this method enhances the achievable spectral efficiency directly.

Finally, Multiple Input Multiple Output (MIMO) systems [123, 353–356] also employ
multiple antennas, but in contrast to SDMA arrangements, not for the sake of supporting
multiple users. Instead, they aim for increasing the throughput of a wireless system in terms
of the number of bits per symbol that can be transmitted by a single user in a given bandwidth
at a given integrity.

10.2 Introduction to Space-Time Processing
The ever-increasing demand for both high data-rates, as well as for improved transmission
integrity requires efficient utilisation of the limited system resources, while supporting a high
grade of mobility in diverse propagation environments. Consequently, the employment of an
appropriate modulation format, as well as efficient exploitation of the available bandwidth
constitute crucial factors in achieving high performance.

The Orthogonal Frequency Division Multiplexing (OFDM) modulation scheme em-
ployed in conjunction with a Multiple-Input Multiple-Output (MIMO) architecture [90],
where multiple antennas are employed at both the transmitter and the receiver of the commu-
nication system, constitutes an attractive solution in terms of satisfying these requirements.
Firstly, the OFDM modulation technique is capable of coping with the highly frequency-
selective, time-variant channel characteristics associated with mobile wireless communica-
tion channels, while possessing a high grade of structural flexibility for exploiting the bene-
ficial properties of MIMO architectures.

It is highly beneficial that OFDM and MIMOs may be conveniently combined, since the
information-theoretical analysis predicts [357] that substantial capacity gains are achievable
in communication systems employing MIMO architectures. Specifically, if the fading pro-
cesses corresponding to different transmit-receive antenna pairs may be assumed to be inde-
pendently Rayleigh distributed,3 the attainable capacity has been shown to increase linearly
with the smaller of the numbers of the transmit and receive antennas [357]. Additionally, the
employment of MIMO architectures allows the efficient exploitation of the spatial diversity
available in wireless MIMO environments, thus improving the system’s BER, as well as fur-
ther increasing the system’s capacity, as a benefit of the reduced channel quality fluctuations.

3This assumption is typically regarded as valid, if the appropriate antenna spacing is larger than λ/2, where λ is
the corresponding wavelength.
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The family of space-time signal processing methods, which allow the efficient implemen-
tation of communication systems employing MIMO architectures, are commonly referred to
as smart antennas. In recent years, the concept of smart antennas has attracted intense re-
search interest in both the academic and the industrial communities. As a result, a multiplicity
of smart antenna-related methods has been proposed. These include methods implemented at
the transmitter, the receiver or both.

The classification of smart-antenna aided wireless transmission techniques was already
briefly addressed in the context of Table 10.1. A slightly more detailed classification is il-
lustrated in Figure 10.1. It should be noted, however, that the classification presented here is
somewhat informal and its sole purpose is to appropriately position the content of this chapter
in the context of the extensive material available on the subject.

Detection methods

Space-Time Processing Applications

Point-to-Point Point-to-Multipoint

BLAST/SDM STC

UplinkDownlink

D-BLAST SDMD

SDMABeamforming

MUD
PSfrag replacements

v1

Figure 10.1: Classification of space-time processing techniques

Two distinctive system scenarios employing smart antennas can be identified. The first
is the point-to-point SDM-type scenario, where two peer terminals each employing multiple
antennas, communicate with each other over a MIMO channel and the multiple antennas are
primarily used for achieving a multiplexing gain, i.e. a higher throughput [123]. The second
scenario corresponds to the point-to-multipoint configuration, where a single base-station,
employing multiple antennas communicates simultaneously using a single carrier frequency
with multiple user terminals, each employing one or several antennas.

The various point-to-multipoint smart antenna applications can be further subdivided into
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uplink- and downlink-related applications. The uplink-related methods constitute a set of
techniques, which can be employed in the base station in order to detect the signals si-
multaneously transmitted by multiple user terminals. More specifically, provided that the
Channel Impulse Response (CIR) of all users is accurately estimated, it may be used as their
unique, user-specific spatial signature for differentiating them, despite communicating within
the same frequency band [90]. Hence, the corresponding space-time signal processing prob-
lem is commonly referred to as Multi-User Detection (MUD) [90], while the multi-antenna
multi-user systems employing uplink space-time MUD are commonly referred to as Space
Division Multiple Access (SDMA) systems [90]. In contrast to the SDM-type systems de-
signed for achieving the highest possible multiplexing gain, the design objective of the SDMA
techniques is the maximisation of the number of users supported. By contrast, the class of
beamformers [217] creates angularly selective beams for both the uplink and downlink in the
direction of the desired user, while forming nulls towards the interfering users. Finally, the
family of Space-Time Codes (STC) [216] was optimised for achieving the highest possible
transmit diversity gain, rather than for attaining the highest possible spatial multiplexing gain
in the context of a single user or for increasing the number of users supported. At the time of
writing new research is aiming for increasing both the attainable diversity and multiplexing
gain with the aid of eigen-value decomposition [358].

On the other hand, the host of downlink-related smart antenna applications comprises
techniques which can be employed in both the base station terminal and/or each of the user
terminals in order to efficiently resolve the high-datarate signal concurrently communicated
from multiple antennas of the base station terminal. The downlink smart antenna implemen-
tations, which rely on transmitter-end space-time processing only are usually jointly referred
to as beamforming [217]. Other downlink methods, which involve space-time processing
at both the transmitter and the receiver ends are largely associated with Space-Time Codes
(STC) [216].

As stated above, two benefits of employing smart antennas are the system’s improved
integrity, as well as the increased aggregate throughput. Hence an adequate performance
criterion of the particular smart antenna implementation is a combination of the system’s at-
tainable aggregate data-throughput, as well as the corresponding data integrity, which can be
quantified in terms of the average BER. Consequently, in the context of point-to-multipoint-
related smart antenna applications, the achievable capacity associated with the particular
space-time processing method considered may be assessed as a product of the simultane-
ously supported number of individual users and the attainable data-rate associated with each
supported user. The measure of data-integrity may be the average BER of all the users sup-
ported. Thus, the typical objective of the multi-user-related smart antenna implementations,
such as that of an SDMA scheme is that of increasing the number of the simultaneously
supported users, while sustaining the highest possible integrity of all the data communicated.

For the sake of distinction, in this work we employ the alternative terminology of Space
Division Multiplexing (SDM) in order to refer to a generic MIMO architecture. The corre-
sponding detection methods are referred to as SDM Detection (SDMD) techniques, as op-
posed to the MUD techniques employed in the context of SDMA systems [90]. Naturally,
however, the SDMD and MUD schemes share the same signal detection methods, regard-
less of whether the signal has arrived from multiple antennas of the same or different users.
The classification of the most popular SDMD/MUD schemes is depicted in Figure 10.2. The
methods considered include the linear LS and MMSE techniques, as well as non-linear tech-
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niques, such as Maximum Likelihood (ML), Successive Interference Cancellation (SIC), Ge-
netic Algorithm-aided MMSE (GA-MMSE) [359,360] as well as the novel OHRSA methods
proposed in this chapter.

SDMD/MUD

Linear Detection Non-Linear Detection

LS MMSE ML SIC GA-MMSE OHRSA-ML

Log-MAP OHRSA-Log-MAP SOPHIE
PSfrag replacements

v1

Figure 10.2: SDM detection methods classification.

The rest of this chapter is structured as follows. Both the MIMO channel model consid-
ered as well as the SDM-OFDM system model are described in Section 10.3. The OHRSA-
aided SDM detection methods considered are outlined in Section 10.4. Specifically, in Sec-
tion 10.4.1 we derive the OHRSA-aided ML SDM detector, which benefits from the optimal
performance of the ML detector briefly introduced in Chapter 9, while exhibiting a relatively
low computational complexity, which is only slightly higher than that required by the low-
complexity MMSE detector of Chapter 12 in [90]. To elaborate a little further, in Section
10.4.3 we will derive a bit-wise OHRSA-aided ML SDM detector, which allows us to apply
the OHRSA method of Section 10.4 in high-throughput systems, which employ multi-level
modulation schemes, such as M -ary QAM [90].

In Section 10.4.4 our discourse evolves further by deducing the OHRSA-aided Log-MAP
SDM detector, which allows an efficient evaluation of the soft-bit information and there-
fore results in highly efficient turbo decoding. Unfortunately however, in comparison to
the OHRSA-aided ML SDM detector of Section 10.4.3 the OHRSA-aided Log-MAP SDM
detector of Section 10.4.4 exhibits a substantially higher complexity. Consequently, in Sec-
tion 10.4.5 we derive an approximate Log-MAP method, which we refer to as Soft-output
OPtimised HIErarchy (SOPHIE) SDM detector. The SOPHIE SDM detector combines the
advantages of both the OHRSA-aided ML and the OHRSA-aided Log-MAP SDM detectors
of Sections 10.4.3 and 10.4.4, respectively. Specifically, it exhibits a similar performance
to that of the optimal Log-MAP detector, while imposing a modest complexity, which is
only slightly higher than that required by the low-complexity MMSE SDM detector [90].
The computational complexity as well as the achievable performance of the SOPHIE SDM
detector of Section 10.4.5 are analysed and quantified in Sections 10.4.5.1 and 10.4.5.2, re-
spectively. Finally, our conclusions are summarised in Section 10.5.
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10.3 SDM-OFDM System Model

10.3.1 MIMO Channel Model

We consider a MIMO wireless communication system employingmt transmit and nr receive
antennas, hence, the corresponding MIMO wireless communication channel is constituted
by (nr × mt) propagation links, as illustrated in Figure 10.3. Furthermore, each of the
corresponding (nr × mt) Single Input Single Output (SISO) propagation links comprises
a multiplicity of statistically independent components, termed as paths. Thus, each of these
SISO propagation links can be characterised as a multipath SISO channel discussed in detail
in [90]. Similarly to the SISO case, the multi-carrier structure of our SDM-OFDM transceiver
allows us to characterise the broadband frequency-selective channel considered as an OFDM
subcarrier-related vector of flat-fading Channel Transfer Function (CTF) coefficients. How-
ever, as opposed to the SISO case, for each OFDM symbol n and subcarrier k the MIMO
channel is characterised by a (nr ×mt)-dimensional matrix H[n, k] of the CTF coefficients
associated with the different propagation links, such that the element Hij [n, k] of the CTF
matrix H[n, k] corresponds to the propagation link connecting the jth transmit and ith receive
antennas.

x1

xmt

y1

ynr

TX RX

xi yj

Hi1
Hij

Hinr

w1

wj

wnr

PSfrag replacements
v1

Figure 10.3: Illustration of a MIMO channel constituted by mt transmit and nr receive antennas. The
corresponding MIMO channel is characterized by the (nr ×mt)-dimensional matrix H
of CTF coefficients.

Furthermore, the correlation properties of the MIMO-OFDM channel can readily be de-
rived as a generalisation of the SISO-OFDM channel scenario discussed in detail in [90].
As was shown in [361], the cross-correlation function rH [m, l], which characterises both the
time- and frequency-domain correlation properties of the discrete CTF coefficients Hij [n, k]
associated with the particular (i, j)th propagation link of the MIMO channel, as well as with
the different OFDM symbol and subcarrier indices n and k can be described as

rH;ij [m, l] = E
{
H∗
ij [n+m, k + l],Hij [n, k]

}

= σ2
Hrt[m]rf [l], (10.1)

where rt[m] is the time-domain correlation function, which may be characterised by a time-



260 CHAPTER 10. ML ENHANCED SPHERE DECODING OF MIMO-OFDM

domain correlation model proposed by Jakes in [362], where we have

rt[m] , rJ [m] = J0(nwd), (10.2)

and J0(x) is a zero-order Bessel function of the first kind, while wd = 2πTfD is the nor-
malised Doppler frequency. On the other hand, the frequency-domain correlation function
rf [l] can be expressed as [93]

rf [l] = |C(l∆f)|2
L∑

i=1

σ2
i

σ2
H

e−2πl∆fτi , (10.3)

where C(f) is the frequency response of the pulse-shaping filter employed by the particular
system, σ2

i and τi, i = 1, · · · , L are the average power and the corresponding delay of the
L-tap Power Delay Profile (PDP) encountered, while σ2

H is the average power per MIMO
channel link, such that we have σ2

H =
∑L
i=1 σ

2
i .

In this chapter we assume the different MIMO channel links to be mutually uncorrelated.
This common assumption is usually valid, if the spacing between the adjacent antenna el-
ements exceeds λ/2, where λ is the wavelength corresponding to the RF signal employed.
Thus, the overall cross-correlation function can be described as

rH;ij [m, l] = E
{
H∗
i′j′ [n+m, k + l],Hij [n, k]

}

= σ2
Hrt[m]rf [l]δ[i− i′]δ[j − j′], (10.4)

where δ[i] is the discrete Kronecker Delta function.

10.3.2 SDM-OFDM Transceiver Structure
The schematic of a typical SDM-OFDM system’s physical layer is depicted in Figure 10.4.

The transmitter of the SDM-OFDM system considered is typically constituted by the
Encoder and Modulator seen in Figure 10.4, generating a set ofmt complex-valued base-band
time-domain signals [90]. The modulated base-band signals are then processed in parallel.
Specifically, they are oversampled and shaped using a Nyquist filter, such as, for example, a
root-raised-cosine filter. The resultant oversampled signals are then converted into an analog
pass-band signal using a bank of D/A converters and upconverted to the Radio Frequency
(RF) band. At the receiver side of the SDM-OFDM transceiver the inverse process takes
place, where the set of received RF signals associated with the nr receive antenna elements
are amplified by the RF amplifier and down-converted to an intermediate frequency pass-
band. The resultant pass-band signals are then sampled by a bank of A/D converters, down-
converted to the base-band, filtered by a matched Nyquist filter and finally decimated, in order
to produce a set of discrete complex-valued base-band signals. The resultant set of discrete
signals is processed by the corresponding Demodulator and Decoder module seen in Figure
10.4, where the transmitted information-carrying symbols are detected.

In this chapter we consider the link between the output of the SDM-OFDM Modulator and
the input of the corresponding SDM-OFDM Demodulator of Figure 10.4 as an effective base-
band MIMO channel. The proof of feasibility for this assumption is beyond the scope this
chapter, however it can be found for example in [249,363]. The structure of the resultant base-
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Figure 10.4: Schematic of a typical SDM-OFDM system’s physical layer.

band SDM-OFDM system is depicted in Figure 10.5, where the bold grey arrows illustrate
subcarrier-related signals represented by the vectors xi and yi, while the black thin arrows
accommodate scalar time-domain signals.

