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Preface and Motivation
The Speech Coding Scene

Despite the emergence of sophisticated high-rate multimedia services, voice communications
remain the predominant means of human communications, although the compressed voice
signals may be delivered via the Internet. The large-scale,pervasive introduction of wireless
Internet services is likely to promote the unified transmission of both voice and data signals
using the Voice over Internet Protocol (VoIP) even in the third - generation (3G) wireless
systems, despite wasting much of the valuable frequency resources for the transmission of
packet headers. Even when the predicted surge of wireless data and Internet services becomes
a reality, voice remains the most natural means of human communications, although this may
be delivered via the Internet.

This book is dedicated to audio and voice compression issues, although the aspects of error
resilience, coding delay, implementational complexity and bitrate are also at the centre of our
discussions, characterising many different speech codecsincorported in source-sensitivity
matched wireless transceivers. A unique feature of the bookis that it also provides cutting-
edge turbo-transceiver-aided research-oriented design examples and an a chapter on the VoIP
protocol.

Here we attempt a rudimentary comparison of some of the codecschemes treated in the
book in terms of their speech quality and bitrate, in order toprovide a road map for the reader
with reference to Cox’s work [1, 2]. The formally evaluated Mean Opinion Score (MOS)
values of the various codecs portrayed in the book are shown in Figure 1.

Observe in the figure that over the years a range of speech codecs have emerged, which
attained the quality of the 64 kbps G.711 PCM speech codec, although at the cost of signifi-
cantly increased coding delay and implementational complexity. The 8 kbps G.729 codec is
the most recent addition to this range of the International Telecommunications Union’s (ITU)
standard schemes, which significantly outperforms all previous standard ITU codecs in ro-
bustness terms. The performance target of the 4 kbps ITU codec (ITU4) is also to maintain
this impressive set of specifications. The family of codecs designed for various mobile radio
systems - such as the 13 kbps Regular Pulse Excited (RPE) scheme of the Global System of
Mobile communications known as GSM, the 7.95 kbps IS-54, andthe IS-95 Pan-American
schemes, the 6.7 kbps Japanese Digital Cellular (JDC) and 3.45 kbps half-rate JDC arrange-
ment (JDC/2) - exhibits slightly lower MOS values than the ITU codecs. Let us now consider
the subjective quality of these schemes in a little more depth.

The 2.4 kbps US Department of Defence Federal Standard codecknown as FS-1015 is the
only vocoder in this group and it has a rather synthetic speech quality, associated with the low-
est subjective assessment in the figure. The 64 kbps G.711 PCMcodec and the G.726/G.727
Adaptive Differential PCM (ADPCM) schemes are waveform codecs. They exhibit a low im-

1
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plementational complexity associated with a modest bitrate economy. The remaining codecs
belong to the so-called hybrid coding family and achieve significant bitrate economies at the
cost of increased complexity and delay.

Excellent

Good
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Poor

MOS

2 4 8 16 32 64 128

bit rate (kb/s)

PCM

G.711G.726
G.728
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G.729
G.723ITU4
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New Research
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Delay

Figure 1: Subjective speech quality of various codecs [1]c©IEEE, 1996

Specifically, the 16 kbps G.728 backward-adaptive scheme maintains a similar speech
quality to the 32 and 64 kbps waveform codecs, while also maintaining an impressively low,
2 ms delay. This scheme was standardised during the early nineties. The similar-quality, but
significantly more robust 8 kbps G.729 codec was approved in March 1996 by the ITU. Its
standardisation overlapped with the G.723.1 codec developments. The G.723.1 codec’s 6.4
kbps mode maintains a speech quality similar to the G.711, G.726, G.727, G.728 and G.728
codecs, while its 5.3 kbps mode exhibits a speech quality similar to the cellular speech codecs
of the late eighties. The standardisation of a 4 kbps ITU scheme, which we refer to here as
ITU4 is also a desirable design goal at the time of writing.

In parallel to the ITU’s standardisation activities a rangeof speech coding standards have
been proposed for regional cellular mobile systems. The standardisation of the 13 kbps RPE-
LTP full-rate GSM (GSM-FR) codec dates back to the second half of the eighties, represent-
ing the first standard hybrid codec. Its complexity is significantly lower than that of the more
recent Code Excited Linear Predictive (CELP) based codecs.Observe in the figure that there
is also a similar-rate Enhanced Full-Rate GSM codec (GSM-EFR), which matches the speech
quality of the G.729 and G.728 schemes. The original GSM-FR codec’s development was
followed a little later by the release of the 7.95 kbps VectorSum Excited Linear Predictive
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(VSELP) IS-54 American cellular standard. Due to advances in the field the 7.95 kbps IS-54
codec achieved a similar subjective speech quality to the 13kbps GSM-FR scheme. The
definition of the 6.7 kbps Japanese JDC VSELP codec was almostcoincident with that of the
IS-54 arrangement. This codec development was also followed by a half-rate standardisation
process, leading to the 3.2 kbps Pitch-Synchroneous Innovation CELP (PSI-CELP) scheme.

The IS-95 Pan-American CDMA system also has its own standardised CELP-based speech
codec, which is a variable-rate scheme, supporting bitrates between 1.2 and 14.4 kbps, de-
pending on the prevalent voice activity. The perceived speech quality of these cellular speech
codecs contrived mainly during the late eighties was found subjectively similar to each other
under the perfect channel conditions of Figure 1. Lastly, the 5.6 kbps half-rate GSM codec
(GSM-HR) also met its specification in terms of achieving a similar speech quality to the
13 kbps original GSM-FR arrangements, although at the cost of quadruple complexity and
higher latency.

Recently the advantages of intelligent multimode speech terminals (IMT), which can re-
configure themselves in a number of different bitrate, quality and robustness modes attracted
substantial research attention in the community, which ledto the standardisation of the High-
Speed Downlink Packet Access (HSDPA) mode of the 3G wirelesssystems. The HSDPA-
style transceivers employ both adaptive modulation and adaptive channel coding, which re-
sult in a channel-quality dependent bit-rate fluctuation, hence requiring reconfigurable multi-
mode voice and audio codecs, such as the Advanced Multi-Ratecodec referred to as the AMR
scheme. Following the standardisation of the narrowband AMR codec, the wideband AMR
scheme referred to as the AMR-WB arrangement and encoding the0 - 7 KHz band was also
developed, which will also be characterised in the book. Finally, the most recent AMR codec,
namely the so-called AMR-WB+ scheme will also be the subject of our discussions.

Rcent research on sub-2.4 kbps speech codecs is also coveredextensively in the book,
where the aspects of auditory masking become more dominant.Finally, since the classic
G.722 subband-ADPCM based wideband codec has become obsolete in the light of exciting
new developments in compression, the most recent trend is toconsider wideband speech and
audio codecs, providing susbtantially enhanced speech quality. Motivated by early seminal
work on transform-domain or frequency-domain based compression by Noll and his col-
leagues, in this field the wideband G.721.1 codec - which can be programmed to operate
between 10 kbps and 32 kbps and hence lends itself to employment in HSDPA-style near-
instantaneously adaptive wireless communicators - is the most attractive candidate. This
codec is portrayed in the context of a sophisticated burst-by-burst adaptive wideband turbo-
coded Orthogonal Frequency Division Multiplex (OFDM) IMT in the book. This scheme is
also capable of transmitting high-quality audio signals, behaving essentially as a high-quality
waveform codec.

Mile-stones in Speech Coding History

Over the years a range of excellent monographs and text bookshave been published, char-
acterising the state-of-the-art at its various stages of development and constituting significant
mile-stones. The first major development in the history of speech compression can be con-
sidered the invention of the vocoder, dating back to as earlyas 1939. Delta modulation was
contrived in 1952 and later it became well established following Steele’s monograph on the
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topic in 1975 [3]. Pulse Coded Modulation (PCM) was first documented in detail in Cat-
termole’s classic contribution in 1969 [4]. However, it wasrealised in 1967 that predictive
coding provides advantages over memory-less coding techniques, such as PCM. Predictive
techniques were analysed in depth by Markel and Gray in their1976 classic treatise [5]. This
was shortly followed by the often cited reference [6] by Rabiner and Schafer. Also Lindblom
and Ohman contributed a book in 1979 on speech communicationresearch [7].

The foundations of auditory theory were layed down as early as 1970 by Tobias [8], but
these principles were not exploited to their full potentialuntil the invention of the analysis by
synthesis (AbS) codecs, which were heralded by Atal’s multi-pulse excited codec in the early
eighties [9]. The waveform coding of speech and video signals has been comprehensively
documented by Jayant and Noll in their 1984 monograph [10]. During the eighties the speech
codec developments were fuelled by the emergence of mobile radio systems, where spectrum
was a scarce resource, potentially doubling the number of subscribers and hence the revenue,
if the bitrate could be halved.

The RPE principle - as a relatively low-complexity analysisby synthesis technique - was
proposed by Kroon, Deprettere and Sluyter in 1986 [11], which was followed by further re-
search conducted by Vary [12,13] and his colleagues at PKI inGermany and IBM in France,
leading to the 13 kbps Pan-European GSM codec. This was the first standardised AbS speech
codec, which also employed long-term prediction (LTP), recognising the important role the
pitch determination plays in efficient speech compression [14, 15]. It was in this era, when
Atal and Schroeder invented the Code Excited Linear Predictive (CELP) principle [16], lead-
ing to perhaps the most productive period in the history of speech coding during the eighties.
Some of these developments were also summarised for exampleby O’Shaughnessy [17],
Papamichalis [18], Deller, Proakis and Hansen [19].

It was during this era that the importance of speech perception and acoustic phonetics [20]
was duly recognised for example in the monograph by Lieberman and Blumstein. A range
of associated speech quality measures were summarised by Quackenbush, Barnwell III and
Clements [21]. Nearly concomitantly Furui also published abook related to speech process-
ing [22]. This period witnessed the appearance of many of thespeech codecs seen in Figure 1,
which found applications in the emerging global mobile radio systems, such as IS-54, JDC,
etc. These codecs were typically associated with source-sensitivity matched error protection,
where for example Steele, Sundberg and Wong [23–26] have provided early insights on the
topic. Further sophisticated solutions were suggested forexample by Hagenauer [27].

Both the narrow-band and wide-band AMR, as wello as the AMR-WB+ (AMR) codecs [28,
29] are capable of adaptively adjusting their bitrate. Thisalso allows the user to adjust the
ratio between the speech bit rate and the channel coding bit rate constituting the error protec-
tion oriented redundancy according to the prevalent near-instantaneous channel conditions in
HSDPA-style transceivers. When the channel quality is inferior, the speech encoder operates
at low bit rates, thus accommodating more powerful forward error control within the total bit
rate budget. By contrast, under high-quality channel conditions the speech encoder may ben-
efit from using the total bit rate budget, yielding high speech quality, since in this high-rate
case low redundancy error protection is sufficient. Thus, the AMR concept allows the system
to operate in an error-resilient mode under poor channel conditions, while benefitting from a
better speech quality under good channel conditions. Hence, the source coding scheme must
be designed for seamless switching between rates availablewithout annoying artifacts.
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Overview of MPEG-4 Audio

The Moving Picture Experts Group (MPEG) was first established by the International Stan-
dard Organisation (ISO) in 1988 with the aim of developing a full audio-visual coding stan-
dard referred to as MPEG-1 [30–32]. The audio-related section MPEG-1 was designed to
encode digital stereo sound at a total bit rate of 1.4 to 1.5 Mbps - depending on the sampling
frequency, which was 44.1 kHz or 48 kHz - down to a few hundred kilobits per second [33].
The MPEG-1 standard is structured in layers, from Layer I to III. The higher layers achieve
a higher compression ratio, albeit at an increased complexity. Layer I achieves perceptual
transparency, i.e. subjective equivalence with the uncompressed original audio signal at 384
kbit/s, while Layer II and III achieve a similar subjective quality at 256 kbit/s and 192 kbit/s,
respectively [34–38].