The discrete frequency-domain model of the SDM-OFDM system, illustrated in Figure
10.5, may be characterised as a generalisation of the SISO case described in [90]. Namely,
we have

yi[n, k] =
mt∑

j=1

Hij [n, k]xj [n, k] + wi[n, k], (10.5)

where n = 0, 1, · · · and k = 0, . . . ,K−1 are the OFDM symbol and subcarrier indices, re-
spectively, while yi[n, k], xj [n, k] and wi[n, k] denote the symbol received at the ith receive
antenna, the symbol transmitted from the jth transmit antenna and the Gaussian noise sam-
ple encountered at the ith receive antenna, respectively. Furthermore, Hij [n, k] represents
the complex-valued CTF coefficient associated with the propagation link connecting the jth
transmit and ith receive antennas at the kth OFDM subcarrier and time instance n. Note that
in the case of an M -QAM modulated OFDM system, xj [n, k] corresponds to the M -QAM
symbol accommodated by the kth subcarrier of the nth OFDM symbol transmitted from the
jth transmit antenna element.

The SDM-OFDM system model described by Equation (10.5) can be interpreted as the
per OFDM-subcarrier vector expression of

y[n, k] = H[n, k]x[n, k] + w[n, k], (10.6)
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Figure 10.5: Schematic of a generic SDM-OFDM BLAST-type transceiver.

where we introduce the space-division-related vectors y[n, k], x[n, k] and w[n, k], as well
as a space-division-related (nr ×mt)-dimensional matrix of CTF coefficients H[n, k]. Note
that similarly to the SISO case, the multi-carrier structure of the SDM-OFDM transceiver
allows us to represent the broadband frequency-selective MIMO channel as a subcarrier-
related vector of flat-fading MIMO-CTF matrices H[n, k].

10.4 Optimised Hierarchy Reduced Search Algorithm-
aided SDM Detection

As it was pointed out in [90] , the “brute-force” ML detection method does not provide a
feasible solution to the generic SDM detection problem as a result of its excessive compu-
tational complexity. Nevertheless, since typical wireless communication systems operate at
moderate-to-high SNRs, Reduced Search Algorithms (RSA) may be employed, which are
capable of obtaining the ML solution at a complexity which is considerably lower than that
imposed by the ML detector of [90] . The most powerful of the RSA methods found in the
literature is constituted by the Sphere Decoder (SD) [364]. The SD was first proposed for em-
ployment in the context of space-time processing in [365], where it is used for computing the
ML estimates of the modulated symbols transmitted simultaneously from multiple transmit
antennas. The complex-valued version of the sphere decoder was proposed by Hochwald and
Brink in [176]. The subject was further investigated by Damen et al. in [366]. Subsequently,
an improved version of the Complex Sphere Decoder (CSD) was advocated by Pham et al.
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in [367].
Furthermore, CSD-aided detection was considered by Tellambura et al. in a joint channel

estimation and data detection scheme considered in [368], while a revised version of the CSD
method, namely the so-called Multistage Sphere Decoding (MSD) was introduced in [369].
The generalized version of the Sphere Decoder, which is suitable for employment in rank-
defficient MIMO systems was introduced by Damen et al. in [370] and further refined by Cui
and Tellambura in [371].

In this section we would like to introduce a novel Optimised Hierarchy (OH) RSA-aided
SDM detection method, which may be regarded as an advanced extension of the CSD method
portrayed in [367]. The algorithm proposed extends the potential range of applications of the
CSD methods of [176] and [367], as well as reduces the associated computational complexity,
rendering the algorithm attractive for employment in practical systems.

The method proposed, which we refer to as the Soft-output OPtimised HIErarchy (SO-
PHIE) algorithm exhibits the following attractive properties:

1) The method can be used in the so-called over-loaded scenario, where the number of
transmit antenna elements exceeds that of the receive antenna elements. A particularly
interesting potential application is found in a Multiple Input Single Output scenario,
where the system employs multiple transmit antennas and a single receive antenna.
Moreover, the associated computational complexity is only moderately increased even
in heavily over-loaded scenarios and it is almost independent of the number of receive
antennas.

2) As opposed to the conventional CSD schemes, the calculation of the sphere radius is
not required and therefore the method proposed is robust to the particular choice of
the initial parameters both in terms of the achievable performance and the associated
computational complexity.

3) The method proposed allows a selected subset of the transmitted information-carrying
symbols to be detected, while the interference imposed by the undetected signals is
suppressed.

4) The overall computational complexity required is only slightly higher than that im-
posed by the linear MMSE multi-user detector designed for detecting a similar number
of users.

5) Finally, the associated computational complexity is fairly independent of the channel
conditions quantified in terms of the Signal-to-Noise Ratio encountered.

10.4.1 Optimised Hierarchy Reduced Search Algorithm-aided ML
SDM Detection

We commence our discourse by deriving an OHRSA-aided ML SDM detection method for
a constant-envelope modulation scheme, such as M -PSK, where the transmitted symbols s
satisfy the condition of |s|2 = 1, ∀s ∈ M, and M denotes the set of M complex-valued
constellation points. In the next section, we will then demonstrate that the method derived is
equally applicable to arbitrary signal constellations, particularly for high-throughput multi-
level modulation schemes, such as M -QAM.
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Let us recall that our channel model described in detail in Section 10.3 is given by

y = Hs + w, (10.7)

where we omit the OFDM subcarrier and symbol indices k and n, respectively. As outlined in
[90] , the ML SDM detector provides an mt-antenna-based estimated signal vector candidate
ŝ, which maximises the objective function defined as the conditional a posteriori probability
function P {š|y,H} over the setMmt of legitimate solutions. More explicitly, we have

ŝ = arg max
š∈Mmt

P {š|y,H} , (10.8)

whereMmt is the set of all possible mt-dimensional candidate symbol vectors of the mt-
antenna-based transmitted signal vector s. More specifically, we have

Mmt =
{
š = (š1, · · · , šmt)

T; ši ∈M
}
. (10.9)

Furthermore, it was shown in [90] that we have

P {š|y,H} = A exp
[
− 1
σ2
w

‖y −Hš‖2
]
, (10.10)

where A is a constant, which is independent of any of the values {ši}i=1,··· ,mt . Thus, it may
be shown [90] that the probability maximisation problem of Equation (10.8) is equivalent to
the corresponding Euclidean distance minimisation problem. Specifically, we have

ŝ = arg min
š∈Mmt

‖y −Hš‖2, (10.11)

where the probability-based objective function of Equation (10.8) is substituted by the ob-
jective function determined by the Euclidean distance between the received signal vector y
and the corresponding product of the channel matrix H with the a priori candidate of the
transmitted signal vector š ∈Mmt .

Consequently, our detection method relies on the observation, which may be summarised
in the following lemma.

Lemma 1 The ML solution of Equation (10.8) of a noisy linear problem described by Equa-
tion (10.7) is given by

ŝ = arg min
š∈Mmt

{‖U(š− x̂)‖2} , (10.12)

where U is an upper-triangular matrix having positive real-valued elements on the main
diagonal and satisfying

UHU = (HHH + σ2
wI), (10.13)

while

x̂ = (HHH + σ2
wI)−1HHy (10.14)
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is the unconstrained MMSE estimate of the transmitted signal vector s, which was derived
in [90] .

Note 1: Observe that Lemma 1 imposes no constraints on the dimensions, or rank of the
matrix H of the linear system described by Equation (10.7). This property is particularly
important, since it enables us to apply our proposed detection technique to the scenario of
over-loaded systems, where the number of transmit antenna elements exceeds that of the
receive antenna elements.

Note 2: As substantiated by Equation (10.11), it is sufficient to prove that the following
minimisation problems are equivalent

ŝ = arg min
š∈Mmt

‖y −Hš‖2 (10.15)

⇔ ŝ = arg min
š∈Mmt

‖U(š− x̂)‖2. (10.16)

Proof of Lemma 1: It is evident that in contrast to the matrix HHH, the matrix (HHH +
σ2
wI) of Equation (10.12) is always Hermitian and positively definite, regardless of the rank of

the channel matrix H associated with the particular MIMO channel realisation encountered.
Consequently, it may be represented as the product of an upper-triangular matrix U and its
Hermitian adjoint matrix UH using for example the Cholesky factorisation method [372].

Let U be the matrix generated by the Cholesky decomposition of the Hermitian positive
definite matrix (HHH + σ2

wI) of Equation (10.13). More specifically, we have

UHU = (HHH + σ2
wI), (10.17)

where U is an upper-triangular matrix having positive real-valued elements on its main diag-
onal.

Upon expanding the objective function of Equation (10.12) and subsequently invoking
Equation (10.13) we obtain

J(š) = ‖U(š− x̂)‖2
= (š− x̂)HUHU(š− x̂)

= (š− x̂)H(HHH + σ2
wI)(š− x̂)

= šH(HHH + σ2
wI)š− x̂H(HHH + σ2

wI)š

− šH(HHH + σ2
wI)x̂ + x̂H(HHH + σ2

wI)x̂. (10.18)
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Furthermore, substituting Equation (10.14) into (10.18) yields

J(š) = šHHHHš− yHHš− šHHHy

+ σ2
w šHš + yHH(HHH + σ2

wI)−1HHy

= ‖y −Hš‖2 + σ2
w šHš + yH(H(HHH + σ2

wI)−1HH − I)y︸ ︷︷ ︸
ψ

. (10.19)

Observe that in the case of a system employing a constant-envelope modulation scheme,
such asM -PSK, where we have šHš = 1, ψ constitutes a real-valued scalar and its value does
not depend on the argument š of the minimisation problem formulated in Equation (10.12).
Consequently, the minimisation of the objective function J( ˇsvecs) of Equation (10.19) can
be reduced to the minimisation of the term ‖y −Hx)‖2, which renders it equivalent to the
minimisation problem of Equation (10.15). This completes the proof.

Using Lemma 1, in particular the fact that the matrix U is an upper-triangular matrix, the
objective function J(š) of Equation (10.19) may be reformulated as follows

J(š) = ‖U(š− x̂)‖2
= (š− x̂)HUHU(š− x̂)

=
mt∑

i=1

∣∣∣
mt∑

j=i

uij(šj − x̂j)
∣∣∣
2

=
mt∑

i=1

φi(ši), (10.20)

where J(š) and φi(ši) are positive real-valued cost and sub-cost functions, respectively. Elab-
orating a little further we have

φi(ši) =
∣∣∣
mt∑

j=i

uij(šj − x̂j)
∣∣∣
2

=
∣∣∣uii(ši − x̂i) +

mt∑

j=i+1

uij(šj − x̂j)
︸ ︷︷ ︸

ai

∣∣∣
2

. (10.21)

Note that the term ai is a complex-valued scalar, which is independent of the specific symbol
value ši of the ith element of the a priori candidate signal vector š.

Furthermore, let Ji(ši) be a Cumulative Sub-Cost (CSC) function recursively defined as

Jmt(šmt) = φmt(šmt) = |umtmt(šmt − x̂mt)|2 (10.22a)
Ji(ši) = Ji+1(ši+1) + φi(ši), i = 1, · · · ,mt−1, (10.22b)

where we define the candidate subvector as ši = [ši, · · · , šmt ]. Clearly, Ji(ši) exhibits the
following properties

J(š) = J1(š1) > J2(š2) > · · · > Jmt(šmt) > 0 (10.23a)
Ji(ši) = Ji({šj}, j = i, · · · ,mt) (10.23b)
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for all possible realisations of x̂ ∈ Cmt and š ∈ Mmt , where the space Cmt contains all
possible unconstrained MMSE estimates x̂ of the transmitted signal vector s.

Equations (10.23a) and (10.23b) enable us to employ a highly efficient reduced search
algorithm, which decreases the number of objective function evaluations of the minimisation
problem outlined in Equation (10.12) to a small fraction of the set Mmt . This reduced-
complexity search algorithm is outlined in the next section.

10.4.2 Search Strategy
Example 1 (OHRSA-ML 3x3 BPSK)

Consider a BPSK system having nr = mt = 3 transmit and receive antennas, which is
described by Equation (10.7). The transmitted signal s, the received signal y as well as the
channel matrix H of Equation (10.7) are exemplified by the following values

s =




1
−1
1


, y =




0.2
0.8
−1.2


, H =




0.5 0.4 −0.2
0.4 −0.3 0.2
0.9 1.8 −0.1


. (10.24)

Our task is to obtain the ML estimate of the transmitted signal vector s. Firstly, we evaluate
the triangular matrix U of Equation (10.13) as well as the unconstrained MMSE estimate x̂
of Equation (10.14). The resultant quantities are given by

U =




1.15 1.48 −0.10
0 1.18 −0.15
0 0 0.40


, x̂ =




0.85
−1.05
−0.01


. (10.25)

Observe that the direct slicing of the MMSE estimate x̂ will result in an erroneously decided
signal ŝ =

[
1 −1 −1

]T. Subsequently, following the philosophy outlined in Section
10.4.1, for each legitimate candidate š ∈Mmt of the mt-antenna-based composite transmit-
ted signal vector s we calculate the corresponding value of the cost function J(š) of Equation
(10.20) using the recursive method described by Equation (10.22). The search process per-
formed is illustrated in Figure 10.6(a). Each evaluation step, namely each evaluation of the
CSC function Ji(ši) of Equation (10.22b) is indicated by an elliptic node in Figure 10.6(a).
The label inside each node indicates the order of evaluation as well as the corresponding value
Ji(ši) of the CSC function inside the brackets. Furthermore, the branches corresponding to
the two legitimate values of ši = −1 and 1 are indicated using the dashed and solid edges
and nodes, respectively.

More specifically, commencing from the top of Figure 10.6(a), at recursive step i = 3 we
calculate the CSC function of Equation (10.22a) associated with all legitimate values of the
last element of the signal vector s, where we have

J3(š3 = −1) = |u33(š3 − x̂3)|2 = (0.40(−1− (−0.01)))2 = 0.15 (10.26)

and

J3(š3 = 1) = (0.40(1− (−0.01)))2 = 0.16. (10.27)
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The corresponding values of J3(š3 = −1) = 0.15 and J3(š3 = 1) = 0.16 are indicated by
the nodes 1 and 8 in Figure 10.6(a). Observe that the recursive nature of the search process
considered suggests that the latter value of J3(š3 = 1) is not considered until the entire search
branch originating from the more promising node 1 associated with the lower CSC value of
0.15 is completed. Consequently, the value J3(š3 = 1) is the 8th value of the CSC function
to be evaluated, which is indicated by the corresponding node’s index 8.

Furthermore, at recursive step i = 2 for each hypothesised value š3 we calculate both the
quantity a2 of Equation (10.21) as well as the sub-cost function of Equation (10.21) and the
corresponding CSC function of Equation (10.22b) associated with all legitimate values of the
last-but-one element of the signal vector s. Explicitly, for š3 = −1 we have

a2 = u23(š3 − x̂3) = −0.15(−1− (−0.01)) = 0.15 (10.28)

and

J2(š2 = −1, š3 = −1) = J3(š3 = −1) + φ2(š2 = −1, š3 = −1)

= J3(š3 = −1) + |u22(š2 − x̂2)) + a2|2
= 0.15 + (1.18(−1− (−1.05)) + 0.15) = 0.20

J2(š2 = 1, š3 = −1) = J3(š3 = −1) + φ2(š2 = 1, š3 = −1)
= 0.15 + (1.18(1− (−1.05)) + 0.15) = 6.79. (10.29)

The corresponding values of J2(š2 = [−1,−1]) = 0.20 and J2(š2 = [1,−1]) = 6.79 are
indicated by the nodes 2 and 5 in Figure 10.6(a).

Finally, at recursive index i = 1 we calculate the quantity a1(š2) for each hypothesised
subvector š2 and the sub-cost function φ1(š1) of Equation (10.21) as well as the correspond-
ing total cost function J(š1 = −1, š2) and J(š1 = 1, š2) of Equation (10.20) associated with
all legitimate values of the first element of the signal vector s. Specifically, for the left-most
search branch of Figure 10.6(a) corresponding to the a priori candidate š2 = [−1,−1] we
have

a1 = u12(š2 − x̂2) + u13(š3 − x̂3)
= 1.48(−1−−1.05) +−0.10(−1−−0.01) = 0.17 (10.30)

and

J1(š1 = −1, š2 = −1, š3 = −1)
= J2(š2 = −1, š3 = −1) + φ1(š1 = −1, š2 = −1, š3 = −1)

= J2(š2 = −1, š3 = −1) + |u11(š1 − x̂1)) + a1|2
= 0.20 + (1.15(−1− 0.85) + 0.17) = 4.03,

J1(š1 = 1, š2 = −1, š3 = 1)
= J2(š2 = −1, š3 = −1) + φ2(š1 = 1, š2 = −1, š3 = −1)
= 0.20 + (1.15(1− 0.85) + 0.17) = 0.31. (10.31)
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Upon completing the entire search process outlined above we arrive at eight different val-
ues of the total cost function J(š) associated with the eight legitimate 3-bit solutions of the
detection problem considered. The eight different candidate solutions are indicated by the
eight bottom-most elliptic nodes in Figure 10.6(a). Clearly, the ML solution is constituted by
the search branch terminating at node 11 of Figure 10.6(a) and having the minimum value
J(š) = 0.19 of the total cost function.

Observe that the difference between the values of J3(š3 = −1) and J3(š3 = 1) associated
with nodes 1 and 8 in Figure 10.6(a) is quite small and thus the ML solution along either of
the search branches commencing at nodes 1 and 8 in Figure 10.6(a) may not be recognised
with a high degree of confidence. On the other hand, the difference between the values of
the CSC function along two complementary search branches commencing at nodes 1 and 8
becomes substantially more evident, if we apply the best-first detection strategy suggested
in [373]. More specifically, we sort the columns of the channel matrix H in the increasing
order of their Euclidean or square norm. The resultant reordered channel matrix H′ as well
as the corresponding triangular matrix U and the unconstrained MMSE estimate x̂′ may be
expressed as

H′ =



−0.2 0.5 0.4
0.2 0.4 −0.3
−0.1 0.9 1.8


, U′ =




0.44 −0.25 −0.73
0 1.12 1.35
0 0 1.11


, x̂′ =



−0.01
0.85
−1.05


.

(10.32)

The search tree generated by applying the aforementioned search process and using the mod-
ified quantities H′,U′ and x̂′ is depicted in Figure 10.6(b). Note the substantial difference
between the values of the CSC function J3(š3 = −1) and J3(š3 = 1) associated with the
nodes 1 and 8. Moreover, by comparing the value of the CSC function J3(š3) of node 8 to
that of the total cost function J(š) of node 7 we can conclude that the search along the branch
commencing at node 8 is in fact redundant.

In order to further optimise our search process, at recursive steps of i = 3 and 2 we first
calculate the sub-cost functions φ3(š3 = {−1, 1}) and φ2(š3, š2 = {−1, 1}) of Equation
(10.21). We then compare the values obtained and continue with the processing of the spe-
cific search branch corresponding to the smaller value of the sub-cost function φi(ši) first.
The resultant search tree is depicted in Figure 10.6(c). Observe that in Figure 10.6(c) the
minimum value of the total cost function J(š) = 0.19 is obtained faster, namely in three
evaluation steps in comparison to seven steps required by the search tree of Figure 10.6(b).

Finally, we discard all the search branches commencing at nodes having an associated
value of the CSC function, which is in excess of the minimum total cost function value
obtained. Specifically, we discontinue the search branches commencing at nodes 5 and 8
having the CSC function values in excess of 0.19, namely 4.03 and 5.15, respectively. The
resultant reduced search tree is depicted in Figure 10.6(d). Note that the ML solution is
obtained in six evaluation steps in comparison to the 14 steps required in the case of the
exhaustive search of Figure 10.6(a). In conclusion, upon performing the approprite reordering
of the obtained ML estimate, we arrive at the correct value of the transmitted signal vector
ŝ =

[
1 −1 1

]T.
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Figure 10.6: Examples of a search tree formed by the OHRSA-ML SDM detector in the scenario of a
system employing BPSK modulation, mt = nr = 3 transmit and receive antennas and
encountering average SNRs of 10dB. The labels indicate the order of evaluation, as well
as the corresponding value Ji(ši) of the CSC function of Equation (10.22), as seen in the
brackets. The dashed and solid arrows indicate the values of ši = −1 and 1, respectively.
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10.4.2.1 Generalisation of the OHRSA-ML SDM Detector

Let us now generalise and substantiate further the detection paradigm derived in Example 1.
Firstly, we commence the recursive search process with the evaluation of the CSC function
value Jmt(šmt) of Equation (10.22a). Secondly, at each recursive step i of the search algo-
rithm proposed we stipulate a series of hypotheses concerning the value of the M -ary trans-
mitted symbol si associated with the ith transmit antenna element and subsequently calculate
the conditioned sub-cost function Ji(ši) of Equation (10.22b), where ši = (ši, · · · , šmt)

T

denotes the subvector of the mt-antenna-based candidate vector š comprising only the in-
dices higher than or equal to i. Furthermore, for each tentatively assumed value of ši we
execute a successive recursive search step i − 1, which is conditioned on the hypotheses
made in all preceding recursive steps j = i, · · · ,mt. As substantiated by Equations (10.21)
and (10.22b), the value of the CSC function Ji(ši) is dependent only on the values of the el-
ements {šj}j=i,··· ,mt of the a priori candidate signal vector š, which are hypothesised from
from step j = mt up to the present step i of our recursive process. At each arrival at the
step i = 1 of the recursive process, a complete candidate vector š is hypothesised and the
corresponding value of the cost function J(š) formulated in Equation (10.20) is evaluated.

Observe that the recursive hierarchical search procedure described above may be em-
ployed to perform an exhaustive search through all possible values of the transmitted signal
vector š, and the resultant search process is guaranteed to arrive at the ML solution šML,
which minimises the value of the cost function J(š) of Equation (10.20). Fortunately how-
ever, as opposed to other ML search schemes, the search process described above can be
readily optimised, resulting in a dramatic reduction of the associated computational com-
plexity. Specifically, the potential optimisation complexity gain originates from the fact that
most of the hierarchical search branches can be discarded at an early stage of the recursive
search process. The corresponding optimisation rules proposed may be outlined as follows.

Rule 1. We reorder the system model of Equation (10.7) as suggested in [373]. Specifically,
we apply the best-first detection strategy outlined in [90, pp.754-756] , which implies that the
transmitted signal vector components are detected in the decreasing order of the associated
channel quality. As it was advocated in [90, pp.754-756] , the quality of the channel asso-
ciated with the ith element of the transmitted signal vector s is determined by the norm of
the ith column of the channel matrix H. Consequently, for the sake of applying the best-first
detection strategy, the columns of the channel matrix H are sorted in the increasing order
of their norm. Thus, the resultant, column-reordered channel matrix H complies with the
following criterion

‖(H)1‖2 ≤ ‖(H)2‖2 ≤ · · · ≤ ‖(H)mt‖2, (10.33)

where (H)i denotes the ith column of the channel matrix H. Note that the elements of the
transmitted signal vector s are reordered correspondingly, but their original order has to be
reinstated in the final stage of the detection process.

Rule 2. At each recursive detection step i = mt, ·, 1, the potential candidate values
{cm}m=1,··· ,M ∈M of the transmitted signal component si are considered in the increasing
order of the corresponding value of the sub-cost function φi(ši) = φi(cm, ši+1) of Equation
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(10.21), where we have

φi(c1, ši+1) < · · · < φi(cm, ši+1) < · · ·φi(cM , ši+1),

and according to Equation (10.21)

φi(cm, ši+1) = |uii(cm − x̂i) + ai|2

= uii|cm − x̂i +
ai
u2
ii

|2. (10.34)

Consequently, the more likely candidates cm of the ith element of the transmitted signal
vector s are examined first. Observe that the sorting criterion of Equation (10.34) may also
be interpreted as a biased Euclidean distance of the candidate constellation point cm from the
unconstrained MMSE estimate x̂i of the transmitted signal component si.

Rule 3. We define a cut-off value of the cost fuction Jmin = min{J(š)} as the minimum
value of the total cost function obtained up to the present point of the search process. Conse-
quently, at each arrival at step i = 1 of the recursive search process, the cut-off value of the
cost function is updated as follows

Jmin = min{Jmin, J(š)} (10.35)

Rule 4. Finally, at each recursive detection step i, only the high probability search branches
corresponding to the highly likely symbol candidates cm resulting in a value of the CSC
function obeying Ji(cm) < Jmin are pursued. Furthermore, as follows from the sorting
criterion of the optimisation Rule 2, as soon as the inequality Ji(cm) > Jmin is encountered,
the search loop at the ith detection step is discontinued.

An example of the search tree generated by the algorithm invoking the Rules 1-4 de-
scribed above is depicted in Figure 10.7. The search trees shown correspond to the scenario
of using QPSK modulation and employing mt = nr = 8 antenna elements at both the
transmitter and the receiver. Encountering the average SNRs of (a) 10 and (b) 20 dB was
considered. Each step of the search procedure is depicted as an ellipsoidal-shaped node. The
label associated with each node indicates the order of visitation, as well as the corresponding
value of the CSC function Ji(ši) formulated in Equation (10.22), as seen in the brackets.
As suggested by the fact that QPSK modulation is considered, at each recursive step i, four
legitimate search branches are possible. However, as can be seen in Figure 10.7(a), only a
small fraction of the potential search branches are actually pursued. Observe that the rate of
convergence of the algorithm proposed is particularly rapid at high values of SNR. In the case
of encountering low SNR values, the convergence rate decreases. Nevertheless, the associ-
ated computational complexity is dramatically lower than that associated with an exhaustive
ML search.

The pseudo-code summarising the recursive implementation of the OHRSA-based ML
SDM detector proposed is depicted in Algorithm 3.
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Figure 10.7: Examples of a search tree formed by the OHRSA-ML SDM detector in the scenario of a
system employing QPSK modulation, mt = nr = 8 transmit and receive antennas and
encountering average SNRs of (a) 10dB and (b) 20dB. The labels indicate the order of vis-
itation, as well as the corresponding value Ji(ši) of the CSC function of Equation (10.22),
as seen in the brackets. The ML solution is attained in (a) 41 and (b) 16 evaluation steps
in comparison to the 48 = 65536 evaluation steps required in the case of the exhaustive
ML search.

10.4.3 Bitwise OHRSA ML SDM Detection
Example 2 (OHRSA-ML QPSK 2x2)

Let us now consider a QPSK system having nr = mt = 3 transmit and receive antennas,
which is described by Equation (10.7). The transmitted signal s, the received signal y as
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Algorithm 3 OH-RSA-aided ML SDM Detector

Sort{H}, such that ‖(H)1‖2 ≤ · · · ≤ ‖(H)mt‖2 (10.36a)

G = (HHH + σ2
wI) (10.36b)

U = CholeskyDecomposition(G) (10.36c)

x̂ = G−1HHy (10.36d)
Calculate Jmt (10.36e)
Unsort{ŝ} (10.36f)

function Calculate Ji(ši) (10.36g)

ai =
mt∑

j=i+1

uij(šj − x̂j) (10.36h)

Sort{cm}, such that φi(c1) < · · · < φi(cM ), (10.36i)

where φi(cm) = |uii(cm − x̂i) + ai|2 (10.36j)
for m = 1, 2, . . . ,M do

ši = cm (10.36k)
Ji(ši) = Ji+1(ši+1) + φi(ši) (10.36l)
if Ji(ši) < Jmin then (10.36m)
if i > 0 then Calculate Ji−1 (10.36n)
else

Jmin = J(š) (10.36o)
ŝ = š (10.36p)

end if

end if

end for

end function

well as the best-first reordered channel matrix H of Equation (10.7) are exemplified by the
following values

s =
[

1− 1
−1− 1

]
, y =

[
0.2 + 1.1
1.4 + 1.7

]
,

H =
[

0.1− 0.2 −0.7− 0.6
0.3 + 0.4 −1.3− 0.5

]
. (10.37)

As before, our task is to obtain the ML estimate of the transmitted signal vector s. Firstly, we
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apply the OHRSA-ML method of Algorithm 3.
As suggested by Algorithm 3, we commence the detection process by evaluating the

quantities U and x̂ of Equations (10.36c) and (10.36d) respectively, which yields

U =
[

0.63 −0.85 + 0.27
0 1.45

]
, x̂ =

[
0.43− 0.34
−1.10− 0.79

]
. (10.38)

Furthermore, we proceed by calculating four values of the CSC function J2(š2 = cm), m =
1, · · · , 4 of Equation (10.36l) associated with the four different points cm of the QPSK con-
stellation. For instance, we have

J2(š2 = −1− 1) = φ2(š2 = −1− 1) = |u22(š2 − x̂2)|2
= |1.45(−1− 1− (−1.10− 0.79))|2 = 0.12. (10.39)

Subsequently, four QPSK symbol candidates cm are sorted in the order of increasing sub-cost
function φ2(cm), as described by Equation (10.36i) of Algorithm 3. For each hypothesised
symbol value š2 = cm we can now obtain four values of the total cost function J(š) =
J1(š1, š2) of Equation (10.36l) associated with four legitimate values of š1 = cm. For
instance, we have

J(š1 = 1− 1, š2 = −1− 1)
= J2(š2 = −1− 1) + φ1(š1 = 1− 1, š2 = −1− 1)

= J2(š2 = −1− 1) + |u11(š1 − x̂1)) + a1|2
= 0.12 + |0.63[1− 1− (0.43− 0.34)] + (−0.03 + 0.21)|2 = 0.27, (10.40)

where the quantity a1 is given by Equation (10.36h) of Algorithm 3 as follows

a1(š2 = −1− 1) = u12(š2 − x̂2)
= (−0.85 + 0.27)[−1− 1− (−1.10− 0.79)] = −0.03 + 0.21. (10.41)

As further detailed in Algorithm 3, we calculate the values of the total cost function J(š1, š2)
only for the specific hypothesis š2, for which the value of the CSC function J2(š2) is lower
than the minimum value Jmin obtained.