MPEG-1 was approved in November 1992 and its Layer I and II versions were immediately
employed in practical systems. However, the MPEG Audio Layer III, MP3 for short only be-
came a practical reality a few years later, when multimedia PCs were introduced having im-
proved processing capabilities and the emerging Internet sparked off a proliferation of MP3
compressed teletraffic. This changed the face of the music world and its distribution of music.
The MPEG-2 backward compatible audio standard was approvedin 1994 [39], providing an
improved technology that would allow those who had already launched MPEG-1 stereo audio
services to upgrade their system to multichannel mode, optionally also supporting a higher
number of channels at a higher compression ratio. Potentialapplications of the multichannel
mode are in the field of quadraphonic music distribution or cinemas. Furthermore, lower
sampling frequencies were also incorporated, which include 16, 22.05, 24, 32, 44.1 and 48
kHz [39]. Concurrently, MPEG commenced research into even higher-compression schemes,
relinquishing the backward compatibility requirement, which resulted in the MPEG-2 Ad-
vanced Audio Coding standard (AAC) standard in 1997 [40]. This provides those who are
not constrained by legacy systems to benefit from an improvedmultichannel coding scheme.
In conjunction with AAC, it is possible to achieve perceptual transparent stereo quality at 128
kbit/s and transparent multichannel quality at 320 kbit/s for example in cinema-type applica-
tions.

The MPEG-4 audio recommendation is the latest standard completed in 1999 [41–45],
which offers in addition to compression further unique features that will allow users to inter-
act with the information content at a significant higher level of sophistication than is possible
today. In terms of compression, MPEG-4 supports the encoding of speech signals at bit rates
from 2 kbit/s up to 24 kbit/s. For coding of general audio, ranging from very low bit rates
up to high quality, a wide range of bit rates and bandwidths are supported, ranging from a bit
rate of 8 kbit/s and a bandwidth below 4 kHz to broadcast quality audio, including monoaural
representations up to multichannel configuration.

The MPEG-4 audio codec includes coding tools from several different encoding families,
covering parametric speech coding, CELP-based speech coding and Time/Frequency (T/F)
audio coding, which are characterised in Figure 11.1. It canbe observed that a parametric
coding scheme, namely Harmonic Vector eXcitation Coding (HVXC) was selected for cover-
ing the bit rate range from 2 to 4 kbit/s. For bit rates between4 and 24 kbit/s, a CELP-coding
scheme was chosen for encoding narrowband and wideband speech signals. For encoding
general audio signals at bit rates between 8 and 64 kbit/s, a time/frequency coding scheme
based on the MPEG-2 AAC standard [40] endowed with additional tools is used. Here, a com-
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Figure 2: MPEG-4 framework [41].

bination of different techniques was established, becauseit was found that maintaining the
required performance for representing speech and music signals at all desired bit rates cannot
be achieved by selecting a single coding architecture. A major objective of the MPEG-4 au-
dio encoder is to reduce the bit rate, while maintaining a sufficiently high flexibility in terms
of bit rate selection. The MPEG-4 codec also offers other newfunctionalities, which include
bit rate scalability, object-based of a specific audio passage for example, played by a cer-
tain instrument representation, robustness against transmission errors and supporting special
audio effects.

MPEG-4 consists of Versions 1 and 2. Version 1 [41] contains the main body of the stan-
dard, while Version 2 [46] provides further enhancement tools and functionalities, that in-
cludes the issues of increasing the robustness against transmission errors and error protection,
low-delay audio coding, finely grained bit rate scalabilityusing the Bit-Sliced Arithmetic
Coding (BSAC) tool, the employment of parametric audio coding, using the CELP-based
silence compression tool and the 4 kbit/s extended variablebit rate mode of the HVXC tool.
Due to the vast amount of information contained in the MPEG-4standard, we will only con-
sider some of its audio compression components, which include the coding of natural speech
and audio signals. Readers who are specifically interested in text-to-speech synthesis or syn-
thetic audio issues are referred to the MPEG-4 standard [41]and to the contributions by
Scheireret al. [47, 48] for further information. Most of the material in this chapter will be
based on an amalgam of References [34–38, 40, 41, 43, 44, 46, 49]. In the next few sections,



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 7

CONTENTS 7

the operations of each component of the MPEG-4 audio component will be highlighted in
greater detail. As an application example, we will employ the Transform-domain Weighted
Interleaved Vector Quantization (TWINVQ) coding tool, which is one of the MPEG-4 audio
codecs in the context of a wireless audio transceiver in conjunction with space-time cod-
ing [50] and various Quadrature Amplitude Modulation (QAM)schemes [51]. The audio
transceiver is introduced in Section 11.5 and its performance is discussed in Section 11.5.6.

Motivation and Outline of the Book

During the early 1990s Atal, Cuperman and Gersho [52] have edited prestigious contribu-
tions on speech compression. Also Ince [53] contributed a book in 1992 related to the topic.
Anderson and Mohan co-authored a monograph on source and channel coding in 1993 [54].
Research-oriented developments were then consolidated inKondoz’ excellent monograph
in 1994 [55] and in the multi-authored contribution edited by Keijn and Paliwal [56] in
1995. The most recent addition to the above range of contributions is the second edition of
O’Shaughnessy well-referenced book cited above. However,at the time of writing no book
spans the entire history of speech and audio compression, which is the goal of this volume.

Against this backcloth, this book endeavours to review the recent history of speech com-
pression and communications in the era of wireless turbo-transceivers and joint source/channel
coding. We attempt to provide the reader with a historical perspective, commencing with a
rudimentary introduction to communications aspects, since throughout the book we illustrate
the expected performance of the various speech codecs studied also in the context of jointly
optimized wireless transceivers.

The book is constituted by four parts. Part I and II are covering classic background material
on speech signals, predictive waveform codecs and analysis-by-synthesis codecs as well as on
the entire speech and audio coding standardisation scene. The bulk of the book is constituted
by the research-oriented Part III and IV, covering both standardised and proprietary speech
codecs - including the most recent AMR-WB+ and the MPEG-4 audio codecs, as well as
cutting-edge wireless turbo transceivers.

Specifically,Chapters 1 and 2 of Part I provide a rudimentary introduction to speech
signals, classic waveform coding as well as predictive coding, respectively, quantifying the
overall performance of the various speech codecs, in order to render our treatment of the
topics as self-contained and all-encompassing as possible.

Part II of the book is centred around analysis by synthesis based coding, reviewing the
classic principles in Chapter 3 as well as both narrow and wideband spectral envelope quan-
tisation in Chapter 4. RPE and CELP coding are the topic of Chapters 5 and 6, which are
followed by a detailed chapter on the entire plethora of existing forward-adaptive standardised
CELP codecs in Chapter 7 and on their associated source-sensitivity matched channel coding
schemes. The subject of Chapter 8 is both proprietary and standard backward-adaptive CELP
codecs, which is concluded with a system design example based on a low-delay, multi-mode
wireless transceiver.

The research-orientedPart III of the book are dedicated to a range of standard and propri-
etary wideband coding techniques and wireless systems. As an introduction to the wideband
coding scene, in Chapter 9 the classic subband-based G.722 wideband codec is reviewed first,
leading to the discussion of numerous low-rate wideband voice and audio codecs. Chapter 9
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MPEG-4 Version 1 & 2 finalized [110,111]

Dolby AC-2 [103]

MPEG-1 Audio finalized [104]
Dolby AC-3 [103]

MPEG-2 backward compatible [107]

MPEG-2 Advanced Audio Coding (AAC) [109]

CNET codec [91]

Levine & Smith, Verma & Ming: 
Sinusoidal+Transients+Noise coding [100,101]

Park: Bit-Sliced Arithmetic Coding (BSAC) [98]

Herre & Johnston: Temporal Noise Shaping [97]
Iwakami: TWINVQ [96]

Herre: Intensity Stereo Coding [95]

Mahieux: backward adaptive prediction [91]
Edler: Window switching strategy [92]
Johnston: M/S stereo coding [93]

Johnston: Perceptual Transform Coding [90]

Scharf, Hellman: Masking effects [84,85]

Schroeder: Spread of masking [86]

Rothweiler: Polyphase Quadrature Filter [88]

Fletcher: Auditory patterns [81]

Nussbaumer: Pseudo-Quadrature Mirror Filter [87]

Princen: Time Domain Aliasing Cancellation [89]

Malvar: Modified Discrete Cosine Transform [94]

Sony: MiniDisc: Adaptive Transform
Acoustic Coding(ATRAC) [105]

NTT: Transform-domain Weighted
Interleaved Vector Quantization (TWINVQ) [96,108]

Philips: Digital Compact Cassette (DCC) [106]

Zwicker, Greenwood: Critical bands [82,83]

AT&T: Perceptual Audio Coder (PAC) [102]

Purnhagen: Parametric Audio Coding [99]

Figure 3: Important milestones in the development of perceptual audio coding.
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also contains diverse sophisticated wireless voice- and audio-system design examples, includ-
ing a turbo-coded Orthogonal Frequency Division Multiplex(OFDM) wideband audio sys-
tem design study. This is followed by a wideband voice transceiver application example using
the AMR-WB codec, a source-sensitivity matched Irregular Convolutional Code (IRCC) and
Extrinsic Information Transfer (EXIT) charts for achieving a near-capacity system perfor-
mance. Chapter 9 is concluded with the protrayal of the AMR-WB+ codec. In Chapter 10
of Part III we detailed the principles behind the MPEG-4 codec and comparatively studied
the performance of the MPEG-4 and AMR-WB audio/speech codecscombined with vari-
ous sophisticated wireless transceivers. Amongst others,a jointly optimised source-coding,
outer unequal protection Non-Systematic Convolutional (NSC) channel-coding, inner Trel-
lis Coded Modulation (TCM) and spatial diversity aided Space-Time Trellis Coded (STTC)
turbo transceiver was investigated. The employment of TCM provided further error protec-
tion without expanding the bandwidth of the system and by utilising STTC spatial diversity
was attained, which rendered the error statistics experienced pseudo-random, as required by
the TCM scheme, since it was designed for Gaussian channels inflicting randomly dispersed
channel errors. Finally, the performance of the STTC-TCM-2NSC scheme was enhanced
with the advent of an efficient iterative joint decoding structure.

Chapters 11-17 ofPart IV are all dedicated to sub-4kbps codecs and their wireless transceivers,
while Chapter 18 is devoted to speech quality evaluation techniques as well as to a rudimen-
tary comparison of various speech codecs and transceivers.The last chapter of the book is on
VoIP.

This book is naturally limited in terms of its coverage of these aspects, simply owing
to space limitations. We endeavoured, however, to provide the reader with a broad range
of applications examples, which are pertinent to a range of typical wireless transmission
scenarios.

Our hope is that the book offers you - the reader - a range of interesting topics, portraying
the current state-of-the-art in the associated enabling technologies. In simple terms, finding
a specific solution to a voice communications problem has to be based on a compromise in
terms of the inherently contradictory constraints of speech quality, bitrate, delay, robustness
against channel errors, and the associated implementational complexity. Analysing these
trade-offs and proposing a range of attractive solutions tovarious voice communications
problems is the basic aim of this book.

Again, it is our hope that the book underlines the range of contradictory system design
trade-offs in an unbiassed fashion and that you will be able to glean information from it, in
order to solve your own particular wireless voice communications problem, but most of all
that you will find it an enjoyable and relatively effortless reading, providing you - the reader
- with intellectual stimulation.

Lajos Hanzo
Clare Somerville
Jason Woodard
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Chapter 10
Advanced Multi-Rate Speech
Transceivers

H-T. How and L. Hanzo

10.1 Introduction
1 Recent speech coding research efforts have been successfulin creating a range of both
narrow- and wide-band multimode and multirate coding schemes, many of which have found
their way into standardised codecs, such as the Advanced Multi-Rate (AMR) codec and its
wideband version known as the AMR-WB scheme proposed for employment in the third-
generation wireless systems. Other multimode solutions have been used in the MPEG-4
codec, which will be investigated in the next chapter. In multimode coding schemes [335,
336], a mode selection process is invoked and the specific coding mode best suited to the local
character of the speech signal is selected from a predetermined set of modes. This technique
dynamically tailors the coding scheme to the widely varyinglocal acoustic-phonetic character
of the speech signal.