The resultant search tree is depicted in Figure 10.8(a), where as before, each evaluation
step, namely each evaluation of the CSC function Ji(ši) of Equation (10.36l) is indicated by
an elliptic node. Moreover, the label inside each node indicates the order of evaluation as
well as the corresponding value Ji(ši) of the CSC function inside the brackets. The branches
corresponding to four legitimate values of the QPSK symbol are indicated by the specific
type of the edges and nodes. Specifically, the gray and black lines indicate the value of the
real part of the QPSK symbol R{ši} = −1 and 1, while the dashed and solid lines indicate
the value of the imaginary part I{ši} = −1 and 1.

Example 3 (Bitwise OHRSA-ML QPSK 2x2)

Let us consider a QPSK system identical to that described in Example 2 and attempt to derive
an alternative way of finding the ML estimate of the transmitted signal vector s using the
bit-based representation of the QPSK symbols. In order to describe this bit-based multi-user
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phasor constellation, let us develop a matrix- and vector-based mathematical model. Firstly,
observe that each point of the QPSK constellation cm ∈ M may be represented as the inner
product cm = qTdm of a unique bit-based vector dm = [dm1, dm2]T, dml = {−1, 1} and
the vector q = [1, 1]T. For instance we have

c1 = −1− 1 = qTd1 =
[

1 1
] ·

[ −1
−1

]
. (10.42)

Furthermore, let us define a (4× 2)-dimensional matrix

Q = I⊗ q =
[

1 1 0 0
0 0 1 1

]
, (10.43)

where I is (2 × 2)-dimensional identity matrix, while ⊗ denotes the matrix direct product
[374]. Consequently, the QPSK-modulated signal vector s may be represented as

s =
[

1− 1
−1− 1

]
= Qt =

[
1 1 0 0
0 0 1 1

]



1
−1
−1
−1


, (10.44)

where t = [tT1, t
T
2]T is a column supervector comprising the two bit-based vectors t1 and t2

associated with the QPSK-modulated symbols s1 and s2, respectively.
Substituting Equation (10.44) into the system model of Equation (10.7) yields

y = HQt + w. (10.45)

Moreover, since t is a real-valued vector, we can elaborate a bit further and deduce a real-
valued system model as follows

[ R{y}
I{y}

]
=

[ R{HQ}
I{HQ}

]
t +

[ R{w}
I{w}

]
= H̃t + w̃, (10.46)

where H̃ is a real-valued (4×4)-dimensional bitwise channel matrix, which may be expressed
as

H̃ =
[ R{HQ}
I{HQ}

]
=




0.1 0.2 −0.7 0.6
0.3 −0.4 −1.3 0.5
−0.2 0.1 −0.6 −0.7
0.4 0.3 −0.5 −1.3


. (10.47)

Thus, we arrive at the new system model of Equation (10.46), which may be interpreted as a
(4 × 4)-dimensional BPSK-modulated SDM system. By applying the OHRSA-ML method
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of Algorithm 3 we have

U =




0.63 0 −0.85 −0.27
0 0.63 0.27 −0.85
0 0 1.45 0
0 0 0 1.45


, x̂ =




0.43
−0.34
−1.10
−0.79


. (10.48)

Furthermore, the first two steps of the recursive search process of Algorithm 3 are given by

J4(ť4 = −1) = |u44(ť4 − x̂4)|2
= |1.45(−1− (−0.79))|2 = 0.10 (10.49)

and

a3(ť4 = −1) = u34(ť4 − x̂4)
= 0(−1− (−0.79)) = 0,

J3(ť3 = −1, ť4 = −1) = |u33(ť3 − x̂3) + a3|2
= |1.45(−1− (−1.10)) + (0)|2 = 0.12. (10.50)

Upon completing the recursive search process of Algorithm 3 we arrive at the search tree
depicted in Figure 10.8(b). As before, each evaluation step, namely each evaluation of the
CSC function Ji(ťi) of Equation (10.36l) is indicated by an elliptic node. Moreover, the label
inside each node indicates the order of evaluation as well as the corresponding value Ji(ťi)
of the CSC function inside the brackets. The branches corresponding to two legitimate values
ťi = −1 and 1 are indicated using the dashed and solid edges and nodes, respectively.

Observe that the ML estimates ŝ and t̂ of Figures 10.8 (a) and (b) are obtained within
the same number of evaluation steps. Nevertheless, the latter search procedure is consti-
tuted by lower-complexity real-valued operations. Furthermore, in contrast to the detection
method considered in Example 2, the search method outlined in this QPSK-based example
can be readily generalised for the scenario of M -QAM SDM systems, as demonstrated in the
forthcoming section.
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Figure 10.8: Examples of a search tree formed by the (a) OHRSA-ML and (b) BW-OHRSA-ML SDM
detectors in the scenario of a system employing QPSK modulation,mt = nr = 3 transmit
and receive antennas and encountering average SNRs of 10dB. The labels indicate the
order of execution, as well as the corresponding value Ji(ši) of the CSC function of
Equation (10.22), as seen in the brackets.
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10.4.3.1 Generalisation of the BW-OHRSA-ML SDM Detector

In this section we generalise the result obtained in Section 10.4.1 to the case of systems
employing hyper-rectangular modulation schemes, namely M -QAM, where each modulated
symbol belongs to a discrete phasor constellation M = {cm}m=1,··· ,M . It is evident that
each phasor point cm of an M -QAM constellation map may be represented as the inner
product of a unique bit-based vector dm = {dml = −1, 1}l=1,··· ,b and the corresponding
quantisation vector q. Specifically, we have

cm = qTdm. (10.51)

Some examples of quantisation vectors corresponding to the modulation schemes of QPSK,
16-QAM and 64-QAM are portrayed in Table 10.2.

Table 10.2: Examples of quantization vectors.

Modulation scheme qT

BPSK [1]
QPSK 1√

2
[1, ]

16QAM 1√
10

[1, 1, 2, 2]
64QAM 1√

42
[1, 1, 2, 2, 4, 4]

Furthermore, we define a (bmt×mt)-dimensional quantisation matrix Q = I⊗q, where I
is an (mt×mt)-dimensional identity matrix and q is the aforementioned quantisation vector,
while ⊗ denotes the matrix direct product [374]. Consequently the M -QAM-modulated
signal vector s may be represented as

s = Qt, (10.52)

where t = [tT1, · · · , tTmt
]T is a column supervector comprising the bit-based vectors ti asso-

ciated with each transmitted signal vector component si. Substituting Equation (10.52) into
the system model of Equation (10.7) yields

y = HQt + w = H̃t + w, (10.53)

where H̃ is a (nr×bmt)-dimensional bitwise channel matrix. Observe in Equation (10.53) the
requirement of having constant-envelope symbols is satisfied by the modified system model
of Equation (10.53), since we have |ti|2 = 1 and thus the method described in Section 10.4.1
and summarised in Algorithm 3 is applicable to the evaluation of the bitwise ML estimate t̂
of Equation (10.53). Consequently, we apply the following changes to Algorithm 3:

1) Include the evaluation of the bitwise channel matrix H̃ in (10.54a) and

2) Adjust the number of candidate bit values of ti to dm = {−1, 1} in (10.54l).
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Algorithm 4 Bit-Wise OHRSA-aided ML SDM Detector

H̃ =
[ R{HQ}
I{HQ}

]
(10.54a)

Sort{H̃}, such that ‖(H̃)1‖2 ≤ · · · ≤ ‖(H̃)mt‖2 (10.54b)

G = (H̃HH̃ + σ2
wI) (10.54c)

U = CholeskyDecomposition(G) (10.54d)

x̂ = G−1H̃Hỹ (10.54e)
Calculate Jr (10.54f)

Unsort{t̂} (10.54g)

function Calculate Ji (10.54h)

ai =
mt∑

j=i+1

uij(ťj − x̂j) (10.54i)

Sort{dm}, such that φi(d0) < φi(d1), (10.54j)

where φi(bm) = |uii(dm − x̂i) + ai|2 (10.54k)
for m = 0, 1 do (10.54l)
ťi = dm (10.54m)
Ji = Ji+1 + φi(ťi) (10.54n)
if Ji < Jmin then (10.54o)
if i > 0 then Calculate Ji−1 (10.54p)
else

Jmin = J0 (10.54q)

t̂ = ť (10.54r)
end if

end if

end for

end function

Hence we arrive at a new detection technique, namely the Bitwise OHRSA-aided ML
SDM detector, which is summarised in Algorithm 4

The operation of Algorithm 4 is illustrated by the search tree diagram depicted in Figure
10.9. Each circular node in the diagram represents a subvector candidate ťi = {ťj}j=i,··· ,r
of the transmitted bit-based signal vector t. The bold and hollow nodes denote the binary
values of the bit ťi = {−1, 1} assumed in the current step of the recursive search process.
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The corresponding values of the CSC function Ji(ťi) are indicated by both the colour and
thickness of the transitions connecting each child or descendant node ťi with the correspond-
ing parent node ťi+1. The search-tree diagram depicted in Figure 10.9 corresponds to the
system scenario employing QPSK modulation, mt=nr=8 operating at the average SNR of
6 dB. Observe that the ML solution is attained in 139 evaluation steps in comparison to the
216 = 65536 evaluation steps required by the exhaustive ML search.
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Figure 10.9: Example of a search tree formed by the BW-OHRSA method of Algorithm 4 in the sce-
nario of QPSK,mt=nr=8 and an average SNR of 6 dB. Each circular node in the diagram
represents a subvector candidate ťi = {ťj}j=i,··· ,r of the transmitted bit-based signal vec-
tor t. The bold and hollow nodes denote the duo-binary values of the bit ťi = {−1, 1}
assumed. The corresponding value of the CSC function Ji(ťi) quatified in Equation
(10.23b) is indicated by both the color and the thickness of the transitions connecting
each child node ťi with the corresponding parent node ťi+1. The ML solution is attained
in 139 evaluation steps in comparison to the 216 = 65536 evaluation steps required by
the exhaustive ML search.
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10.4.4 OHRSA-aided Log-MAP SDM Detection
It is evident [90] that the BER associated with the process of communicating over a fading
noisy MIMO channel can be dramatically reduced by means of channel coding. A particu-
larly effective channel coding scheme is constituted by the soft-input soft-output turbo coding
method [216]. Turbo coding, however, requires soft information concerning the bit decisions
at the output of the SDM detector, in other words, the a posteriori soft information regarding
the confidence of the bit-decision is required.

The derivation of an expression for the low-complexity evaluation of the soft-bit informa-
tion associated with the bit estimates of the SDM detector’s output characterised by Equation
(10.11) is given in [90]. Here, we present a brief summary of the results deduced in [90].

The soft-bit value associated with the mth bit of the QAM symbol transmitted from the
ith transmit antenna element is determined by the log-likelihood function defined in [109] as

Lim = log

∑
š∈M1;mt

im
P {y|š,H}

∑
š∈M0;mt

im
P {y|š,H} , (10.55)

where we define

Mb;mt
im =

{
š = (š1, · · · , šmt)

T; šj ∈M for j 6= i, ši ∈Mb
m

}
(10.56)

andMb
m denotes the specific subset of the entire setM of modulation constellation points,

which comprises the bit value b = {0, 1} at the mth bit position.
However, the direct calculation of the accumulated a posteriori conditional probabilities

in nominator and denominator of Equation (10.55) may have an excessive complexity in
practice. Fortunately, as advocated in [90], the expression in Equation (10.55) can be closely
approximated as follows

Lim ≈ log
P

{
y|š1

im,H
}

P {y|š0
im,H}

, (10.57)

where we define

šbim = arg max
š∈Mb;mt

im

P {y|š,H} , b = 0, 1. (10.58)

As suggested by the nature of Equation (10.57), the detection process employing the objective
function determined by Equations (10.57) and (10.58) is usually referred to as Logarithmic
Maximum A Posteriori (Log-MAP) probability detector.

A practical version of the Log-MAP detector may be derived as follows. Substituting
Equation (10.10) into (10.55) yields

Lim = log

∑
š∈M1;mt

im
exp

(
− 1
σ2
w
‖y −Hš‖2

)

∑
š∈M0;mt

im
exp

(
− 1
σ2
w
‖y −Hš‖2

) . (10.59)

Note that Equation (10.59) involves summation over 2rmt−1 exponential functions. This
operation may potentially impose an excessive computational complexity for large values of
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mt and/or r. However, as demonstrated in [90], the expression in (10.59) may be closely
approximated by a substantially simpler expression, namely by

Lim ≈ 1
σ2
w

[‖y −Hš0
im‖2 − ‖y −Hš1

im‖2
]
, (10.60)

where we have

šbim = arg min
š∈Mb;mt

im

‖y −Hš‖2, b = 0, 1, (10.61)

and again, Mb;mt
im denotes the specific subset of the entire set Mmt of signal vector can-

didates associated with the modulation scheme employed, which comprises the bit value
b = {0, 1} at the mth bit position of the ith signal vector component.

The Log-MAP detector defined by Equations (10.60) and (10.61) may be applied for
the sake of obtaining the soft-bit information associated with the bitwise OHRSA ML SDM
detector derived in Section 10.4.3. Consequently, substituting the bitwise system model of
Equation (10.53) into (10.60) and (10.61) yields

Li ≈ 1
σ2
w

[
‖y − H̃ť0

i;min‖2 − ‖y − H̃ť1
i;min‖2

]
, (10.62)

where we have

ťmi;min = arg min
ť∈Dm;r

i

‖y − H̃ť‖2, b = 0, 1 (10.63)

and Dm;r
i denotes the subset of the entire set Dr of (r=mt log2M)-dimensional bitwise

vectors, which comprise the binary value ťi = dm = {−1, 1} at the ith bit position.
Furthermore, substituting the bitwise objective function of Equation (10.60) into (10.62)

yields

Li ≈ 1
σ2
w

[
J(ť0

i;min) + φ− J(ť1
i;min)− φ]

=
1
σ2
w

[
J(ť0

i;min)− J(ť1
i;min)

]
, (10.64)

where ťmi;min and the corresponding cost function value J(ťmi;min) may be obtained by apply-
ing the constrained OHRSA-aided ML detection method derived in Section 10.4.3.

Consequently, the evaluation of the bitwise Log-MAP estimates of the transmitted bitwise
signal vector t involves repetitive evaluation of 2r constrained ML estimates ťmi;min along with
the associated 2r values of the objective function J(ťmi;min).

The pseudo-code describing the implementation of the bitwise OHRSA-aided Log-MAP
SDM detector is summarised in Algorithm 5.

Clearly, the repetitive nature of the search process entailing Equations (10.65f,i-
r) in Algorithm 5 imposes a substantial increase in the associated computational
complexity. Hence, in the next section we derive an OHRSA-aided approximate
Log-MAP method, which is capable of approaching the optimum Log-MAP perfor-
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mance, while avoiding the repetitive evaluation of Equation (10.65f) in Algorithm
5 and therefore imposes considerably reduced complexity requirements.

Example 4 (OHRSA-Log-MAP BPSK 3x3)

Consider a BPSK system having nr = mt = 3 transmit and receive antennas, which is
described by Equation (10.7). The transmitted signal s, received signal y as well as the
channel matrix H of Equation (10.7) are exemplified by the following values

s =



−1
1
1


, y =




0.2
0.3
−0.5


, H =




0.1 −1 1.1
−0.2 0.7 −0.7
0.4 0.5 −0.5


. (10.66)

Observe that the channel matrix H of Equation (10.66) happens to be best-first ordered and
does not require any further reordering. Furthermore, in our scenario of BPSK modulation
the channel matrix H of Equation (10.66) is equivalent to the bitwise channel matrix H̃ of
Algorithm 5.

Subsequently, our task is to obtain the Log-MAP estimate of the transmitted signal vector
t = s. We apply the OHRSA-Log-MAP method of Algorithm 5. Firstly, we evaluate the
triangular matrix U of Equation (10.65d) as well as the unconstrained MMSE estimate x̂ of
Equation (10.65e). The resultant quantities are given by

U =




0.56 −0.07 0.09
0 1.35 −1.35
0 0 0.46


, x̂ =



−0.80
−0.01
0.13


. (10.67)

Secondly, as further suggested by Algorithm 5, for each transmitted bitwise symbol ti we cal-
culate the quantities J(ť−1

i;min) and J(ť1
i;min) corresponding to the values of the cost function

J(ť) of Equation (10.65o) associated with the constrained ML estimates of the transmitted
bitwise vector t with the ith bit-component assuming values of −1 and 1, respectively.

For instance, the cost function value J(ť−1
1;min) associated with the ML estimate of the

bitwise signal vector t constrained by bit-component value ť1 = −1 may be calculated as
follows

J3(ť3 = 1) = |u33(ť3 − x̂3)|2 = (0.46(1− (0.13)))2 = 0.16,
a2(ť3 = 1) = u23(ť3 − x̂3) = −1.35(1− (0.13)) = −1.17,

J2(ť2 = 1, ť3 = 1) = J3(ť3 = 1) + |u22(ť2 − x̂2) + a2|2
= 0.16 + |1.35(1− (−0.01)) + (−1.17)|2 = 0.20. (10.68)
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Algorithm 5 BW-OHRSA-aided LogMAP SDM Detector

H̃ =
[ R{HQ}
I{HQ}

]
(10.65a)

Sort{H̃}, such that ‖(H̃)1‖2 ≤ · · · ≤ ‖(H̃)mt‖2 (10.65b)

G = (H̃HH̃ + σ2
wI) (10.65c)

U = CholeskyDecomposition(G) (10.65d)

x̂ = G−1H̃Hỹ (10.65e)
for i = 1, · · · , r

Lim =
1
σ2
w

[
J0
i;min − J1

i;min

]
(10.65f)

end for

Unsort{Li}i=1,··· ,r (10.65g)

function Calculate Jbk;i (10.65h)

ai =
mt∑

j=i+1

uij(ťj − x̂j) (10.65i)

if i = k then

d0 = {−1, 1}b (10.65j)
else

Sort{dm = −1, 1}, (10.65k)
such that φi(d0) < φi(d1), (10.65l)

where φi(dm) = |uii(dm − x̂i) + ai|2 (10.65m)
end if

for m = 0, 1 do

ťi = dm (10.65n)
Jk;i = Jk;i+1 + φi(dm) (10.65o)
if Ji < Jmin then (10.65p)

if i > 0 then Calculate Jbk;i−1 (10.65q)

else

Jmin = Jbk;min = Jbk;0 (10.65r)

end if

end if

if i = k then break for loop

end for

end function
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Furthermore, we have

a1(ť2 = 1, ť3 = 1) = u12(ť2 − x̂2) + u13(ť3 − x̂3)
= −0.07(1− (−0.01)) + 0.09(1− (0.13)) = 0.00,

J(ť−1
1;min) = J1(ť1 = −1, ť2 = 1, ť3 = 1)

= J2(ť2 = 1, ť3 = 1) + |u11(ť1 − x̂1) + a1|2
= 0.20 + |0.56(−1− (−0.80)) + (0.00)|2 = 0.21. (10.69)

Observe that for the sake of brevity we omit the calculation of the CSC values outside the
major search branch of Algorithm 5, i. e. outside the search branch leading to the con-
strained ML estimate. The corresponding search tree formed by the evaluation of the value
of J(š−1

1;min) using Algorithm 5 is depicted in Figure 10.10(a). Furthermore, Figures 10.10
(b)-(f) illustrate the search trees formed by the search sub-processes of Algorithm 5 corre-
sponding to the remaining five values

{
J(šbi;min)

}b=−1,1

i=1,··· ,3.

Finally, upon completing the calculation of all six values
{
J(šbi;min)

}b=−1,1

i=1,··· ,3 we arrive
at the following matrix

Ĵ =
{
J(šbi;min)

}b=−1,1

i=1,··· ,3 =




0.21 1.21
0.33 0.21
0.33 0.21


, (10.70)

where the elements of the matrix Ĵ, which we refer to as Minimum Cost Function (MCF)
matrix, are defined as Ĵij = J(šbji;min). Consequently, the soft-bit vector representing the
Log-MAP estimate of the transmitted bitwise signal vector t may be expressed as

L =
1
σ2
w

[
(Ĵ)1 − (Ĵ)2

]
=



−9
1.2
1.2


, (10.71)

where (Ĵ)j denotes the jth column of the MCF matrix Ĵ defined in Equation (10.70).
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Figure 10.10: Example of search trees formed by the OHRSA-Log-MAP SDM detector of Algorithm
5 in the scenario of a system employing BPSK modulation, mt = nr = 3 transmit and
receive antennas and encountering average SNRs of 10dB. The labels indicate the order
of visitation, as well as the corresponding value Ji(ťi) of the CSC function of Equation
(10.65o), as seen in the brackets.

Example 5 (OHRSA Approximate Log-MAP BPSK 3x3)

Again, consider a BPSK system identical to that described in Example 4. Specifically, we
have a (3 × 3)-dimensional real-valued linear system described by Equation (10.7) with the
corresponding transmitted signal s, the received signal y and the channel matrix H described
in Equation (10.66). In this example we would like to demonstrate an alternative search
paradigm, which avoids the repetitive process characterised by Algorithm 5 and exemplified
in Figure 10.10 of Example 4, while obtaining a similar result.
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Firstly, we apply the OHRSA-ML method of Algorithm 4. The triangular matrix U of
Equation (10.54d) as well as the unconstrained MMSE estimate x̂ of Equation (10.54e) are
similar to those evaluated in Example 4 and are characterised by Equation (10.67). The resul-
tant search process is characterised by the search tree diagram portrayed in Figure 10.11(a).

Additionally, however, we define a (3× 2)-dimensional Minimum Cost Function (MCF)
matrix Ĵ, which will be used for the evaluation of the soft-bit information, and we assign an
initial value of Ĵ = J0 1, where 1 is a (3 × 2)-dimensional matrix of ones and J0 À γ is
some large constant, which should be greater than the average SNR of γ = 10 encountered.
For instance let us assume J0 = 100. Subsequently, the cost-function-related matrix Ĵ is
updated according to a procedure to be outlined below each time when the search branch
forming the search tree portrayed in Figure 10.11(a) is terminated, regardless whether its
termination occured due to reaching the final recursive index value of i = 1, or owing to
exceeding the minimum value of the cost function Jmin. More specifically, we update the
elements of the matrix Ĵ corresponding to the bitwise symbols ťj , j = i, · · · , 3 constituting
the bitwise subvector candidate ťi associated with the particular search branch, as outlined
below

Ĵjbj = min
{
Ĵjbj , Ji(ťi)

}
, j = i, · · · , 3, ťj = {−1, 1}bj . (10.72)

For instance, upon completing the first, left-most search branch depicted in Figure 10.11(a)
and associated with the transmitted signal candidate ť =

[ −1 1 1
]T, namely upon

reaching node 3 of the search tree, the following update of the MCF matrix Ĵ is performed

Ĵ11 = min
{
Ĵ11, J(ť)

}
= min {100, 0.21} = 0.21

Ĵ22 = Ĵ32 = min {100, 0.21} = 0.21. (10.73)

Consequently, the matrix Ĵ becomes

Ĵ(3) =




0.21 100
100 0.21
100 0.21


. (10.74)

Furthermore, the states of the MCF matrix corresponding to the search steps 4, 5 and 6 of
Figure 10.11(a) are

Ĵ(4) =




0.21 1.21
100 0.21
100 0.21


, Ĵ(5) =




0.21 1.21
6.45 0.21
100 0.21


, Ĵ(6) =




0.21 1.21
6.45 0.21
0.27 0.21


.

(10.75)

Finally, by substituting the resultant value of the MCF matrix Ĵ(6) of Equation (10.75) into
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(10.71) we obtain the following soft-bit estimate of the transmitted bitwise signal vector t

La =



−9

62.39
0.60


. (10.76)

Observe that the soft-bit estimate La of Equation (10.76) appears to be considerably more
reliable than the MMSE estimate x̂ of Equation (10.67). Specifically, as opposed to the
MMSE estimate x̂ in Equation (10.25) the direct slicing of the soft-bit estimate La results in
the correct signal vector s of Equation (10.66). Moreover, the soft-bit estimate La provides
further information concerning the reliability of each estimated bit, albeit the resultant soft-bit
information of Equation (10.76) substantially deviates from the more reliable exact Log-MAP
estimate L given by Equation (10.71).

Fortunately, however, the precision of the soft-bit estimate La may be readily improved.
Specifically, we introduce an additional parameter ρ, which will allow us to control the rate
of convergence in the search process of Algorithm 4 by increasing the threshold value of
the CSC function, which controls the passage of the recursive search process through low-
likelihood search branches having CSC function values Ji(ťi) in excess of ρJmin, as opposed
to Jmin of Equation (10.54o) in Algorithm 4. Let us now execute the modified OHRSA-ML
method of Algorithm 4, where the condition Ji < Jmin of Equation (10.54o) is replaced by
the corresponding condition of Ji < ρJmin.

The search trees formed by the execution of the modified Algorithm 4 in the scenarios of
setting (b) ρ = 1.3 and (c) ρ = 2.0 are depicted in Figures 10.10 (b) and (c), respectively.
Furthermore, the convergence of the MCF matrix Ĵ as well as the resultant soft-bit estimate
L of both scenarious may be characterised as follows

(b) Ĵ(7) =




0.21 1.21
0.31 0.21
0.31 0.21


, Ĵ(8) =




0.21 1.21
0.31 0.21
0.31 0.21


, Lb =



−9
0.99
0.99


 (10.77)

and

(c) Ĵ(8) =




0.21 1.21
0.33 0.21
0.33 0.21


, Ĵ(10) =




0.21 1.21
0.33 0.21
0.33 0.21


, Lc =



−9
1.2
1.2


, (10.78)

where as before, Ĵ(n) denotes the state of the MCF matrix at search step n corresponding to
the nth node of the search tree in Figures 10.10 (b) and (c). Note that the search processes
characterised by Figures 10.10 (b) and (c) merely expand the search process portrayed in
Figure 10.10(a). Consequently, for the sake of brevity, the corresponding Equations (10.77)
and (10.78) depict only the extra states of the MCF matrix introduced by the expanded search
procedure. For instance, the states Ĵ(10) and Ĵ(8) of Equation (10.78) complement the state
Ĵ(7) of Equation (10.77), as well as the states Ĵ(6), Ĵ(5), Ĵ(4) and Ĵ(3) of Equations (10.74)
and (10.75), respectively.