Multi-rate coding on the other hand facilitates the assignment of a time-variant number of
bits for a frame, adapting the encoding rate on the basis of the local phonetic character of the
speech signal or the network conditions. This is particularly useful in digital cellular commu-
nications, where one of the major challenges is that of designing an encoder that is capable
of providing high quality speech for a wide variety of channel conditions. Ideally, a good
solution must provide the highest possible speech quality under perfect channel conditions,
while maintaining an error-resilient behaviour in hostilechannel environments. Tradition-
ally, existing digital cellular applications have employed a single coding mode where a fixed
source/channel bit allocation provides a compromise solution between the perfect and hostile

1This chapter is based on H.T. How, T.H. Liew, E.L. Kuan, L-L. Yang and L. Hanzo: A Redundant Residue Num-
ber System Coded Burst-by-Burst Adaptive Joint-DetectionBased CDMA Speech Transceiver, IEEE Transactions
on Vehicular Technology, Volume 55, Issue 1, Jan. 2006, pp 387- 397
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channel conditions. Clearly, a coding solution which is well suited for high-quality channels
would use most of the available bits for source coding in conjunction with only minimal er-
ror protection, while a solution designed for poor channelswould use a lower rate speech
encoder along with more powerful forward error protection.Due to the powerful combina-
tion of channel equalization, interleaving and channel coding, near-error-free transmission
can be achieved down to a certain threshold of the Carrier to Interferer ratio (C/I). However,
below this threshold, the error correction code is likely tofail in removing the transmission er-
rors, with the result that the residual errors may cause annoying artifacts in the reconstructed
speech signal.

Therefore, in existing systems typically a worst case design is applied, where the channel
coding scheme is sufficiently powerful to remove most transmission errors, as long as the
system operates within a reasonable C/I range. However, thedrawback of this solution is that
the speech quality becomes lower than necessary under good channel conditions, since a high
proportion of the gross bit rate is dedicated to channel coding.

The Adaptive Multi-Rate (AMR) concept [28] solves this ’resource allocation’ problem in
a more intelligent way. Specifically, the ratio between the speech bit rate and the error protec-
tion oriented redundancy is adaptively adjusted accordingto the prevalent channel conditions.
While the channel quality is inferior, the speech encoder operates at low bit rates, thus ac-
commodating powerful forward error control within the total bit rate budget. By contrast,
under high channel conditions the speech encoder may benefitfrom using the total bit rate
budget, yielding high speech quality, since in this high-rate case low redundancy error pro-
tection is sufficient. Thus, the AMR concept allows the system to operate in an error-resilient
mode under poor channel conditions, while benefitting from abetter speech quality under
good channel conditions. This is achieved by dynamically splitting the gross bit rate of the
transmission system between source and channel coding according to the instantaneous chan-
nel conditions. Hence, the source coding scheme must be designed for seamless switching
between rates available without annoying artifacts.

In this chapter, we first give an overview of the AMR narrowband codec [29], which has
been standardised by ETSI [28,29]. The AMR codec is capable of operating in both the full-
rate and half-rate speech traffic channels of GSM. It is also amenable to adapting the source
coding and channel coding bit rates according to the qualityof the radio channel. As stated
above, most speech codecs employed in communication systems - such as for example the
existing GSM speech codecs (full-rate [362], half-rate [363] and enhanced full-rate [364])
- operate at a fixed bit rate, with a trade-off between source coding and channel coding.
However, estimating the channel quality and adjusting the transceiver’s bit rate adaptively ac-
cording to the channel conditions has the potential of improving the system’s error resilience
and hence the speech quality experienced over high error-rate wireless channels.

The inclusion of an AMR Wideband (AMR-WB) mode has also been under discussion,
with feasibility studies [337, 338] being conducted at the time of writing for applications in
GSM networks, as well as for the evolving Third Generation (3G) systems [339]. With aim
of providing a system-design example for such intelligent systems, during our forthcoming
discourse in this chapter we will characterize the error sensitivity of the AMR encoder’s
output bits so that the matching channel encoder can be carefully designed for providing the
required protection for the speech bits, which are most sensitive to transmission errors. The
proposed intelligent adaptive multirate voice communications system will be described in
Section 10.4.
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Figure 10.1: Schematic of ACELP speech encoder.

10.2 The Adaptive Multi-Rate Speech Codec

10.2.1 Overview

The AMR codec employs the Algebraic Code-Excited Linear Predictive (ACELP) model
[365, 366] shown in Figure 10.1. Here we provide a brief overview of the AMR codec fol-
lowing the approach of [28, 29, 257]. The AMR codec’s complexity is relatively low and
hence it can be implemented cost-efficiently. This codec operates on a 20ms frame of 160
speech samples, and generates encoded blocks of 95, 103, 118, 134, 148, 159, 204 and 244
bits/20ms. This leads to bit rates of 4.75, 5.15, 5.9, 6.7, 7.4, 7.95, 10.2 and 12.2 kbit/s, respec-
tively. Explicitly, the AMR speech codec provides eight different modes and their respective
Segmental SNR performance was shown in Figure 10.2.

Multirate coding [335] supports a variable allocation of bits for a speech frame, adapting
the rate to the instantaneous local phonetic character of the speech signal, to the channel qual-
ity or to network conditions. This is particularly useful indigital cellular communications,
where one of the major challenges is that of designing a codecthat is capable of providing
high quality speech for a wide variety of channel conditions. Ideally, a good solution must
provide the highest possible quality under perfect channelconditions, unimpaired by the
channel, while also maintaining good quality in hostile high error-rate channel environments.
The codec mode adaptation is a key feature of the new AMR standard that has not been used
in any prior mobile standard. At a given fixed gross bit rate, this mechanism of adapting the
source coding rate has the potential of altering the partitioning between the speech source bit
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Figure 10.2: Segmental SNR performance of the AMR codec, operating at bit rates inthe range be-
tween 4.75 kbit/s and 12.2 kbit/s.

rate and the redundancy added for error protection. Hence, the AMR codec will be invoked
in our Burst-by-Burst Adaptive Quadrature Amplitude Modulation Code Division Multiple
Access (BbB-AQAM/CDMA) transceiver.

As shown in Figure 10.1, the Algebraic Code Excited Linear Prediction (ACELP) encoder
operates on the sampled input speech signals(n) and Linear Prediction Coding(LPC) is ap-
plied to each speech segment. The coefficients of this predictor are used for constructing
an LPC synthesis filter1/(1 − A(z)), which describes the spectral envelope of the speech
segment [335,367]. An Analysis-by-Synthesis (AbS) procedure is employed, in order to find
the particular excitation that minimizes the weighted Minimum Mean Square Error (MMSE)
between the reconstructed and original speech signal. The weighting filter is derived from
the LPC synthesis filter and takes into account the psychoacoustic quantisation noise mask-
ing effect, namely that the quantization noise in the spectral neighbourhood of the spectrally
prominent speech formants is less perceptible [335, 367]. In order to reduce the complexity,
the adaptive and fixed excitation codebooks are searched sequentially in order to find the per-
ceptually best codebook entry, first for the adaptive codebook contribution, and then for the
fixed codebook entry. The adaptive codebook consists of time-shifted versions of past exci-
tation sequences and describes the long-term characteristics of the speech signal [335,367].

Three of the AMR coding modes correspond to existing standards, which renders commu-
nication systems employing the new AMR codec interoperablewith other systems. Specifi-
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cally, the 12.2 kbit/s mode is identical to the GSM Enhanced Full Rate (EFR) standard [339],
the 12.2 and 7.4 kbit/s modes [368] correspond to the US1 and EFR (IS-641) codecs of
the TDMA (IS-136) system, and the 6.7 kbit/s mode is equivalent to the EFR codec of the
Japanese PDC system [335]. For each of the codec modes, thereexist corresponding channel
codecs, which perform the mapping between the speech sourcebits and the fixed number of
channel coded bits.

In the forthcoming subsections, we will give a functional description of the AMR codec’s
operation in the 4.75 and 10.2 kbit/s modes. These two bit rates will be used in our investi-
gations in order to construct a dual-mode speech transceiver in Section 10.4.

10.2.2 Linear Prediction Analysis

A 10th order LPC analysis filter is employed for modelling theshort term correlation of the
speech signals(n). Short-term prediction, or linear predictive analysis is performed once for
each 20ms speech frame using the Levinson-Durbin algorithm[367]. The LP coefficients
are transformed to the Line Spectrum Frequencies (LSF) for quantization and interpolation.
The employment of the LSF [369] representation for quantization of the LPC coefficients, is
motivated by their advantageous statistical properties. Specifically, within each speech frame,
there is a strong intra-frame correlation due to the ordering property of the neighbouring
LSF values [367]. This essentially motivates the employment of vector quantization. The
interpolated quantized and unquantized LSFs are convertedback to the LP filter coefficients,
in order to construct the synthesis and weighting filters at each subframe. The synthesis filter
shown in Figure 10.1 is used in the decoder for producing the reconstructed speech signal
from the received excitation signalu(n).

10.2.3 LSF Quantization

In the AMR codec, the LSFs are quantized using interframe LSFprediction and Split Vector
Quantization (SVQ) [28]. The SVQ aims to split the 10-dimensional LSF vector into a num-
ber of reduced-dimension LSF subvectors, which simplifies the associated codebook entry
matching and search complexity. Specifically, the proposedconfiguration minimizes the av-
erage Spectral Distortion (SD) [370] achievable at a given total complexity. Predictive vector
quantization is used [28] and the 10-component LSF vectors are split into 3 LSF subvectors
of dimension 3, 3 and 4. The bit allocations for the three subvectors will be described in
Section 10.2.7 for the 4.75- and 10.2 kbit/s speech coding modes.

10.2.4 Pitch Analysis

Pitch analysis using the adaptive codebook approach modelsthe long-term periodicity, i.e.,
the pitch of the speech signal. It produces an output, which is an amplitude- scaled version
of the adaptive codebook of Figure 10.1 based on previous excitations. The excitation signal
u(n) = Gpu(n−α)+Gcck(n) seen in Figure 10.1 is determined from itsGp-scaled history
after adding theGc-scaled fixed algebraic codebook vectorck for every 5ms subframe. The
optimum excitation is chosen on the basis of minimising the mean squared errorEw over the
subframe.
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Subframe Subset Pulse: Positions
1 i0: 0,5,10,15,20,25,30,35

1 i1: 2,7,12,17,22,27,32,37
2 i0: 1,6,11,16,21,26,31,36

i1: 3,8,13,18,23,28,33,38

1 i0: 0,5,10,15,20,25,30,35
2 i1: 3,8,13,18,23,28,33,38

2 i0: 2,7,12,17,22,27,32,37
i1: 4,9,14,19,24,29,34,39

1 i0: 0,5,10,15,20,25,30,35
3 i1: 2,7,12,17,22,27,32,37

2 i0: 1,6,11,16,21,26,31,36
i1: 4,9,14,19,24,29,34,39

1 i0: 0,5,10,15,20,25,30,35
4 i1: 3,8,13,18,23,28,33,38

2 i0: 1,6,11,16,21,26,31,36
i1: 4,9,14,19,24,29,34,39

Table 10.1: Pulse amplitudes and positions for 4.75 kbit/s AMR codec mode [28].

Track Pulse Positions
1 i0, i4 0,4,8,12,16,20,24,28,32,36
2 i1, i5 1,5,9,13,17,21,25,29,33,37
3 i2, i6 2,6,10,14,18,22,26,30,34,38
4 i3, i7 3,7,11,15,19,23,27,31,35,39

Table 10.2: Pulse amplitudes and positions for 10.2 kbit/s AMR codec code [28].

In an optimal codec, the fixed codebook index and codebook gain as well as the adaptive
codebook parameters would all be jointly optimized in orderto minimizeEw [371]. However,
in practice this is unfeasible due to the associated excessive complexity. Hence, a sequential
sub-optimal approach is applied in the AMR codec, where the adaptive codebook parameters
are determined first under the assumption of zero fixed codebook excitation component, i.e.,
Gc = 0, since at this optimisation stage no fixed codebook entry wasdetermined. Then,
given that the adaptive codebook parameters are found, which consist of the delay and gain
of the pitch filter, the fixed codebook parameters are determined.

Most CELP codecs employ both so-called open-loop and closed-loop estimation of the
adaptive codebook delay parameters, as is the case in the AMRcodec. The open-loop esti-
mate of the pitch period is used to narrow down the range of thepossible adaptive codebook
delay values and then the full closed-loop analysis-by-synthesis procedure is used for finding
a high-resolution delay around the approximate open-loop position [366].
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Parameter 1st 2nd 3rd 4th Total
subframe subframe subframe subframe per frame

LSFs 8+8+7=23 (1-23)
Pitch Delay 8 (24-31) 4 (49-52) 4 (62-65) 4 (83-86) 20

Fixed CB Index 9 (32-40) 9 (53-61) 9 (66-74) 9 (87-95) 36
Codebook Gains 8 (41-48) 8 (75-82) 16

Total 95/20ms=4.75 kbit/s

LSFs 8+9+9=26
Pitch Delay 8 5 8 5 26

Fixed CB Index 31 31 31 31 124
Codebook Gains 7 7 7 7 28

Total 204/20ms=10.2 kbit/s

Table 10.3: Bit allocation of the AMR speech codec at 4.75 kbit/s and 10.2 kbit/s [28]. The bit po-
sitions for 4.75 kbit/s mode, which are shown in round bracket assist in identifying the
corresponding bits in Figure 10.5.

10.2.5 Fixed Codebook With Algebraic Structure

Once the adaptive codebook parameters are found, the fixed codebook is searched by taking
into account the now known adaptive codebook vector. This sequential approach consti-
tutes a trade-off between the best possible performance andthe affordable computational
complexity. The fixed codebook is searched by using an efficient non-exhaustive analysis-
by-synthesis technique [372], minimizing the mean square error between the weighted input
speech and the weighted synthesized speech.

The fixed, or algebraic codebook structure is specified in Table 10.1 and Table 10.2 for
the 4.75 kbit/s and 10.2 kbit/s codec modes, respectively [28]. The algebraic fixed code-
book structure is based on the so-called Interleaved Single-Pulse Permutation (ISPP) code
design [371]. The computational complexity of the fixed codebook search is substantially
reduced, when the codebook entriesck(n) used are mostly zeros. The algebraic structure of
the excitation having only a few non-zero pulses allows for afast search procedure. The non-
zero elements of the codebook are equal to either +1 or -1, andtheir positions are restricted
to the limited number of excitation pulse positions, as portrayed in Table 10.1 and 10.2 for
the speech coding modes of 4.75 and 10.2 kbit/s, respectively.

More explicitly, in the 4.75 kbit/s codec mode, the excitation codebook contains 2 non-
zero pulses, denoted byi0 andi1 in Table 10.1. Again, all pulses can have the amplitudes
+1 or -1. The 40 positions in a subframe are divided into 4 so-called tracks. Two subsets of
2 tracks each are used for each subframe with one pulse in eachtrack. Different subsets of
tracks are used for each subframe, as shown in Table 10.1 and hence one bit is needed for
encoding the subset used. The two pulse positions,i0 andi1 are encoded with the aid of 3
bits each, since both have eight legitimate positions in Table 10.1. Furthermore, the sign of
each pulse is encoded using 1 bit. This gives a total of 1+2(3)+2(1)=9 bits for the algebraic
excitation encoding in a subframe.

In the 10.2 kbit/s codec mode of Table 10.3 there are four tracks, each containing two
pulses. Hence, the excitation vector contains a total of 4x2=8 non-zero pulses. All the pulses
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can have the amplitudes of +1 or -1 and the excitation pulses are encoded using a total of 31
bits.

For the quantization of the fixed codebook gain, a gain predictor is used, in order to exploit
the correlation between the fixed codebook gains in adjacentframes [28]. The fixed code-
book gain is expressed as the product of the predicted gain based on previous fixed codebook
energies and a correction factor. The correction factor is the parameter, which is coded to-
gether with the adaptive codebook gain for transmission over the channel. In the 4.75 kbit/s
mode the adaptive codebook gains and the correction factorsare jointly vector quantized for
every 10 ms, while this process occurs every subframe of 5 ms in the 10.2 kbit/s mode.

10.2.6 Post-Processing

At the decoder, an adaptive postfilter [373] is used for improving the subjective quality of
the reconstructed speech. The adaptive postfilter consistsof a formant-based postfilter and a
spectral tilt-compensation filter [373]. Adaptive Gain Control (AGC) is also used, in order
to compensate for the energy difference between the synthesized speech signal, which is the
output from the synthesis filter and the postfiltered speech signal.

10.2.7 The AMR Codec’s Bit Allocation

The AMR speech codec’s bit allocation is shown in Table 10.3 for the speech modes of 4.75
kbit/s and 10.2 kbit/s. For the 4.75 kbit/s speech mode, 23 bits are used for encoding the
LSFs by employing split vector quantization. As stated before, the LSF vector is split into
3 subvectors of dimension 3, 3 and 4, and each subvector is quantized using 8, 8 and 7 bits,
respectively. This gives a total of 23 bits for the LSF quantization of the 4.75 kbit/s codec
mode.

The pitch delay is encoded using 8 bits in the first subframe and the relative delays of the
other subframes are encoded using 4 bits. The adaptive codebook gain is quantized together
with the above-mentioned correction factor of the fixed codebook gain for every 10ms using 8
bits. As a result, a total of 16 bits are used for encoding boththe adaptive- and fixed codebook
gains. As described in Section 10.2.5, 9 bits were used to encode the fixed codebook indices
for every subframe, which resulted in a total of 36 bits per 20ms frame for the fixed codebook.

For the 10.2 kbit/s mode, the three LSF subvectors are quantized using 8, 9 and 9 bits
respectively. This implies that 26 bits are used for quantizing the LSF vectors at 10.2 kbit/s,
as shown in Table 10.3. The pitch delay is encoded using 8 bitsin the first and third subframes
and the relative delay of the other subframes is encoded using 5 bits. The adaptive codebook
gain is quantized together with the correction factor of thefixed codebook gain using a 7-
bit non-uniform vector quantization scheme for every 5ms subframe. The fixed codebook
indices are encoded using 31 bits in each subframe, in order to give a total of 124 bits for a
20ms speech frame.

10.2.8 Codec Mode Switching Philosophy

In the AMR codec, the mode adaptation allows us to invoke a subset of at most 4 modes out
of the 8 available modes [258]. This subset is referred to as the Active Codec Set (ACS). In
the proposed BbB-AQAM/CDMA system the codec mode adaptation is based on the channel
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quality, which is expressed as the MSE at the output of the multi-user CDMA detector [374].
The probability of switching from one mode to another is typically lower, than the probability
of sustaining a specific mode.

Intuitively, frequent mode switching is undesirable due tothe associated perceptual speech
quality fluctuations. It is more desirable to have a mode selection mechanism that is primarily
source-controlled, assisted by a channel-quality-controlled override. During good channel
conditions, the mode switching process is governed by the local phonetic character of the
speech signal and the codec will adapt itself to the speech signal characteristics in an attempt
to deliver the highest possible speech quality. When the channel is hostile or the network is
congested, transceiver control or external network control can take over the mode selection
and allocate less bits to source coding, in order to increasethe system’s robustness or user
capacity. By amalgamating the channel-quality motivated or network- and source-controlled
processes, we arrive at a robust, high-quality system. Surprisingly, we found from our infor-
mal listening tests that the perceptual speech quality was not affected by the rate of codec
mode switching, as it will be demonstrated in Section 10.8. This is due to the robust ACELP
structure, whereby the main bit rate reduction is related tothe fixed codebook indices, as
shown in Table 10.3 for the codec modes of 4.75 kbit/s and 10.2kbit/s.

As expected, the performance of the AMR speech codec is sensitive to transmission errors
of the codec mode information. The corruption of the codec mode information that describes,
which codec mode has to be used for decoding leads to completespeech frame losses, since
the decoder is unable to apply the correct mode for decoding the received bit stream. Hence,
robust channel coding is required in order to protect the codec mode information and the
recommended transmission procedures were discussed for example by Bruhnet al. [257].
Furthermore, in transceiver-controlled scenarios the prompt transmission of the codec mode
information is required for reacting to sudden changes of the channel conditions. In our inves-
tigations we assume that the signalling of the codec mode information is free from corruption,
so that we can concentrate on other important aspects of the system.

Let us now briefly focus our attention on the robustness of theAMR codec against channel
errors.

10.3 Speech Codec’s Error Sensitivity

In this section, we will demonstrate that some bits are significantly more sensitive to channel
errors than others, and hence these sensitive bits have to bebetter protected by the channel
codec [371]. A commonly used approach in quantifying the sensitivity of a given bit is to
invert this bit consistently in every speech frame and evaluate the associated Segmental SNR
(SEGSNR) degradation. The error sensitivity of various bits of the AMR codec determined in
this way is shown in Figure 10.3 for the bit rate of 4.75 kbit/s. Again, Figure 10.3 shows more
explicitly the bit sensitivities in each speech subframe for the bit rate of 4.75 kbit/s, with the
corresponding bit allocations shown in Table 10.3. For the sake of visual clarity, Subframe 4
(83-95) was not shown explicitly above, since it exhibited identical SEGSNR degradation to
Subframe 2.

It can be observed from Figure 10.3 that the most sensitive bits are those of the LSF sub-
vectors, seen at positions 1-23. The error sensitivity of the adaptive codebook delay is the
highest in the first subframe, commencing at bit 24, as shown in Figure 10.3, which was



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 498

498 CHAPTER 10. ADVANCED MULTI-RATE SPEECH TRANSCEIVERS

0 10 20 30 40 50 60 70 80 90
Bit Index

0

2

4

6

8

10

12

S
E

G
S

N
R

D
eg

ra
da

tio
n

(d
B

)

4.75 kbps Speech Mode

23 LSFs bits Subframe 1 Subframe 2 Subframe 3 Subframe 4

0 5 10 15 20
Bit Index

0

5

10

15 1st LSF subvector 2nd LSF subvector 3rd LSF subvector

25 30 35 40 45
Bit Index (Subframe 1)

0

5

10

15

S
E

G
S

N
R

D
eg

ra
da

tio
n

(d
B

)

Pitch Delay Fixed Codebook Index Codebook Gains

50 52 54 56 58 60
Bit Index (Subframe 2)

0

5

10

15
Rel. Pitch Delay Fixed Codebook Index

65 70 75 80
Bit Index (Subframe 3)

0

5

10

15 Rel. Pitch Delay Fixed Codebook Index Codebook Gains

Figure 10.3: The SEGSNR degradations due to 100% bit error rate in the 95-bit, 20 ms AMR speech
frame. The associated bit allocation can be seen in Table 10.3.
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Figure 10.4: The SEGSNR degradation versus speech frame index for various bits.

encoded using 8 bits in Table 10.3. By contrast, the relativeadaptive codebook delays in
the next three subframes are encoded using 4 bits each, and a graceful degradation of the
SEGSNR is observed in Figure 10.3. The next group of bits is constituted by the 8 codebook
gains in decreasing order of bit sensitivity, as seen in Figure 10.3 for bit positions 41-48 of
Subframe 1 and 75-82 of Subframe 3. The least sensitive bits are related to the fixed code-
book pulse positions, which were shown for example at bit positions 54-61 in Figure 10.3.
This is because, if one of the fixed codebook index bits is corrupted, the codebook entry se-
lected at the decoder will differ from that used in the encoder only in the position of one of
the non-zero excitation pulses. Therefore the corrupted codebook entry will be similar to the
original one. Hence, the algebraic codebook structure usedin the AMR codec is inherently
quite robust to channel errors. The information obtained here will be used in Section 10.6.2
for designing the bit mapping procedure in order to assign the channel encoders according to
the bit error sensitivities.

Although appealing in terms of its conceptual simplicity, the above approach we used for
quantifying the error sensitivity of the various coded bitsdoes not take into account the error
propagation properties of different bits over consecutivespeech frames. In order to obtain a
better picture of the error propagation effects, we also employed a more elaborate error sen-
sitivity measure [371]. Here, for each bit we find the averageSEGSNR degradation due to a
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Figure 10.5: Average SEGSNR degradation due to single bit errors in various speechcoded bits

single bit error both in the specific frame in which the error occurs and in consecutive frames.
These effects are exemplified in Figure 10.4 for five different bits, where each of the bits
belongs to a different speech codec parameter. More explicitly, Bit 1 represents the first bit of
the first LSF subvector, which shows some error propagation effects due to the interpolation
between the LSFs over consecutive frames. The associated SEGSNR degradation dies away
over six frames. Bit 24 characterised in Figure 10.4 is one ofthe adaptive codebook delay
bits and the corruption of this bit has the effect of a more prolonged SEGSNR degradation
over 10 frames. The fixed codebook index bits of Table 10.3 aremore robust and observed to
be the least sensitive bits, as it was shown in Figure 10.3 earlier. This argument is supported
by the example of Bit 33 in Figure 10.4, where a smaller degradation is observed over con-
secutive frames. A similar observation also applies to Bit 39 in Figure 10.4, which is the sign
bit of the fixed codebook. By contrast, Bit 41 of the codebook gains produced a high and
prolonged SEGSNR degradation profile.