Finally, by comparing the resultant soft-bit estimates La,Lb and Lc of Equations (10.76),
(10.77) and (10.78) corresponding to the scaling values of ρ = 1.0, 1.3 and 2.0 to the cor-
responding Log-MAP estimate L of Equation (10.71), we may hypothesise that the value of
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the soft-bit estimate obtained by the modified OHRSA-ML method of Algorithm 4 rapidly
converges to the Log-MAP estimate of the OHRSA-Log-MAP method of Algorithm 5 upon
increasing the value of the parameter ρ. As expected, there is a tradeoff between the accuracy
of the soft-bit information obtained and the corresponding computational complexity associ-
ated with the particular choice of ρ. In the next section we will generalise the results obtained
in this example and substantiate the aforementioned convergence-related hypothesis, as well
as deduce the optimal value of the associated scaling parameter ρ.
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Figure 10.11: Example of the search trees formed by the modified OHRSA-ML SDM detector of Al-
gorithm 4 using different values of the parameter ρ, namely, (a) ρ = 1.0, (b) 1.3 and
(c) 2.0. We consider a system employing BPSK modulation, mt = nr = 3 transmit
and receive antennas and encountering an average SNR of 10dB. The labels indicate the
order of evaluation, as well as the corresponding value Ji(ši) of the CSC function of
Equation (10.22), as seen in the brackets.
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Clearly, the repetitive nature of the search process entailing Equations (10.65f,i-r) in Al-
gorithm 5 and exemplified by Example 4 imposes a substantial increase in the associated com-
putational complexity. Hence, in the next section we derive an OHRSA-aided approximate
Log-MAP method, which is capable of approaching the optimum Log-MAP performance,
while avoiding the repetitive evaluation of Equation (10.65f) in Algorithm 5 and therefore
imposes considerably reduced complexity requirements.

10.4.5 Soft-Output OHRSA-aided Approximate Log-MAP Detection
Let us define the (r×2)-dimensional Bitwise Minimum Cost (BMC) function matrix Ĵ having
elements as follows

Ĵib = J(t̂bi ), i = 1, · · · , r, b = −1, 1, (10.79)

where t̂bi is defined by Equation (10.61). Using the BMC matrix of Equation (10.79), Equa-
tion (10.64) may also be expressed in a vectorial form as

L =
1
σ2
w

[
(Ĵ)1 − (Ĵ)2

]
, (10.80)

where, as before, (Ĵ)b denotes the bth column of the matrix Ĵ having elements defined by
Equation (10.79).

Consequently, in order to evaluate the bit-related soft information we have to populate
the BMC matrix Ĵ of Equation (10.79) with the corresponding values of the cost function of
Equation (10.79). Observe, that the evaluation of the ML estimate t̂ will situate half elements
of the cost matrix Ĵ with the corresponing minimum value of the cost function associated
with the ML estimate, such that we have

Jib = J(t̂), i = 1, · · · , r, b = t̂i. (10.81)

Subsequently, let us introduce the following adjustments to Algorithm 4. Firstly, we introduce
an additional parameter ρ, which we refer to as the search radius factor. More specifically,
the parameter ρ allows us to control the rate of convergence for the tree search process of
Algorithm 4 and affects the cut-off value of a CSC function, which limits the passage of the
recursive search process through low-likelihood search branches having the a CSC function
value Ji(ťi) in excess of ρJmin, as opposed to Jmin. Thus, the following rule replaces Rule
4 of Section 10.4.2.

Rule 4a At each recursive detection level i, only the high-probability search branches cor-
responding to the highly likely symbol candidates cm resulting in low values of the CSC
function obeying Ji(cm) < ρJmin are pursued. Furthermore, as follows from the sorting
criterion of the optimisation Rule 2, as soon as the inequality Ji(cm) > ρJmin is sutisfied,
the search loop at the ith recursive detection level is discontinued.

Secondly, we introduce an additional rule, which facilitates the evaluation of the elements
of the BMC matrix Ĵ of Equation (10.79). Explicitly, we postulate Rule 5.
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Rule 5 At each arrival at the bottom of the search tree, which corresponds to search level
1, the resultant value of the branch cost function J(ť) is utilized to populate the elements
of the BMC matrix Ĵ, which correspond to the bitwise signal components ťi comprising the
obtained signal candidate ť. Namely, we have

Ĵib = min{Ĵib, J(ť)}, i = 1, · · · , r, b = ťi. (10.82)

Subsequently, we suggest that the evaluation of the BMC matrix Ĵ, which is performed
in the process of the ML search of Algorithm 4 extended by Rule 4a and using Rule 5 will
allow us to provide reliable soft-bit information, while imposing a relatively low computa-
tional complexity. The main rationale of this assumption will be outlined in our quantitative
complexity and performance analysis portrayed in Section 10.4.5.1.

As we will further demonstrate in Section 10.4.5.1, the resultant approximate Log-MAP
SDM detector exhibits a particularly low complexity at high SNR values. On the other hand,
at low SNR values the associated complexity substantially increases. Consequently, in order
to control the computational complexity at low SNR values, we indroduce the additional
complexity-control parameter γ. Our aim is to avoid the computationally demanding and
yet inefficient detection of the specific signal components, which have their signal energy
well below the noise floor. More specifically, we modify Equation (10.54p) of Algorithm 4
according to Rule 6.

Rule 6 The branching of the tree search described by Algorithm 4 is truncated, if the
SNR associated with the corresponding signal component is lower than the value of the
complexity-control parameter γ. In other words, the search along a given branch is trun-
cated if we have ‖Hi‖2

σ2
w

< γ.
Upon applying Rules 4, 5 and 6 in the context of the OHRSA-ML method of Algorithm

4, we arrive at an approximate OHRSA-Log-MAP SDM detector, which avoids the repetitive
search required by the OHRSA-Log-MAP SDM detector of Section 10.4.4.

The resultant OHRSA-aided approximate Log-MAP SDM detector, which we refer to as
the Soft-output OPtimised HIErarchy (SOPHIE) SDM detector is summarised in Algorithm
6.
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Algorithm 6 SOPHIE Approximate Log-MAP SDM Detector

H̃ =
[ R{HQ}
I{HQ}

]
(10.83a)

Sort{H̃}, such that ‖(H̃)1‖2 ≤ · · · ≤ ‖(H̃)r‖2 (10.83b)

G = (H̃HH̃ + σ2
wI) (10.83c)

U = CholeskyDecomposition(G) (10.83d)

x̂ = G−1H̃Hỹ (10.83e)
Calculate Jr (10.83f)

L =
1
σ2
w

[
(Ĵ)0 − (Ĵ)1

]
(10.83g)

Unsort{Li}i=1,··· ,r (10.83h)

function Calculate Ji (10.83i)

ai =
mt∑

j=i+1

uij(ťj − x̂j) (10.83j)

Sort{b}, such that φi(b1) < φi(b2), (10.83k)

where φi(b) = |uii(b− x̂i) + ai|2 (10.83l)
for m = 1, 2 do (10.83m)
ťi = bm (10.83n)
Ji = Ji+1 + φi(ťi) (10.83o)
if Ji < ρJmin then (10.83p)

if i > 0 and
‖(H̃)i‖2
σ2
w

> γ then (10.83q)

Calculate Ji−1 (10.83r)
else

Jmin = min(Ji, Jmin) (10.83s)
for j = 1, · · · , r (10.83t)

Ĵjťj = min{Ĵjťj , J(ť)}, j = 1, · · · , r (10.83u)

end for (10.83v)
end if

end if

end for

end function



294 CHAPTER 10. ML ENHANCED SPHERE DECODING OF MIMO-OFDM

1
0

2
0.17

3
0.34

4
0.52

5
0.69

6
0.86

7
1.04

8
1.21

9
1.38

10
1.56

11

1.73

12
1.91

13
2.08

14
2.25

15
2.43

16
2.6

0

307

PSfrag replacements
v1

Figure 10.12: Example of a search tree formed by the SOPHIE SDM detector of Algorithm 4 in the
scenario of QPSK, mt =nr =8 and an average SNR of 6 dB. The approximate Log-
MAP solution is attained in 307 evaluation steps in comparison to 32 ·215 = 1, 048, 576
evaluation steps required by the exhaustive Log-MAP search. For more details on the
notations employed in the diagram see the caption of Figure 10.9.
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Example 6 (SOPHIE 16QAM 1x1)

In this example we would like to demonstrate two major points, namely

1) the applicability of the SOPHIE detection method of Algorithm 6 in the context of
systems employing high-throughput modulation schemes, such as M -QAM, as well as

2) the advantage of employing SOPHIE detection in the SISO M -QAM scenario.

Consider a 16-QAM SISO-OFDM system. Specifically, we have a scalar complex-valued
linear system described by Equation (10.7), where the corresponding transmitted signal s,
the received signal y and the (1 × 1)-dimensional channel matrix H are exemplified by the
values

s = −3 + 1, y = −0.57 + 4.08 and H = [0.8− 1.2]. (10.84)

Observe that the transmitted symbol s belongs to the unnormalised 16-QAM constellation
obtained by multiplying the transmitted bit-vector t to the corresponding quantisation vector
q depicted in Table 10.2. Firstly, we apply the brute-force Log-MAP QAM demodulation
technique. Namely, for each transmitted bit ti we calculate the log-likelihood ratio (LLR)
value

log
(
p(ti = 0|y,H)
p(ti = 0|y,H)

)
= log




∑
š∈M0

(
|y−Hš|2
σ2
w

)

∑
š∈M1

(
|y−Hš|2
σ2
w

)

 (10.85)

for each of the 16 legitimate signal candidates š. Then we calculate the corresponding value
of the objective function as follows

J(š) = ‖y −Hš‖2. (10.86)
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Figure 10.13: Examples of a search tree formed by the (a) OHRSA-ML and (b) BW-OHRSA-ML
SDM detectors in the scenario of a system employing QPSK modulation, mt = nr =
3 transmit and receive antennas and encountering average SNRs of 10dB. The labels
indicate the order of execution, as well as the corresponding value Ji(ši) of the CSC
function of Equation (10.22), as seen in the brackets.

10.4.5.1 Complexity Analysis.

As pointed out in [90] , “the brute-force” ML SDM detection method does not provide a
feasible solution to the generic SDM detection problem, as a result of the excessive associated
computational complexity. More explicitly, the ML SDM detector advocated in [90] has a
computational complexity, which is of the order of

CML = O{Mmt · (3nr + 2nrmt)}, (10.87)

where 3nr + 2nrmt is the complexity associated with a single search step, namely the eval-
uation of the objective function value ‖Hš − y‖2, while Mmt is the number of legitimate
candidates of the transmitted signal vector s. Clearly, the order of complexity imposed by
Equation (10.87) becomes excessive for a large number of transmit antennas, for example in
the case of employing 16QAM and mt = nr = 8 transmit and receive antennas, where
the computational complexity associated with ML detection is of the order of 107 com-
plex operations per channel use, or 109 complex operations per OFDM symbol formed by
K = 128 subcarriers. Furthermore, the evaluation of the soft-bit information required by
an efficient turbo-decoder implementation imposes a further substantial increase of the as-
sociated computational complexity. Specifically, the soft-output Log-MAP SDM detector
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advocated in [90] has a computational complexity, which is of the order of

CLM = O{mt log2M · 2mt log2M−1 · (3nr + 2nrmt)}. (10.88)

On the other hand, the MMSE SDM detector derived in [90] constitutes the low-
complexity SDM detector. The complexity imposed by the MMSE SDM detector of [90] may
be shown to be of the order of

CMMSE = O{m3
t +mtn

2
r +m2

tnr +mtnr}. (10.89)

Clearly, the MMSE SDM detector’s complexity is substantially lower than that associated
with the ML or Log-MAP SDM detectors. Specifically, for example only 1600 complex op-
erations are required for detecting 16QAM signals transmitted and received by mt = nr = 8
transmit and receive antennas. Unfortunately, however, as demonstrated in [90] , the achiev-
able performance exhibited by the linear MMSE SDM detector is considerably lower than
that attained by the optimal Log-MAP SDM detector advocated in [90] . Moreover, linear
SDM detectors, such as the MMSE detector do not allow the high-integrity detection of sig-
nals in the over-loaded scenario, where the number of the transmit antennas exceeds that of
the receive antennas.

Consequently, in Sections 10.4.3, 10.4.4 and 10.4.5 we derived a family of methods which
combine the advantageous properties of the ML and Log-MAP detection, while imposing a
substantially lower complexity. In this section we demonstrate that the computational com-
plexity associated with the SOPHIE-aided Log-MAP SDM detector of Algorithm 6 is in fact
only slightly higher than that imposed by the low-complexity MMSE SDM detector advo-
cated in [90] , while its performance is virtually identical to the performance of the Log-MAP
SDM detector [90] .

The direct calculation of the complexity associated with the OHRSA methods of Algo-
rithms 4, 5 and 6 is infeasible, since the complexity is not a constant, but rather a random
variable, which is a function of several parameters, such as the number mt and nr of transmit
and receive antennas, the average SNR encountered as well as the value of the parameter ρ
in Algorithm 6. Therefore, we perform the corresponding complexity analysis using com-
puter simulations. Figure 10.14(a) illustrates our comparison between the computational
complexity required by different SDM detection methods, namely the linear MMSE detector
advocated in [90] , the SIC detector of [90, pp.754-756] , the exhaustive search-based ML
and Log-MAP detectors of [90] as well as the OHRSA-aided ML, Log-MAP and SOPHIE
SDM detectors of Algorithms 4, 5 and 6, respectively. The results depicted in Figure 10.14(a)
correspond to the fully-loaded scenario, where we have mt = nr transmit and receive anten-
nas. Observe that the complexity associated with both the OHRSA-ML and SOPHIE SDM
detectors is only slightly higher than that imposed by the MMSE SDM detector and is in fact
lower than the complexity imposed by the SIC SDM detector.

Furthermore, the achievable performance of the SDM-OFDM system employing the dif-
ferent SDM detection methods considered is depicted in Figure 10.14(b). Observe that
both the OHRSA-Log-MAP and SOPHIE SDM detectors considerably outperform the linear
MMSE detector. Moreover, the associated BER decreases upon increasing the number of
transmit and receive antennas mt = nr, which suggests that as opposed to both the MMSE
and the SIC SDM detectors, the OHRSA-Log-MAP SDM detector is capable of achieving
spatial diversity even in the fully-loaded system. In other words, it is capable of achieving
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Figure 10.14: (a) Computational complexity quantified in terms of the total number of real multipli-
cations and additions per detected QPSK symbol and (b) the corresponding BER exhib-
ited by the rate half turbo-coded SDM-QPSK-OFDM system employing the different
SDM detection methods considered at SNR=6dB. The abscissa represents the number
mt = nr = 1, · · · , 8 of transmit and receive antenna elements. The corresponding
system parameters are summarized in Table 10.3.

both multiplexing and diversity gains simultaneously, while maintaining a low computational
complexity.

The relatively low performance of the OHRSA-ML SDM detector may be attributed to
the fact that it produces no soft-bit information and therefore the efficiency of the turbo code
employed is substantially degraded. Moreover, observe that while the SIC SDM detector
outperforms its MMSE counterpart at high SNR values [90], the achievable performance of
the two methods is fairly similar at low SNR values, such as 6dB.