We recomputed our bit-sensitivity results of Figure 10.3 using this second approach, in
order to obtain Figure 10.5, taking into account the error propagation effects. More explicitly,
these results were calculated by summing the SEGSNR degradations over all the frames,
which were affected by the error. Again, these results are shown in Figure 10.5 and the
associated bit positions can be identified with the aid of Table 10.3. The importance of the
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adaptive codebook delay bits became more explicit. By contrast, the significance of the LSFs
was reduced, although still requiring strong error protection using channel coding.

Having characterised the error sensitivity of various speech bits, we will capitalise on this
knowledge, in order to assign the speech bits to various bit protection classes, as it will be
discussed in Section 10.6.2. Let us now consider the variouscomponents of our transceiver,
which utilises the AMR codec in the next section. We will firstdiscuss the motivation of
employing multirate speech encoding in conjunction with a near-instantaneously adaptive
transceiver, with a detailed background description of earlier contributions from various re-
searchers.

10.4 System Background

The AMR concept is amenable to a range of intelligent configurations. When the instanta-
neous channel quality is low, the speech encoder operates atlow bit rates, thus facilitating
the employment of powerful forward error control within a fixed bit rate budget. By contrast,
under favourable channel conditions the speech encoder mayuse its highest bit rate, implying
high speech quality, since in this case weaker error protection is sufficient or a less robust,
but higher bit rate transceiver mode can be invoked. However, the system must be designed
for seamless switching between its operating rates withoutobjectionable perceptual artifacts.

Daset al. provided an extensive review of multimode and multirate speech coding in [375].
Some of the earlier contributors in multimode speech codingincluded Taniguchiet al. [376],
Kroon and Atal [377], Yong and Gersho [378], DeJacoet al. [379], Paksoyet al. [380] and
Cellario et al. [381] . Further recent work on incorporating multirate speech coding into
wireless systems was covered in a range of contributions [382]- [383]. Specifically, Yuen
et al. [382] in their paper employed embedded and multimode speechcodecs based on the
Code Excited Linear Prediction (CELP) technique in combination with channel codecs using
Rate Compatible Punctured Convolutional codes (RCPC) [384]. The combined speech and
channel coding resulted in gross bit rates of 12.8 kbit/s and9.6 kbit/s, supported by either
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TDMA or CDMA multiple access techniques. The investigations showed that multimode
CELP codecs performed better, than their embedded counterparts, and that adaptive schemes
were superior to fixed-rate schemes.

LeBlancet al. in [385] developed a low power, low delay, multirate codec suitable for
indoor wireless communications. The speech codec was a modified version of the G.728
LD-CELP standard scheme [386], employing a multi-stage excitation configuration together
with an adaptive codebook. A lower LPC predictor order of 10 was used, rather than 50 as in
G.728, and a higher bandwidth expansion factor of 0.95, rather than 0.9883 was employed,
which resulted in a more robust performance over hostile channels. This algorithm was inves-
tigated over indoor wireless channels assisted by 2-branchdiversity, using QPSK modulation
and wideband TDMA transmission. No channel coding was employed and the system’s per-
formance was not explicitly characterised in the paper. In [241], Kleideret al. proposed an
adaptive speech transmission system utilising the Multi-Rate Sinusoidal Transform Codec
(MRSTC), in conjunction with convolutional channel codingand Pulse Position Modula-
tion (PPM). The MRSTC is based on the sinusoidal transform coding scheme proposed by
McAulay [387]. The MRSTC was investigated further by the same authors for wireless and
internet applications in [388], using a range of bit rates between 1.2 kbit/s and 9.6 kbit/s. The
MRSTC was incorporated into a communication system employing convolutional channel
coding and a fixed BPSK modulation scheme, and it was reportedto give a nearly 9 dB in
average spectral distortion reduction over the fixed-rate 9.6 kbit/s benchmarker.

In a contribution from the speech coding team at Qualcomm, Das et al. [389] illustrated
using a multimode codec having four modes (Full-rate, Half-rate, Quarter-rate and Eight-
rate), that the diverse characteristics of the speech segments can be adequately captured us-
ing variable rate codecs. It was shown that a reduced averagerate can be obtained, achieving
equivalent speech quality to that of a fixed full-rate codec.Specifically, a multimode codec
with an average rate of 4 kbit/s achieved significantly higher speech quality than that of the
equivalent fixed-rate codec. An excellent example of a recent standard variable-rate codec is
the Enhanced Variable Rate Codec (EVRC), standardized by the Telecommunications Indus-
try Association (TIA) as IS-127 [245]. This codec operates at a maximum rate of 8.5 kbit/s
and at an average rate of about 4.1 kbit/s. The EVRC consists of three coding modes that are
all based on the CELP model. The activation of one of the threemodes is source-controlled,
based on the estimation of the input signal state.

Multimode speech coding was also evaluated in an ATM-based environment by Beritelli
et al. in [390]. The speech codec possessed seven coding rates, ranging from 0.4 to 16
kbit/s. Five different bit rates were allocated for voiced/unvoiced speech encoding, while two
lower bit rates were generated for inactive speech periods,depending on the stationarity of
the background noise. The variable-rate voice source was modelled using a Markov-model
based process. The multimode coding scheme was compared to the 12 kbit/s CS-ACELP
standard codec using the traditional ON-OFF voice generation model. It was found that the
multimode codec performed better, than the CS-ACELP ON-OFFscheme, succeeding in
minimizing the required transmission bandwidth by exploiting the near-instantaneous local
characteristics of the speech waveform and it was also capable of synthesizing the background
noise realistically.

Our discussion so far have been focused on source-controlled multirate codecs, where the
coding algorithm responds to the time-varying local character of the speech signal in order
to determine the required speech rate. An additional capacity enhancement can be achieved
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by introducing network control, which implies that the speech codec has to respond to a
network-originated control signal for switching the speech rate to one of a predetermined set
of possible rates. The network control procedure for example was addressed by Hanzoet al.
[371] and Kawashimaet al. [383]. Specifically, in [371] a novel high-quality, low complexity
dual-rate 4.7 kbit/s and 6.5 kbit/s ACELP codec was proposedfor indoor communications,
which was capable of dropping the associated source rate andspeech quality under network
control, in order to invoke a more resilient modem mode, amongst less favourable channel
conditions. Source-matched binary BCH channel codecs combined with unequal protection
diversity- and pilot-assisted 16QAM and 64QAM was employed, in order to accommodate
both the 4.7 and the 6.5 kbit/s coded speech bits at a fixed signalling rate of 3.1 kBd. Good
communications quality speech was reported in an equivalent speech channel bandwidth of
4 kHz, if the channel Signal-to-Noise Ratio (SNR) and Signal-to-Interference (SIR) of the
benign indoors cordless channels were in excess of about 15 and 25 dB for the lower and
higher speech quality 16QAM and 64QAM systems, respectively. In [383], Kawashimaet
al. proposed network control procedures for CDMA systems, focusing only on the downlink
from the base to the mobile station, where the base station can readily coordinate the coding
rate of all users without any significant delay. This networkcontrol scheme was based on
the so-called M/M/∞/M queueing model applied to a cell under heavy traffic conditions. A
modified version of the QCELP codec [379] was used, employingfixed rates of 9.6 kbit/s and
4.8 kbit/s.

Focussing our attention on the associated transmission aspects, in recent years significant
research interests have also been devoted to Burst-by-Burst Adaptive Quadrature Amplitude
Modulation (BbB-AQAM) transceivers [51]- [391]. The transceiver reconfigures itself on
a burst-by-burst basis, depending on the instantaneous perceived wireless channel quality.
More explicitly, the associated channel quality of the nexttransmission burst is estimated and
the specific modulation mode, which is expected to achieve the required performance target
at the receiver is then selected for the transmission of the current burst. Modulation schemes
of different robustness and of different data throughput have also been investigated [392]-
[393]. The BbB-AQAM principles have also been applied to Joint Detection Code Division
Multiple Access (JD-CDMA) [374,394] and OFDM [395,396].

Against the above background, in this section we introduce anovel dual-mode burst-
by-burst adaptive speech transceiver scheme, based on the AMR speech codec, Redundant
Residue Number System (RRNS) assisted channel coding [397]and Joint Detection aided
Code-Division Multiple Access (JD-CDMA) [374]. The mode switching is controlled by the
channel quality fluctuations imposed by the time-variant channel,which is not necessarily
a desirable scenario. However, we will endeavour to contrive measures in order to mitigate
the associated perceptual speech quality fluctuations. Theunderlying trade-offs associated
with employing two speech modes of the AMR standard speech codec in conjunction with a
reconfigurable, unequal error protection BPSK/4QAM modem are investigated.

10.5 System Overview

The schematic of the proposed adaptive JD-CDMA speech transceiver is depicted in Fig-
ure 10.6. The encoded speech bits generated by the AMR codec at the bit rate of 4.75 or
10.2 kbit/s are first mapped according to their error sensitivities into three protection classes,
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RRNS Number of Total Total
Class Code Codewords databits databits codedbits

4.75kbit/s/BPSK
I RRNS(8, 4) 2 40
II RRNS(8, 5) 1 25 95 160
III RRNS(8, 6) 1 30

10.2kbit/s/4QAM
I RRNS(8, 4) 3 60
II RRNS(8, 5) 1 25 205 320
III RRNS(8, 6) 4 120

Table 10.4: RRNS codes designed for two different modulation modes.

although for simplicity this is not shown explicitly in the figure. The sensitivity-ordered
speech bits are then channel encoded using the RRNS encoder [397] and modulated using a
re-configurable BPSK or 4QAM based JD-CDMA scheme [51]. We assigned the 4.75 kbit/s
speech codec mode to the BPSK modulation mode, while the 10.2kbit/s speech codec mode
to the 4QAM mode. Therefore, this transmission scheme delivers a higher speech quality
at 10.2 kbit/s, provided that sufficiently high channel SNRsand SIRs prevail. Furthermore,
it can be reconfigured under transceiver control in order to provide an inherently lower, but
unimpaired speech quality amongst lower SNR and SIR conditions at the speech rate of 4.75
kbit/s.

Subsequently, the modulated symbols are spread in Figure 10.6 by the CDMA spreading
sequence assigned to the user, where a random spreading sequence is used. The Minimum
Mean Squared Error Block Decision Feedback Equaliser (MMSE-BDFE) is used as the mul-
tiuser detector [374], where perfect Channel Impulse Response (CIR) estimation and perfect
decision feedback are assumed. The soft outputs for each user are obtained from the MMSE-
BDFE and passed to the RRNS channel decoder. Finally, the decoded bits are mapped back
to their original bit protection classes by using a bit-mapper (not shown in Figure 10.6) and
the speech decoder reconstructs the original speech information.

In BbB-AQAM/CDMA, in order to determine the best choice of modulation mode in terms
of the required trade-off between the BER and throughput, the near instantaneous quality of
the channel has to be estimated. The channel quality is estimated at receiverA and the chosen
modulation mode and its corresponding speech mode are then communicated using explicit
signalling to transmitterB in a closed-loop scheme, as depicted in Figure 10.6. Specifically,
the channel quality estimate is obtained by using the Signalto residual Interference plus
Noise Ratio (SINR) metric, which can be calculated at the output of MMSE-BDFE [374].
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10.6 Redundant Residue Number System (RRNS) Channel
Coding

10.6.1 Overview

In order to improve the performance of the system, we employ the novel family of the so-
called Redundant Residue Number System (RRNS) codes for protecting the speech bits, de-
pending on their respective error sensitivities.