Additionally, Figure 10.15 illustrates the complexity imposed by the OHRSA methods of
Algorithms 4, 5 and 6 as a function of the average SNR encountered. Figures 10.15 (a) and
(b) portray the average complexity encountered in the scenatios of mt = nr = 8 and mt =
8, nr = 4 transmit and receive antennas, respectively. Observe that the complexity associated
with both the OHRSA-ML and SOPHIE methods of Algorithms 5 and 6 is mainly determined
by the number mt of transmit antennas employed. Furthermore, the complexity associated
with the SOPHIE method closely matches that exhibited by the OHRSA-ML method at high
SNR values and the complexity exhibited by both methods is only slightly higher than the
complexity exhibited by the low-complexity MMSE SDM detector.

10.4.5.2 Performance Analysis

In this section we present our simulation results characterising the SDM-OFDM system em-
ploying the OHRSA-aided SDM detection schemes described in Section 10.4. Our simula-
tions were performed in the base-band frequency domain and the system configuration char-
acterised in Table 10.3 is to a large extent similar to that used in [361]. We assume having
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Figure 10.15: Computational complexity quantified in terms of the total number of real multipli-
cations and additions per detected QPSK symbol. We consider the OHRSA-ML,
OHRSA-Log-MAP and SOPHIE SDM detection methods of Algorithms 4, 5 and 6,
respectively. Additionally, we show the corresponding computational complexity re-
quired by the low-complexity linear MMSE SDM detector. The abscissa represents the
average SNR encountered.

Table 10.3: System parameters.

Parameter OFDM MC-CDMA
Channel bandwidth 800 kHz
Number of carriers K 128
Symbol duration T 160 µs
Max. delay spread τmax 40 µs
Channel interleaver WCDMA [375] –

248 bit
Modulation QPSK
Spreading scheme – WH
FEC Turbo code [216] , rate 1/2
component codes RSC, K=3(7,5)
code interleaver WCDMA (124 bit)

a total bandwidth of 800kHz. The OFDM system utilises 128 orthogonal subcarriers. For
forward error correction (FEC) we use 1/2-rate turbo coding [216] employing two constraint-
length K = 3 Recursive Systematic Convolutional (RSC) component codes [375]. The
octally represented RCS generator polynomials of (7,5) were used. Finally, throughout this
chapter we stipulate the assumption of perfect channel knowledge, where the knowledge of
the frequency-domain subcarrier-related coefficients H[n, k] is deemed to be available in the
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receiver. Figure 10.16 characterises the achievable performance as well as the associated
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Figure 10.16: Bit Error Rate (top) and the associated computational complexity per detected bit
(botom) exhibited by the 4 × 4 16QAM-SDM-OFDM system employing a SOPHIE
SDM detector of Algorithm 6. (a) assuming different values of parameters (a) γ and (b)
ρ. The abscissa represents the average Eb/N0 recorded at the receive antenna elements.

computational complexity exhibited by the 4 × 4 16QAM-SDM-OFDM system employing
the SOPHIE SDM detector of Algorithm 6. More specifically, we analyse the associated
performance versus complexity trade-offs of using various values of the complexity-control
parameters ρ and γ. In Figure 10.16(a) we can observe how the achievable BER performance
(top) and the corresponding computational complexity depend on the value of the parameter
γ. Using the results depicted in Figure 10.16(a) we may conclude that the optimum choice of
the complexity-control parameter γ lies in the range 0.5− 0.8, where we have a minor BER
performance degradation of less than 0.5 dB, while achieving up to two orders of magnitude
complexity reduction at low SNR values, when compared to the full-complexity SOPHIE
algorithm assuming γ = 0.

On the other hand, Figure 10.16(b) portrays both the achievable BER performance and
the associated compexity of the 4 × 4 16QAM-SDM-OFDM system for different values of
the complexity-control parameter ρ. We may conclude that the optimum trade-off between
the attainable BER performance and the associated complexity is achieved, when the value of
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the complexity-control parameter ρ lies in the range of 1.3−1.5, where the BER performance
degradation imposed does not exceed 0.5 dB, while the associated computational complexity
is reduced by more than an order of magnitude, when compared to large values of ρ, such as
for instance ρ = 2.0.

10-5

10-4

10-3

10-2

10-1

100

 0  5  10  15  20

B
E

R

Eb/N0 [dB]

sophie-8x8 : 22-Feb-2006

8x8
4QAM

16QAM
64QAM

PSfrag replacements
v1

102

103

104

105

106

107

 0  5  10  15  20

C
om

pl
ex

ity
 p

er
 b

it

Eb/N0 [dB]

sophie-8x8 : 22-Feb-2006

8x8
4QAM

16QAM
64QAM

PSfrag replacements
v1

(a)

10-5

10-4

10-3

10-2

10-1

100

 5  10  15  20  25

B
E

R

Eb/N0 [dB]

sophie-ofdm-16qam ber-ebn0 : 02-Mar-2006

16QAM
4x4
6x4
8x4

PSfrag replacements
v1

102

103

104

105

106

107

 5  10  15  20  25

C
om

pl
ex

ity
 p

er
 b

it

Eb/N0 [dB]

sophie-ofdm-16qam cmplx-ebn0 : 02-Mar-2006

16QAM
4x4
6x4
8x4

PSfrag replacements
v1

(b)

Figure 10.17: Bit Error Rate (top) and the associated computational complexity per detected bit
(botom) exhibited by the SDM-OFDM system employing a SOPHIE SDM detector
of Algorithm 6assuming different values of parameters (a) γ and (b) ρ. The abscissa
represents the average Eb/N0 recorded at the receive antenna elements.

Furthermore, Figure 10.17(a) demonstrates both the BER performance (top) and the as-
sociated computational complexity exhibited by the (8× 8) 4, 16 and 64QAM SDM-OFDM
systems employing the SOPHIE SDM detector of Algorithm 6. Figure 10.17(b) characterises
the 16QAM-SDM-OFDM system employing the SOPHIE SDM detector of Algorithm 6 and
having a constant number of nr = 4 receive antenna elements in terms of its ability to detect
the multiplexed signals arriving from various numbers of transmit antenna elements. Specifi-
cally, we aim for exploring the performance of the SOPHIE SDM detector in the overloaded
system scenario, where the number of transmit antenna elements exceeds that of the receiver
elements and thus we have mt > nr. Indeed, the BER curves portrayed in Figure 10.17 (top)
confirm the near-Log-MAP performance of the SOPHIE SDM detector of Algorithm 6 in
both systems employing high-throughput modulation schemes as well as in the overloaded
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system scenario.
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Figure 10.18: Bit Error Rate exhibited by the SDM-QPSK-OFDM system employing SOPHIE
SDM detector of Algorithm 6 in (a) fully-loaded scenario with mt = nr = 2, 4, 6
and 8 transmit and receive antennas, as well as (b) overloaded scenario with fixed num-
ber of nr = 4 receive antennas and mt = 3, 4, · · · , 8 transmit antennas. The abscissa
represents the average value of Eb/N0 recorded at the receive antenna elements and.

Figure 10.18(a) demonstrates that the SDM-OFDM system employing the SOPHIE SDM
detector of Algorithm 6 is capable of exploiting the available MIMO channel’s multiplexing
gain in the fully loaded system scenario, when the number of the transmit antenna elements
mt is equal to that of the receiver antenna elements nr. More specifically, the results depicted
in Figure 10.18(a) suggest that the SDM-OFDM SOPHIE SDM detector havingmt = nr = 8
transmit and receive antennas exhibits an SNR-related diversity gain of 2dB at the target
BER of 10−4, as well as a factor four higher throughput, when compared to the same system
employing two antennas at both the transmitter and receiver.

Additionally, Figure 10.18(b) characterises the SDM-OFDM system employing the SO-
PHIE SDM detector of Algorithm 6 and having a constant number of nr = 4 receive antenna
elements in terms of its ability to detect the multiplexed signals arriving from various num-
bers of transmit antenna elements. Specifically, we aim for exploring the performance of the
SOPHIE SDM detector in the over-loaded system scenario, where the number of transmit
antenna elements exceeds that of the receiver elements and thus we have mt > nr. We can
see that as opposed to the MMSE SDM detector [90] , the SOPHIE SDM detector exhibits
a good performance both when we have mt ≤ nr, as well as in the over-loaded system
scenario, when the number of transmit antenna elements exceeds the number of the receive
antenna elements, i.e. when we have mt > nr.
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10.5 Chapter Summary and Conclusion
In this chapter we proposed a novel OHRSA-aided SDM detection method, which may be
regarded as an advanced extension of the CSD method. The algorithm proposed extends
the potential range of applications of the CSD methods, as well as reducing the associated
computational complexity, rendering the algorithm proposed a feasible solution for imple-
mentation in high-throughput practical systems.

Furthermore, we have shown that the OHRSA-aided SDM detector proposed combines
the advantageous properties of both the optimum-performance Log-MAP SDM detector and
that of the low-complexity linear MMSE SDM detector, which renders it an attractive alter-
native for implementation in practical systems. More specifically, we have shown that the
OHRSA-aided SDM detector proposed exhibits the following advantageous properties.

The method can be employed in the over-loaded scenario, where the number of transmit
antenna elements exceeds that of the receive antenna elements, while the associated compu-
tational complexity increases only moderately even in heavily over-loaded scenarios and is
almost independent of the number of receive antennas. Furthermore, as opposed to standard
CSD schemes [176], no calculation of the sphere radius is required and therefore the method
proposed is robust to the particular choice of the initial parameters both in terms of the achiev-
able performance and the associated computational complexity. The overall computational
complexity required is only slightly higher than that imposed by the linear MMSE multi-user
detector designed for detecting a similar number of users. Specifically, the computational
complexity per detected QAM symbol associated with both the MMSE and SOPHIE SDM
detectors is of the order ofO{m3

t}, wheremt is the number of transmit antennas. Finally, the
associated computational complexity is fairly independent of the channel conditions quanti-
fied in terms of the SNR encountered.

In our future work the achievable performance of the SDM detection schemes proposed
will be explored in the presence of imperfect channel state information. More explicitly,
we will characterise and analyse the performance of a range of channel estimation methods
suitable for employment in the SDM-OFDM system considered in this chapter. Subsequently,
we will analyse the achievable performance of the SDM detection methods portrayed in this
chapter in the context of the SDM-OFDM system employing our channel estimation schemes.

Additionally, an iterative joint SDM detection and decoding scheme, which can poten-
tially approach the information-theoretic capacity bound will be designed. Furthermore, joint
iterative turbo-structured SDM detection, decoding and channel estimation methods will be
explored.



Chapter 13
Conclusion and Further Research
Problems 1

13.1 Summary and Conclusions of Part I

13.1.1 Summary of Part I
In Chapters 2 - 4 we discussed the basic implementational, algorithmic and performance
aspects of orthogonal frequency division multiplexing in predominantly duplex mobile com-
munications environments. Specifically, following a rudimentary introduction to OFDM in
Chapter 2, in Chapter 3 we further studied the structure of an OFDM modem and we inves-
tigated the problem of the high peak-to-mean power ratio observed for OFDM signals, and
that of clipping amplification caused by insufficient amplifier back-off. We investigated the
BER performance and the spectrum of the OFDM signal in the presence of clipping, and we
have seen that for an amplifier back-off of 6 dB the BER performance was indistinguishable
from the perfectly amplified case. We investigated the effects of quantisation of the time do-
main OFDM signal. The effects of phase noise on the OFDM transmission were studied, and
two-phase noise models were suggested. One model was based on white phase noise, only
relying on the integrated phase jitter, while a second model used coloured noise, which was
generated from the phase noise mask.

In Chapter 4 we studied OFDM transmissions over time-dispersive channels. The spec-
trum of the transmitted frequency domain symbols is multiplied with the channel’s frequency
domain channel transfer function, hence the amplitude and phase of the received subcarriers
are distorted. If the channel is varying significantly during each OFDM symbol’s duration,
then additional inter-subcarrier interference occurs, affecting the modem’s performance. We
have seen the importance of channel estimation on the performance of coherently detected
OFDM, and we have studied two simple pilot-based channel estimation schemes. Differen-
tially detected modulation can operate without channel estimation, but exhibits lower BER
performance than coherent detection. We have seen that the signal-to-noise ratio is not con-
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stant across the OFDM symbol’s subcarriers, and that this translates into a varying bit error
probability across the different subcarriers.

The effects of timing and frequency errors between transmitter and receiver were stud-
ied in Chapter 5. We saw that a timing error results in a phase rotation of the frequency
domain symbols, and possibly inter-OFDM-symbol interference, while a carrier frequency
error leads to inter-subcarrier interference. We suggested the introduction of a cyclic post-
amble, in order to suppress inter-OFDM-symbol interference for small timing errors, but we
saw that frequency errors higher than 5% of the subcarrier separation lead to severe perfor-
mance losses. In order to combat this, we investigated a set of frequency- and timing-error
estimation algorithms. We suggested a time domain-based joint time and frequency error
acquisition algorithm, and studied the performance of the resulting system over fading time-
dispersive channels.

Based on the findings of Chapter 4 we investigated adaptive modulation techniques to
exploit the frequency diversity of the channel. Specifically, in Chapter 6, three adaptive
modulation algorithms were proposed and their performance was investigated. The issue of
signalling was discussed, and we saw that adaptive OFDM systems require a significantly
higher amount of signalling information than adaptive serial systems. In order to limit the
amount of signalling overhead, a sub-band adaptive scheme was suggested, and the perfor-
mance trade-offs against a subcarrier-by-subcarrier adaptive scheme were discussed. Blind
modulation mode detection schemes were investigated, and combined with an error correc-
tion decoder. We saw that by combining adaptive modulation techniques with a strong con-
volutional turbo channel codec significant system throughput improvements were achieved
for low SNR values. Finally, frequency domain pre-distortion techniques were investigated
in order to pre-equalise the time-dispersive channel’s transfer function. We saw that by in-
corporating pre-distortion in adaptive modulation, significant throughput performance gains
were achieved compared to adaptive modems without pre-equalisation.

13.1.2 Conclusions of Part I
(1) Based on the implementation-oriented characterisation of OFDM modems, leading to

a real-time testbed implementation and demonstration at 34 Mbps we concluded that
OFDM is amenable to the implementation of high bit rate wireless ATM networks,
which is underlined by the recent ratification of the HIPERLAN II standard.