Since their introduction, RRNS have been used for constructing fast arithmetics [398,399].
In this paper, we exploit the error control properties of thenon-binary systematic RRNS
codes, which - similarly to Reed-Solomon codes - exhibit maximum minimum distance prop-
erties [400,401]. Hence, RRNS codes are similar to Reed Solomon (RS) codes [339]. How-
ever, the RRNS codes chosen in our design are more amenable todesigning short codes. More
explicitly, in the context of RS codes, short codes are derived by inserting dummy symbols
into full-length codes. This, however, requires the decoding of the full-length RS-code. By
contrast, RRNS codes simply add the required number of redundant symbols. Furthermore,
RRNS codes allow us to use the low-complexity technique of residue dropping [401]. Both
of these advantages will be augmented during our further discourse.

An RRNS(n, k) code hask so-called residues, which host the original data bits and the
additional(n − k) redundant residues can be employed for error correction at the decoder.
The coding rate of the code isk/n and the associated error correction capability of the code
is t = ⌊n−k

2 ⌋ non-binary residues [400, 401]. At the receiver, both soft decision [397] and
residue dropping [402] decoding techniques are employed.

The advantages of the RRNS codes are simply stated here without proof due to lack of
space [397, 402]. Since the so-called residues of the RRNS [398, 399] can be computed in-
dependently from each other, additional residues can be added at any stage of processing or
transmission [403]. This has the advantage that the required coding power can be adjusted
according to the prevalent BER of the transmission medium. For example, when the pro-
tected speech bits enter the wireless section of the network- where higher BERs prevail than
in the fixed network - simply a number of additional redundantresidues are computed and
concatenated to the message for providing extra protection.

In our design, RRNS codes employing 5 bits per residue have been chosen. Three different
RRNS codes having different code rates are used for protecting the three different classes of
speech bits. In addition, the RRNS codes employed are also switched in accordance with
the modulation modes and speech rates used in our system. In Table 10.4, we have two set
of RRNS codes for the BPSK and 4QAM modulation modes. For the most sensitive class
I speech bits, we used a RRNS(8,4) code, which has a minimum free distance ofdmin =
5 [397] and a code rate of1/2. At the receiver, the soft metric of each received bit was
calculated and soft decoding was applied. An extra information residue was added to the
RRNS(8,4) code for generating the RRNS(8,5) code for the speech bit protection class II.
The extra residue enables us to apply one residue dropping [402], and soft decision decoding.
The Class III bits are least protected, using the RRNS(8,6) code, which has a minimum free
distance ofdmin = 3 and a code rate of2/3. Only soft decision decoding is applied to this
code.
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Figure 10.7: SEGSNR degradation versus average BER for the 4.75 kbit/s AMR codecfor full-class
and triple-class protection systems. When the bits of a specific class were corrupted, bits
of the other classes were kept intact.

10.6.2 Source-Matched Error Protection

The error sensitivity of the 4.75 kbit/s AMR codec’s source bits was evaluated in Figures 10.3
and 10.5. The same procedures were applied in order to obtainthe error sensitivity for the
source bits of the 10.2 kbit/s AMR codec. Again, in our system, we employed RRNS channel
coding and three protection classes were deemed to constitute a suitable trade-off between a
moderate system complexity and high performance. As shown in Table 10.4, three different
RRNS codes having different code rates are used for protecting the three different classes of
speech bits in a speech frame.

For the 4.75 kbit/s AMR speech codec, we divided the 95 speechbits into three sensitivity
classes, Class I, II and III. Class I consists of 40 bits, while Class II and III were allocated 25
and 30 bits, respectively. Then we evaluated the associatedSEGSNR degradation inflicted
by certain fixed channel BERs maintained in each of the classes using randomly distributed
errors, while keeping bits of the other classes intact. The results of the SEGSNR degradations
applying random errors are portrayed in Figure 10.7 for boththe full-class and the triple-class
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Figure 10.8: SEGSNR degradation versus average BER for the 10.2 kbit/s AMR codecfor full class
and triple-class protection systems. When the bits of a specific class were corrupted, bits
of the other classes were kept intact.

system. It can be seen that Class I, which consists of the 40 most sensitive bits, suffers the
highest SEGSNR degradation. Class II and Class III - which are populated mainly with the
fixed codebook index bits - are inherently more robust to errors. Note that in the full-class
scenario the associated SEGSNR degradation is higher than that of the individual protection
classes. This is due to having more errors in the entire 95-bit frame at a fixed BER, com-
pared to the individual protection classes assigned 40, 25 and 30 bits respectively, since upon
corrupting a specific class using a fixed BER, the remaining classes remained intact. Hence
the BER of the individual protection classes averaged over all the 95 bits was lower, than
that of the full-class scenario. For the sake of completeness, we decreased the BER of the
full-class scheme so that on average the same number of errors was introduced into the indi-
vidual classes as well as in the full-class scheme. In this scenario, it can be seen from Figure
10.7 that, as expected, the Class I scheme has the highest SEGSNR degradation, while the
sensitivity of the full-class scheme is mediocre.

Similarly, the 204 bits of a speech frame in the 10.2 kbit/s AMR speech codec mode are
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divided into three protection classes. Class I is allocatedthe 60 most sensitive bits, while 25
and 119 bits are distributed to Class II and Class III, in decreasing order of error sensitivity.
Their respective SEGSNR degradation results against the BER are presented in Figure 10.8.
Due to the fact that the number of bits in Class III is five timeshigher than in Class II,
the error sensitivity of Class III compared to Class II appeared higher. Hence the SEGSNR
degradation appears higher for Class III than for Class II, as observed in Figure 10.8. This
occurs due to the non-trivial task of finding appropriate channel codes to match the source
sensitivities, and as a result, almost 60% of the bits are allocated to Class III. Note that after
the RRNS channel coding stage, an additional dummy bit is introduced in Class III, which
contains 119 useful speech bits, as shown in Table 10.4. The extra bit can be used as a
Cyclic Redundancy Check (CRC) bit for the purpose of error detection. Having considered
the source and channel coding aspects, let us now focus our attention on transmission issues.

10.7 Joint Detection Code Division Multiple Access

10.7.1 Overview

Joint detection receivers [404] constitute a class of multiuser receivers that were developed
based on conventional channel equalization techniques [51] used for mitigating the effects of
Inter-Symbol Interference (ISI). These receivers utilizethe Channel Impulse Response (CIR)
estimates and the knowledge of the spreading sequences of all the users in order to reduce the
level of Multiple Access Interference (MAI) in the receivedsignal.

By concatenating the data symbols of all CDMA users successively, as though they were
transmitted by one user, we can apply the principles of conventional single-user channel
equalization [51] to multiuser detection. In our investigations, we have used the MMSE-
BDFE proposed by Kleinet al. [404], where the multiuser receiver aims to minimize the
mean square error between the data estimates and the transmitted data. A feedback process
is incorporated, where the previous data estimates are fed back into the receiver in order to
remove the residual interference and to assist in improvingthe BER performance.

10.7.2 Joint Detection Based Adaptive Code Division Multiple Access

In QAM [51], n bits are grouped to form a signalling symbol andm = 2n different symbols
convey all combinations of then bits. Thesem symbols are arranged in a modulation constel-
lation to form them-QAM scheme. In the proposed system we used the BbB-AQAM/CDMA
modes of BPSK (2-QAM) and 4QAM, conveying 1 and 2 bits per symbol, respectively. How-
ever, for a given channel SNR, the BER performance degrades upon switching from BPSK
to 4QAM, whilst doubling the throughput.

Previous research in BbB-AQAM schemes designed for TDMA transmissions has been
carried out by Webb and Steele [405]; Sampei, Komaki and Morinaga [391]; Goldsmith and
Chua [406]; as well as Torranceet al. [407]. This work has been extended to wideband
channels, where the received signal also suffers from ISI inaddition to amplitude and phase
distortions due to the fading channel. The received signal strength is not a good indicator
of the wideband channel’s instantaneous quality, since thesignal is also contaminated by ISI
and co-channel interference. Wonget al. [408] proposed a wideband BbB-AQAM scheme,
where a channel equalizer was used for mitigating the effects of ISI on the CIR estimate.
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Parameter Value

Channel type COST 207 Bad Urban (BU)
Paths in channel 7
Doppler frequency 80 Hz
Spreading factor 16
Chip rate 2.167 MBaud
JD block size 26 symbols
Receiver type MMSE-BDFE
AQAM type Dual-mode (BPSK, 4QAM)
Channel codec Triple-class RRNS
Channel-coded Rate 8/16 kbit/s
Speech Codec AMR (ACELP)
Speech Rate 4.75/10.2 kbit/s
Speech Frame Length 20 ms

Table 10.5: Transceiver Parameters

Here we propose to combine joint detection CDMA [404] with AQAM, by modifying the
approach used by Wonget al. [408]. Joint detection is particularly suitable for combining
with AQAM, since the implementation of the joint detection algorithms does not require
any knowledge of the modulation mode used [374]. Hence the associated complexity is
independent of the modulation mode used.

In order to choose the most appropriate BbB-AQAM/CDMA mode for transmission, the
SINR at the output of the MMSE-BDFE was estimated by modifying the SINR expression
given in [404] exploiting the knowledge of the transmitted signal amplitude,g, the spreading
sequence and the CIR. The data bits and noise values were assumed to be uncorrelated. The
average output SINR was calculated for each transmission burst of each user. The conditions
used for switching between the two AQAM/JD-CDMA modes were set according to their
target BER requirements as:

Mode =

{

BPSK SINR< t1
4QAM t1 ≤ SINR

, (10.1)

wheret1 represents the switching threshold between the two modes.
With the system elements described, we now focus our attention on the overall performance

of the adaptive transceiver proposed.

10.8 System Performance

The simulation parameters used in our AQAM/JD-CDMA system are listed in Table 10.5.
The channel profile used was the COST 207 Bad Urban (BU) channel [409] consisting of
seven paths, where each path was faded independently at a Doppler frequency of 80 Hz.

The BER performance of the proposed system is presented in Figures 10.9, 10.10 and
10.11. Specifically, Figure 10.9 portrays the BER performance using the 4QAM modulation
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Figure 10.9: BER performance of 4QAM/JD-CDMA over the COST 207 BU channel ofTable 10.5
using the RRNS codes of Table 10.4.

mode and the RRNS codes of Table 10.4 for a two-user JD-CDMA speech transceiver. As
seen in Table 10.4 of Section 10.6.2, three different RRNS codes having different code rates
are used for protecting the three different classes of speech bits in the speech codec. The BER
of the three protection classes is shown together with the average BER of the channel coded
bits versus the channel SNR. The number of bits in these protection classes was 60, 25 and
120, respectively. As expected, the Class I subchannel exhibits the highest BER performance,
followed by the Class II and Class III subchannels in decreasing order of BER performance.
The corresponding BER results for the BPSK/JD-CDMA mode areshown in Figure 10.10.

In Figure 10.11, the average BER performance of the coded fixed-mode BPSK/JD-CDMA
and 4QAM/JD-CDMA systems is presented along with that of thetwin-mode AQAM/JD-
CDMA system supporting two users and assuming zero-latencymodem mode signalling. The
performance of the AQAM scheme was evaluated by analyzing the BER and the through-
put expressed in terms of the average number of Bits Per Symbol (BPS) transmitted. The
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Figure 10.10: BER performance of BPSK/JD-CDMA over the COST 207 BU channel ofTable 10.5
using the RRNS codes of Table 10.4.

BER curve has to be read by referring to the vertical-axis at the left of the figure, while
the BPS throughput curve is interpreted by referring to the vertical-axis at the right that is
labelled BPS. At low channel SNRs the BER of the AQAM/JD-CDMAscheme mirrored
that of BPSK/JD-CDMA, which can be explained using Figure 10.12. In Figure 10.12,
the Probability Density Functions (PDF) of the AQAM/JD-CDMA modes versus channel
SNR are plotted. As mentioned earlier, the results were obtained using a switching thresh-
old of 10.5 dB. We can see from the figure that at low average channel SNRs (< 6 dB), the
mode switching threshold of 10.5 dB instantaneous SNR was seldom reached, and therefore
BPSK/JD-CDMA was the predominant mode. Hence, the performance of the AQAM/JD-
CDMA scheme was similar to BPSK/JD-CDMA. However, as the channel SNR increased,
the BER performance of AQAM/JD-CDMA became better than thatof BPSK/JD-CDMA, as
shown in Figure 10.11. This is because the 4QAM mode is employed more often, reducing
the probability of using BPSK, as shown in Figure 10.12. Since the mean BER of the system
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Figure 10.11: BER and BPS comparisons for fixed mode BPSK and 4QAM as well as forthe
AQAM/JD-CDMA system, using the RRNS codes of Table 10.4. The switching thresh-
old for AQAM was set to 10.5 dB and the simulation parameters are listed in Table 10.5.

is the ratio of the total number of bit errors to the total number of bits transmitted, the mean
BER will decrease with a decreasing number of bit errors or with an increasing number of
transmitted bits. For a fixed number of symbols transmitted,the total number of transmitted
bits in a frame is constant for fixed mode BPSK/JD-CDMA, whilefor AQAM/JD-CDMA
the total number of transmitted bits increased, when the 4QAM/JD-CDMA mode was used.
Consequently, the average BER of the AQAM/JD-CDMA system was lower than that of the
fixed-mode BPSK/JD-CDMA scheme.