(2) The range of proposed joint time and frequency synchronisation algorithms efficiently
supported the operation of OFDM modems in a variety of propagation environments,
resulting in virtually no BER degradation in comparison to the perfectly synchronised
modems. For implementation in the above-mentioned 34 Mbps, real-time testbed sim-
plified versions of these algorithms were invoked.

(3) Symbol-by-symbol adaptive OFDM substantially increases the BPS throughput of the
system at the cost of moderately increased complexity. It was demonstrated in the
context of an adaptive real-time audio system that this increased modem throughput
can be translated into improved audio quality at a given channel quality.

(4) The proposed blind symbol-by-symbol adaptive OFDM modem mode detection al-
gorithms were shown to be robust against channel impairments in conjunction with
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twin-mode AOFDM. However, it was necessary to combine it with higher-complexity
channel coding based mode detection techniques, in order to maintain sufficient ro-
bustness, when using quadruple-mode AOFDM.

(5) The combination of frequency domain pre-equalisation with AOFDM resulted in fur-
ther performance benefits at the cost of a moderate increase in the peak-to-mean enve-
lope flluctuation and system complexity.

13.2 Summary and Conclusions of Part II

13.2.1 Summary of Part II
Since their initial introduction in 1993 [70, 73, 263, 264], multi-carrier spread-spectrum sys-
tems have attracted significant research interest. Existing advanced techniques originally
developed for DS-CDMA and OFDM have also been applied to MC-CDMA, while a range
of new unique techniques have been proposed for solving various problems specific to multi-
carrier CDMA systems. The first two chapters of Part II, namely Chapters 7 and 8, reviewed
the basic concepts of MC-CDMA and the various spreading sequences applicable to MC-
CDMA transmissions. Chapter 9 characterised the achievable performance of MC-CDMA
schemes employing various detectors. A number of further topics closely related to MC-
CDMA based communications were also investigated in depth.

Part II of the book concentrated on investigating the MC-CDMA scheme of [70, 71, 73],
which constitutes a specific family of the three different multi-carrier CDMA types often used
in the literature [90]. This technique was advocated, because MC-CDMA results in the lowest
BER among the three schemes investigated in a similar scenario [312]. Our investigations
concentrated on the downlink, because in the uplink stringent synchronisation of the mobile
terminals has to be met. Future research should extend the results of Chapter 6 to both multi-
carrier DS-CDMA [263] and to multi-tone (MT) CDMA [264], as well as to the family of
more sophisticated adaptive MC-CDMA schemes [300].

13.2.2 Conclusions of Part II
The main contributions and conclusions of Part II of the book emerge from Section 9.4.3,
where the performance of Space-Time (ST) block coded constant-power adaptive multi-
carrier modems employing the optimum SNR-dependent modem mode switching levels de-
rived in Chapter 12 of [90] were investigated [334, 466]. As expected, it was found that ST
block coding reduces the relative performance advantage of adaptive modulation, since it in-
creases the diversity order and eventually reduces the channel quality variations, as it can be
observed in Figure 13.1(a).Having observed that 1-Tx aided AOFDM and 2-Tx ST coding
aided fixed-mode MC-CDMA resulted in a similar BPS throughput performance, we con-
cluded that fixed-mode MC-CDMA in conjunction with 2-Tx ST coding could be employed,
provided that we could afford the associated complexity. By contrast, AOFDM could be a
low complexity alternative of counteracting the near-instantaneous channel quality varia-
tions. When turbo convolutional coding was concatenated to the ST block codes, near-error-
free transmission was achieved at the expense of halving the average throughput, as seen
in Figure 13.1(b) . Compared to the uncoded system, the turbo coded system was capable
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Figure 13.1: The BPS throughput performance of five-mode AOFDM and AMC-CDMA for commu-
nicating over the W-ATM channel [2, pp.474]. (a) The SNR gain of the adaptive modems
decreases, as the diversity of the ST coding increases. The BPS curves appear in pairs,
corresponding to AOFDM and AMC-CDMA - indicated by the thin and thick lines, re-
spectively - for each of the four different ST code configurations. The markers represent
the SNRs required by the fixed-mode OFDM and MC-CDMA schemes for maintaining
the target BER of 10−3 in conjunction with the four ST-coded schemes considered. (b)
The turbo convolutional coding assisted adaptive modems have SNR gains up to 7dB
compared to their uncoded counterparts achieving a comparable average BER.

of achieving a higher throughput in the low SNR region at the cost of a higher complexity.
Our study of the relationship between the uncoded BER and the corresponding coded BER
showed that adaptive modems obtain higher coding gains, than that of fixed modems. This
was due to the fact that the adaptive modem avoids burst errors even in deep channel fades
by reducing the number of bits per modulated symbol eventually to zero.

13.3 Summary and Conclusions of Part III

13.3.1 Near-ML Enhanced Sphere Detection of MIMO-OFDM
In Chapter 10 we proposed a novel OHRSA-aided SDM detection method, which may be
regarded as an advanced extension of the Complex Sphere Detector. The algorithm proposed
extends the potential range of applications of the CSD methods, as well as reducing the
associated computational complexity, rendering the algorithm proposed a feasible solution
for implementation in practical systems.

Furthermore, we demonstrated that the OHRSA-aided SDM detector proposed combines
the advantageous properties of both the optimum-performance Log-MAP SDM detector and
the minimum-complexity linear MMSE SDM detector, which renders it an attractive alter-
native for implementation in practical systems. More specifically, we have shown that the
OHRSA-aided SDM detector proposed exhibits the following advantageous properties.
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The method can be employed in the over-loaded scenario, where the number of transmit
antenna elements exceeds that of the receive antenna elements, while the associated compu-
tational complexity increases only moderately even in heavily overloaded scenarios and is
almost independent of the number of receive antennas. Furthermore, as opposed to standard
CSD schemes [176], no calculation of the sphere radius is required and therefore the method
proposed is robust to the particular choice of the initial parameters both in terms of the achiev-
able performance and the associated computational complexity. The overall computational
complexity required is only slightly higher than that imposed by the linear MMSE multiuser
detector designed for detecting a similar number of users. Specifically, the computational
complexity per detected QAM symbol associated with both the MMSE and SOPHIE SDM
detectors is of the order ofO{m3

t}, wheremt is the number of transmit antennas. Finally, the
associated computational complexity is fairly independent of the channel conditions quanti-
fied in terms of the SNR encountered.

In our future work the achievable performance of the SDM detection schemes proposed
will be explored in the presence of imperfect channel state information. More explicitly,
we will characterize and analyse the performance of a range of channel estimation methods
suitable for employment in the SDM-OFDM system considered in this chapter. Subsequently,
we will analyse the achievable performance of the SDM detection methods portrayed in this
chapter in the context of the SDM-OFDM system employing our channel estimation schemes.

Additionally, an iterative joint SDM detection and decoding scheme, which can poten-
tially approach the information-theoretic capacity bound will be designed. Furthermore, joint
iterative turbo-structured SDM detection, decoding and channel estimation methods will be
explored.

13.3.2 GA-Aided Joint MUD and Channel Estimation
From the investigations and discussions conducted in Chapter 11 we conclude that the pro-
posed GA-aided iterative joint channel estimation and multi-user detection scheme generating
soft outputs constitutes an effective solution to the channel estimation problem in multi-user
MIMO SDMA-OFDM systems. Furthermore, the GA-JCEMUD is capable of exhibiting a
robust performance in overloaded scenarios, where the number of users is higher than the
number of receiver antenna elements, either with or without FEC coding. This attractive
property enables the SDMA-OFDM system to potentially support an increased number of
users. Our future research will consider the design of similar downlink systems.

13.3.3 GA-Aided MBER MUD
In Chapter 12 we demonstrated that GAs may be applied in the context of an SDMA-OFDM
system for determining the MBER MUD’s weight vectors. The GA-aided system has an
edge over the conjugate gradient algorithm based system, because it does not require an ini-
tial SDMA array weight solution. Unlike the MMSE MUD of Chapter 12 in [90], the MBER
MUD is capable of supporting more users than the number of receiver antennas. It was also
shown that the GA is capable of approaching the exact MBER solution at a lower complexity
than the conjugate gradient algorithm. Our future work will aim for finding more efficient
adaptive weight optimisation algorithms in the context of LDPC-coded SDMA-OFDM sys-
tems.
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13.4 Closing Remarks
This monograph has considered a range of OFDM and MC-CDMA-related topics applicable
to both single-user and multi-user communications. However, a whole host of further re-
cent advances in the field of communications research are applicable also to OFDM. Specif-
ically, the family of classification and learning-based neural network-assisted receivers in-
vestigated in the context of conventional single-carrier systems provides a rich set of further
research topics. Partial response modulation techniques also promise performance advan-
tages in OFDM schemes. The joint optimisation of adaptive subcarrier bit-allocation and
crest-factor reduction techniques constitutes a further research challange in the context of
multi-user OFDM and MC-CDMA systems. All the above-mentioned techniques have the
potential of improving the complexity versus performance balance of the system. The design
of joint coding and modulation schemes is particularly promising in the context of OFDM
and MC-CDMA. Finally, the use of OFDM in ultra-wide band systems invoking various
frequency-hopping and multiple access techniques is likely to grow in popularity as an excit-
ing research area.

These enabling techniques along with those detailed in the book are expected to find their
way into future standards, such as the successors of the 802.11, the High Performance Local
Area Network standard known as HiPerLAN, the European Digital Audio Broadcast (DAB)
and Digital Video Broadcast (DVB) arrangements and their descendants. They are also likely
to be adopted by the standardisation bodies in future generations of personal communications
systems.

It is expected that wireless systems of the near future are likely to witness the co-
existence of space-time-coded transmit diversity arrangements and near-instantaneously
adaptive OFDM as well as MC-CDMA schemes for years to come. Intelligent learning
algorithms will configure the transceivers in the appropriate mode that ultimately provides
the best trade-off in terms of satisfying the user’s preference in the context of the service
requested [7, 215, 217].

A further advantage of the near-instantaneously adaptive OFDM and MC-CDMA
transceivers is that they allow the system to instantaneously drop its transmission rate, when
the channel quality is reduced, for example, as a consequence of the instantaneously peaking
co-channel interference. By contrast, a conventional fixed-mode transceiver would drop the
call and hence degrade both the quality of service and the network’s teletraffic capacity. The
achievable teletraffic performance of adaptive CDMA systems was documented in depth in
conjunction with adaptive antenna-assisted dynamic channel allocation schemes in [217].2

∗ ∗

Throughout this monograph we endeavoured to depict the range of contradictory system
design trade-offs associated with the conception of OFDM and MC-CDMA systems. Our

2A range of related research papers and book chapters can be found at http://www-mobile.ecs.soton.ac.uk.
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intention was to present the material in an unbiased fashion and sufficiently richly illustrated
in terms of the associated design trade-offs so that readers will be able to find recipes and
examples for solving their own particular wireless communications problems. In this rapidly
evolving field it is a challenge to complete a timely, yet self-contained treatise, since new
advances are being discovered at an accelerating pace, which the authors would like to re-
port on. Our sincere hope is that you, dear readers, have found the book a useful source of
information, but above all a catalyst for further research.



Glossary

ACF Auto-correlation Function

ACTS Advanced Communications Technologies and Services - a Eu-
ropean research programme

ADSL Asynchronous Digital Subscriber Loop

AOFDM Adaptive Orthogonal Frequency Division Multiplexing

APR A Priori

APT A Posteriori

AWGN Additive White Gaussian Noise

BER Bit-Error Ratio

BLAST Bell Labs Space-Time architecture

BPOS Bit Per OFDM Symbol

BPSK Binary Phase-Shift Keying

BS Base Station

CDF Cumulative Distribution Function

CDMA Code-Division Multiple Access

CE Channel Estimation

CIR Channel Impulse Response

DAB Digital Audio Broadcasting

DDCE Decision-Directed Channel Estimation
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DDCP Decision-Directed Channel Prediction

DFT Discrete Fourier Transform

DMUX Demultiplexer

DTTB Digital Terrestrial Television Broadcast

D-BLAST Diagonal BLAST

EM Expectation Maximisation

EVD EigenValue Decomposition

FDM Frequency Division Multiplexing

FDMA Frequency Division Multiple Access

FEC Forward Error Correction

FFT Fast Fourier Transform

FIR Finite Impulse Response

HF High-Frequency

ICI Inter-subCarrier Interference

IDFT Inverse Discrete Fourier Transform

IFFT Inverse Fast Fourier Transform

IIR Infinite Impulse Response

ISI Inter-Symbol Interference

IWHT Inverse Walsh Hadamard Transform

KLT Karhunen-Loeve Transform

LLR Log-Likelihood Ratio

LS Least-Squares

LSE Least-Squares Error

MA Multiple Access

MC Multi-Carrier

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood
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MLSE Maximum Likelihood Sequence Estimation

MMSE Minimum Mean-Square Error

MSE Mean-Square Error

MU Multi-User

MUD Multi-User Detection

MUI Multi-User Interference

MUX Multiplexer

MV Minimum Variance

MVDR Minimum Variance Distortionless Response

OFDM Orthogonal Frequency Division Multiplexing

PAPR Peak-to-Average Power Ratio

PDF Probability Density Function

PIC Parallel Interference Cancellation

PSAM Pilot Symbol Aided Modulation

PSD Power Spectral Density

PSK Phase-Shift Keying

QAM Quadrature Amplitude Modulation

QPSK Quadrature Phase-Shift Keying

RLS Recursive Least-Squares

RNS Residue Number System

SB Subband

SDM Space Division Multiplexing

SDMA Space Division Multiple Access

SDI Selective Decision Insertion

SER Symbol Error Ratio

SIC Successive Interference Cancellation

SINR Signal-to-Interference-plus-Noise Ratio
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SIR Signal-to-Interference Ratio

SMI Sample Matrix Inversion

SNR Signal-to-Noise Ratio

STC Space-Time Coding

SVD Singular-Value Decomposition

TCM Trellis-Coded Modulation

TDD Time-Division Duplexing

TDMA Time-Division Multiple Access

TTCM Turbo-Trellis Coded Modulation

V-BLAST Vertical BLAST

WATM Wireless Asynchronous Transfer Mode

WHT Walsh-Hadamard Transform

WHTS Walsh-Hadamard Transform Spreading

ZF Zero-Forcing

1D One-Dimensional

2D Two-Dimensional
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