The BPS throughput performance curve is also plotted in Figure 10.11. As expected, the
number of BPS of both BPSK and 4QAM is constant for all channelSNR values. They
are limited by the modulation scheme used and the coding rateof the RRNS codes seen
in Table 10.4. For example, for 4QAM we have 2 BPS, but the associated channel code
rate is205/320, as shown in Table 10.4, hence the effective throughput of the system is
2× 205

320 = 1.28 BPS. For AQAM/JD-CDMA, we can see from Figure 10.11 that the through-
put is similar to that of BPSK/JD-CDMA at low channel SNRs. However, as the average
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Figure 10.12: The probability of each modulation mode being chosen for transmission in atwin-mode
(BPSK, 4QAM), two-user AQAM/JD-CDMA system using the parameters of Table
10.5.

channel SNR increased, more and more frames were transmitted using 4QAM/JD-CDMA
and the average throughput increased gradually. At high average SNRs, the throughput of
AQAM/JD-CDMA became similar to that of the 4QAM/JD-CDMA scheme.

The overall SEGSNR versus channel SNR performance of the proposed speech transceiver
is displayed in Figure 10.13. Observe that the source sensitivity-matched triple-class 4.75
kbit/s BPSK/JD-CDMA system requires a channel SNR in excessof about 8 dB for nearly
unimpaired speech quality over the COST207 BU channel of Table 10.5. When the channel
SNR was in excess of about 12 dB, the 10.2 kbit/s 4QAM/JD-CDMAsystem outperformed
the 4.75 kbit/s BPSK/JD-CDMA scheme in terms of both objective and subjective speech
quality. Furthermore, at channel SNRs around 10 dB, where the BPSK and 4QAM SEGSNR
curves cross each other in Figure 10.13, it was preferable touse the inherently lower qual-
ity but unimpaired mode of operation. In the light of these findings, the application of the
AMR speech codec in conjunction with AQAM constitutes an attractive trade-off in terms
of providing users with the best possible speech quality under arbitrary channel conditions.
Specifically, the 10.2 kbit/s 4QAM/JD-CDMA scheme has a higher source bit rate and thus
exhibits a higher SEGSNR under error-free conditions. The 4.75 kbit/s BPSK/JD-CDMA
scheme exhibits a lower source bit rate and correspondinglylower speech quality under error-
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Figure 10.13: SEGSNR versus channel SNR

free conditions. However, due to its less robust 4QAM modulation mode, the 10.2 kbit/s
4QAM/JD-CDMA scheme is sensitive to channel errors and breaks down under hostile chan-
nel conditions, where the 4.75 kbit/s BPSK/JD-CDMA scheme still exhibits robust operation,
as illustrated in Figure 10.13.

In the context of Figure 10.13 ideally a system is sought thatachieves a SEGSNR per-
formance, which follows the envelope of the SEGSNR curves ofthe individual BPSK/JD-
CDMA and 4QAM/JD-CDMA modes. The SEGSNR performance of the AQAM system is
also displayed in Figure 10.13. We observe that AQAM provides a smooth evolution across
the range of channel SNRs. At high channel SNRs, in excess of 12-14 dB, the system op-
erates predominantly in the 4QAM/JD-CDMA mode. As the channel SNR degrades below
12 dB, some of the speech frames are transmitted in the BPSK/JD-CDMA mode, which im-
plies that the lower quality speech rate of 4.75 kbit/s is employed. This results in a slightly
degraded average speech quality, while still offering a substantial SEGSNR gain compared
to the fixed-mode 4.75 kbit/s BPSK/JD-CDMA scheme. At channel SNRs below 10 dB, the
performance of the 10.2 kbit/s 4QAM/JD-CDMA mode deteriorates due to the occurrence
of a high number of channel errors, inflicting severe SEGSNR degradations. In these hostile
conditions, the 4.75 kbit/s BPSK/JD-CDMA mode provides a more robust performance asso-
ciated with a better speech quality. With the advent of the AQAM/JD-CDMA mode switching
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Figure 10.14: The comparison of the number of errors per frame versus 20ms frame index for the (a)
4QAM, (b) BPSK and (c) AQAM/JD-CDMA systems with a switching thresholdof 10.5
dB, at channel SNR = 10 dB for 1000 frames over the COST207 BU channel of Table
10.5.

regime the transceiver exhibits a less bursty error distribution, than that of the conventional
fixed-mode 4QAM modem, as it can be seen in Figure 10.14, wherethe error events of the
BPSK/JD-CDMA scheme are also displayed.

The benefits of the proposed dual-mode transceiver are further demonstrated by Figure
10.15, consisting of three graphs plotted against the speech frame index, giving an insightful
characterisation of the adaptive speech transceiver. Figure 10.15(a) shows a speech segment
of 30 frames. In the AMR codec, a speech frame corresponds to aduration of 20 ms. In Figure
10.15(b), the SEGSNR versus frame index performance curvesof the BPSK, 4QAM and
AQAM/JD-CDMA schemes are shown, in both error-free and channel-impaired scenarios.
The SINR at the output of the MMSE-BDFE is displayed in Figure10.15(c). The adaptation
of the modulation mode is also shown in Figure 10.15(c), where the transceiver switches to
the BPSK or 4QAM mode according to the estimated SINR using the switching threshold set
to 10.5 dB.

When transmitting in the less robust 4QAM mode using the higher-rate speech mode of
10.2 kbit/s, a sudden steep drop in the channel conditions - as portrayed at Frame 1 in Figure
10.15 - results in a high number of transmission errors, as also illustrated in Figure 10.14(a).
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Figure 10.15: Characteristic waveforms of the adaptive system. (a) Time-domain speech signal for
frame indices between 0 and 30; (b) SEGSNR in various transceiver modes; (c) SINR
versus time and transceiver modes versus time over the COST207 BU channel of Table
10.5.

This happens to occur during the period of voice onset in Figure 10.15, resulting in the cor-
ruption of the speech frame, which has the effect of inflicting impairments to subsequent
frames due to the error propagation effects of various speech bits, as alluded to in Section
10.3. It can be seen in Figure 10.15 that the high number of errors inflicted in the 4QAM
mode during voiced speech segments caused a severe SEGSNR degradation at frame index
10 and the 10.2 kbit/s speech codec never fully recovered, until the channel conditions ex-
pressed in terms of the SINR in Figure 10.15(c) improved. On the other hand, the significantly
more robust 4.75 kbit/s BPSK/JD-CDMA scheme performed wellunder these hostile channel
conditions, encountering a low number of errors in Figure 10.14(b), while transmitting at a
lower speech rate, hence at an inherently lower speech quality. For the sake of visual clarity,
the performance curves of BPSK/JD-CDMA and AQAM/JD-CDMA were not displayed in
Figure 10.15(b) for the channel-impaired scenarios, sincetheir respective graphs are almost
identical to that of the error-free speech SEGSNR curves.

The benefits of the proposed dual-mode transceiver are also demonstrated by Figure 10.16,
which shares the same graphs arrangement as described earlier for Figure 10.15 but at a
different frame index range between 300 and 330. It can be seen in Figure 10.16 that a
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Figure 10.16: Characteristic waveforms of the adaptive system. (a) Time-domain speech signal for
frame indices between 300 and 330; (b) SEGSNR in various transceiver modes; c) SINR
versus time and transceiver modes versus time over the COST207 BU channel of Table
10.5.

sudden steep drop in the channel conditions at frame index 300 during the 4QAM mode,
caused a severe SEGSNR degradation for the voiced speech segments and the 10.2 kbit/s
speech codec never recovered until the channel conditions improved.

10.8.1 Subjective Testing

Informal listening tests were conducted, in order to assessthe performance of the AQAM/JD-
CDMA scheme in comparison to the fixed-mode BPSK/JD-CDMA and4QAM/JD-CDMA
schemes. It is particularly revealing to investigate, how the AQAM/JD-CDMA scheme per-
forms in the intermediate channel SNR region between 7 dB and11 dB. The speech quality
was assessed using pairwise comparison tests. The listeners were asked to express a pref-
erence between two speech files A or B or neither. A total of 12 listeners were used in the
pairwise comparison tests. Four different utterances wereemployed during the listening tests,
where the utterances were due to a mixture of male and female speakers having American
accents. Table 10.6 details some of the results of the listening tests.

Through the listening tests we found that for the fixed-mode BPSK/JD-CDMA scheme
unimpaired perceptual speech quality was achieved for channel SNRs in excess of 7 dB.



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 518

518 CHAPTER 10. ADVANCED MULTI-RATE SPEECH TRANSCEIVERS

Preference
Speech Material A Speech Material B A (%) B (%) Neither (%)

4.75 kbit/s (Error free) 10.2 kbit/s (Error free) 4.15 66.65 29.2
AQAM(9dB) 4QAM(9dB) 100 0.00 0.00
AQAM(9dB) 4QAM(11dB) 8.3 50.0 41.7
AQAM(9dB) BPSK(9dB) 37.5 16.65 45.85
AQAM(12dB) 4QAM(12dB) 4.15 20.85 75.0
AQAM(12dB) 4QAM(13dB) 8.3 25.0 66.7
AQAM(12dB) BPSK(12dB) 41.65 8.3 50.05

Table 10.6: Details of the listening tests conducted using the pairwise comparison method,where the
listeners were given a choice of preference between two speech files coded in different
transmission scenarios.

With reference to Figure 10.13, when the channel conditionsdegraded below 7 dB, the speech
quality became objectionable due to the preponderance of channel errors. For the fixed mode
4QAM/JD-CDMA scheme, the channel SNR threshold was 11 dB, below which the speech
quality started to degrade. The perceptual performance of AQAM/JD-CDMA was found
superior to that of 4QAM/JD-CDMA at channel SNRs below 11 dB.Specifically, it can be
observed from Table 10.6 that all the listeners preferred the AQAM/JD-CDMA scheme at
a channel SNR of 9 dB due to the associated high concentrationof channel errors in the
less robust 4QAM/JD-CDMA scheme at the same channel SNR, resulting in a perceptually
degraded reconstructed speech quality.

More explicitly, we opted for investigating the AQAM/JD-CDMA scheme at a channel
SNR of 9 dB, since - as shown in Figure 10.12 - this SNR value falls in the transitory re-
gion between BPSK/JD-CDMA and 4QAM/JD-CDMA. As the channelconditions improved
to an SNR in excess of 11 dB, the 4QAM/JD-CDMA scheme performed slightly better, than
AQAM/JD-CDMA due to its inherently higher SEGSNR performance under error free condi-
tions. Nonetheless, the AQAM/JD-CDMA scheme provided a good perceptual performance,
as exemplified in Table 10.6 at a channel SNR of 12 dB, in comparison to the 4QAM/JD-
CDMA scheme at the channel SNRs of both 12 dB and 13 dB. Here, only about twenty
percent of the listeners preferred the 4QAM/JD-CDMA schemeto the AQAM/JD-CDMA
scheme, while the rest suggested that both sounded very similar. It can also be observed from
Table 10.6 that the AQAM/JD-CDMA scheme performed better than BPSK/JD-CDMA for
a channel SNR of 7 dB and above, while in the region below 7 dB, AQAM/JD-CDMA has
a similar perceptual performance to that of BPSK/JD-CDMA. As shown in Table 10.7, we
found that changing the mode switching frequency for every 1, 10 or 100 frames does not
impair the speech quality either in objective SEGSNR terms or in terms of informal listening
tests.

10.9 A Turbo-Detected Unequal Error Protection Irregular
Convolutional Coded AMR Transceiver

J. Wang, N. S. Othman, J. Kliewer, L. L. Yang and L. Hanzo
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Frame Switching Frequency SEGSNR (dB)
1 11.38
10 11.66
100 11.68

Table 10.7: Frame switching frequency versus SEGSNR

10.9.1 Motivation

Since the different bits of multimedia information, such asspeech and video, have differ-
ent error sensitivity, efficient unequal-protection channel coding schemes have to be used
to ensure that the perceptually more important bits benefit from more powerful protection.
Furthermore, in the context of turbo detection the channel codes should also match the char-
acteristics of the channel for the sake of attaining a good convergence performance. In this
section we address this design dilemma by using irregular convolutional codes (IRCCs) which
constitute a family of different-rate subcodes. we benefit from the high design flexibility of
IRCCs and hence excellent convergence properties are maintained while having unequal er-
ror protection capabilities matched to the requirements ofthe source. An EXIT chart based
design procedure is proposed and used in the context of protecting the different-sensitivity
speech bits of the wideband AMR speech codec. As a benefit, theunequal-protection system
using IRCCs exhibits an SNR advantage of about 0.4 dB over theequal-protection system
employing regular convolutional codes, when communicating over a Gaussian channel. We
will also demonstrate that irregular Convolutional codes exhibit excellent convergence prop-
erties in the context of iterative decoding, whilst having an unequal error protection capabil-
ity, which is exploited in this contribution to protect the different-sensitivity speech bits of
the wideband AMR speech codec. As a benefit, the unequal-protection system exhibits an
SNR advantage of about 0.3 dB over the equal-protection system, when communicating over
a Guassian channel.

Source encoded information sources, such as speech, audio or video, typically exhibit a
non-uniform error sensitivity, where the effect of a channel error may significantly vary from
one bit to another [410,411]. Hence unequal error protection (UEP) is applied to ensure that
the perceptually more important bits benefit from more powerful protection. In [340], the
speech bits were protected by a family of Rate-Compatible Punctured Convolutional (RCPC)
codes [341] whose error protection capabilities had been matched to the bit-sensitivity of
the speech codec. Different-rate RCPC codes were obtained by puncturing the same mother
code, while satisfying the rate-compatibility restriction. However, they were not designed in
the context of turbo detection. Other schemes using a serially concatenated system and turbo
processing were proposed in [342, 343], where the UEP was provided by two different-rate
convolutional codes.

Recently, T̈uchleret al.[344,345] studied the construction of irregular convolutional codes
(IRCCs) and proposed several design criteria. These IRCCs consisted of a family of convolu-
tional codes having different code rates and were specifically designed with the aid of extrin-
sic information transfer (EXIT) charts [346] invoked, for the sake of improving the conver-
gence behaviour of iteratively decoded serially concatenated systems. In general, EXIT chart
analysis assumes having a long interleaver block lengths. However, it was shown in [345]
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that by using an appropriate optimization criterion, the concatenated system is capable of
performing well even for short interleaver block lengths. Since the constituent codes have
different coding rates, the resultant IRCC is capable of providing unequal error protection
(UEP).

A novel element of this section is that UEP and EXIT chart based code optimization will
be jointly carried out and successfully applied for improving the achievable robustness of
speech transmission. We propose a serially concatenated turbo transceiver using an IRCC
as the outer code for the transmission of Adaptive Multi-Rate Wideband (AMR-WB) coded
speech. Rather than being decoded separately, the constituent codes of the IRCC are decoded
jointly and iteratively by exchanging extrinsic information with the inner code. The IRCC
is optimized to match the characteristics of both the speechsource codec and those of the
channel, so that UEP is achieved while maximizing the iteration gain attained.

In contrast to the error sensitivity of the narrow-band AMR codec characterized in Sec-
tion 10.3, that of the AMR-WB speech codec will characterizedIn Section 10.9.2, while
our system model will be introduced in Section 10.9.3, followed by Section 10.9.4, which
describes the design procedure of IRCCs. An IRCC design example is provided in Section
10.9.5. Our performance results are presented in Section 10.9.6, while Section?? concludes
the section.

10.9.2 The AMR-WB Codec’s Error Sensitivity

The AMR-WB speech codec is capable of supporting bit rates varying from 6.6 to 23.85 kbit/s
and it has become a 3GPP and ITU-T standard, which provides a superior speech quality in
comparison to the conventional telephone-bandwith voice codecs [347]. Each AMR-WB
frame represents 20 ms of speech, producing 317 bits at a bitrate of 15.85 kbps plus 23 bits
of header information per frame. The codec parameters in each frame include the so-called
imittance spectrum pairs (ISPs), the adaptive codebook delay (pitch delay), the algebraic
codebook excitation index and the jointly vector quantizedpitch gains as well as algebraic
codebook gains.

Most source coded bitstreams contain certain bits that are more sensitive to transmission
errors than others. A common approach for quantifying the sensitivity of a given bit is to
consistently invert this bit in every speech frame and evaluate the associated Segmental SNR
(SegSNR) degration [410]. The error sensitivity of the various encoded bits in the AMR-
WB codec determined in this way is shown in Fig. 10.17. The results are based on speech
samples taken from the EBU SQAM (Sound Quality Assessment Material) CD, sampled at
16 kHz and encoded at 15.85 kbps. It can be observed that the bits representing the ISPs,
the adaptive codebook delay, the algebraic codebook index and the vector quantized gain are
fairly error sensitive. By contrast, the least sensitive bits are related to the fixed codebook’s
excitation pulse positions. Statistically, about 10% (35/340) of the bits in a speech frame will
cause a SegSNR degration in excess of 10 dB, and about 8% (28/340) of the bits will inflict
a degration between 5 and 10 dB. Furthermore, the error-freereception of the 7% (23/340)
header information is in general crucial for the adequate detection of speech.
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Figure 10.17: SegSNR degrations versus bit index due to inflicting 100% BER in the 317-bit,20 ms
AMR-WB frame

10.9.3 System Model

Fig. 10.18 shows the system’s schematic diagram. At the transmitter, each of theK-bit
speech frame is protected by a serially concatenated channel code consisting of an outer code
(Encoder I) and an inner code (Encoder II) before transmission over the channel, resulting
in an overall coding rate ofR. At the receiver, iterative decoding is performed with advent
of extrinsic information exchange between the inner code (Decoder II) and the outer code
(Decoder I). Both decoders employ the a-posteriori probability (APP) decoding algorithm,
e.g., the BCJR algorithm [348]. AfterF number of iterations, the speech decoder is invoked
in order to reconstruct the speech frame.

According to the design rules of [349], the inner code of a serially concatenated system
should be recursive to enable interleaver gain. Furthermore, it has been shown in [350] that
for binary erasure channels (BECs) and block lengths tending to infinity the inner code should
have rate-1 to achieve capacity. Experiments have shown that this approximately holds also
for AWGN channels [344,345]. For the sake of simplicity, we opted for employing a memory-
1 recursive convolutional code having a generator polynomial of 1/(1+D), which is actually
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Figure 10.18: System Model

a simple accumulator. Hence the decoding complexity of the inner code is extremely low. In
the proposed system, we use an IRCC as the outer code, while inthe benchmarker system, we
use a regular non-systematic convolutional (NSC) code as the outer code. BPSK modulation
and encountering an AWGN channel are assumed.

10.9.4 Design of Irregular Convolutional Codes

An IRCC is constructed from a family ofP subcodes. First, a rate-r convolutional mother
codeC1 is selected and the(P − 1) other subcodesCk of raterk > r are obtained by punc-
turing. LetL denote the total number of encoded bits generated from theK input information
bits. Each subcode encodes a fraction ofαkrkL information bits and generatesαkL encoded
bits. Given the target code rate ofR ∈ [0, 1], the weighting coefficientαk has to satisfy:

1 =

P
∑

k=1

αk, R =

P
∑

k=1

αkrk, and αk ∈ [0, 1], ∀k. (10.2)

For example, in [345] a family ofP = 17 subcodes were constructed from a systematic,
rate-1/2, memory-4 mother code defined by the generator polynomial(1, g1/g0), whereg0 =
1+D +D4 is the feedback polynomial andg1 = 1+D2 +D3 +D4 is the feedforward one.
Higher code rates may be obtained by puncturing, while lowerrates are created by adding
more generators and by puncturing under the contraint of maximizing the achievable free
distance. The two additional generators used areg2 = 1 + D + D2 + D4 andg3 = 1 + D +
D3 + D4. The resultant17 subcodes have coding rates spanning from0.1, 0.15, 0.2, · · · , to
0.9.

The IRCC constructed has the advantage that the decoding of all subcodes may be per-
formed using the same mother code trellis, except that at thebeginning of each block of
αkrkL trellis sections corresponding to the subcodeCk, the puncturing pattern has to be
restarted. Trellis termination is necessary only after allof theK information bits have been
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encoded.
We now optimize the iterative receiver by means of EXIT charts [346], which is capable

of predicting the performance of an iterative receiver by examining the extrinsic information
transfer function of each of the component devices independently.

For the outer decoder (Decoder I), denote the mutual information between the apriori
input A and the transmitted code bitsC asIA1 = I(C;A), while the mutual information
between the extrinsic outputE and the transmitted code bitsC is denoted asIE1 = I(C;E).
Then the transfer function of Decoder I can be defined as:

IE1 = TI(IA1), (10.3)

which maps the input variableIA1 to the output variableIE1. Similarly, for the inner decoder
(Decoder II), we denote the mutual information between the apriori inputA and the transmit-
ted information bitsX asIA2 = I(X;A). Furthermore, we denote the mutual information
between the extrinsic outputE and the transmitted information bitsX asIE2 = I(X;E).
Note that the extrinsic output of the inner code also dependson the channel SNR orEb/N0.
Hence the transfer function of the inner code is defined as

IE2 = TII(IA2, Eb/N0). (10.4)

The transfer functions can be obtained by using the histogram-based LLR measurements as
proposed in [346] or the simplified method as proposed in [351].

When using IRCCs, the transfer function of an IRCC can be obtained from those of its
subcodes. Denote the transfer function of the subcodek asTI,k(i). Assuming that the trellis
fractions of the subcodes do not significantly interfere with each other, which might change
the associated transfer characteristics, the transfer function TI(i) of the target IRCC is the
weighted superposition of the transfer functionTI,k(i) [345], yielding,

TI(i) =

P
∑

k=1

αkTI,k(i). (10.5)

Note that in iterative decoding, the extrinsic outputE2 of Decoder II becomes the apriori
input A1 of Decoder I and vice versa. Given the transfer function,TII(i, Eb/N0), of the
inner code, and that of the outer codeTI(i), the extrinsic informationIE1 at the output of
Decoder I after theith iteration can be calculated using the recursion of:

µi = TI(TII(µi−1, Eb/N0)), i = 1, 2, . . . , (10.6)

with µ0 = 0, i.e., assuming the absence of apriori input for Decoder II at the commencement
of iterations.

Generally, interactive speech communication systems require a low delay, and hence a
short interleaver block length. And the number of iterations for the iterative decoder is also
limited due to the constraint of complexity. It has been found [345] that EXIT charts may pro-
vide a reasonable convergence prediction for the first couple of iterations even in the case of
short block lengths. Hence, we fixed the transfer function ofthe inner code for a givenEb/N0

value yieldingTII(i) = TII(i, Eb/N0), and optimized the weighting coefficients{αk} of the
outer IRCC for the sake of obtaining a transfer functionTI(i) that specifically maximizes the
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extrinsic output after exactlyF number of iterations [345], which is formulated as:

maximize µi = TI(TII(µi−1)), i = 1, 2, . . . , F, (10.7)

with µ0 = 0.
Additionally, considering the non-uniform error sensitivity of the speech source bits char-

acterized in Figurefig:amr-sensitivity, we may intentionally enhance the protection of the
more sensitive source data bits by using strong subcodes, thus imposing the source constraints
of:

k2
∑

k=k1

αkrk/R ≥ x%, 1 ≤ k1 ≤ k2 ≤ P, 0 ≤ x ≤ 100, (10.8)

which implies that the percentage of the speech source bits protected by the subcodesk1 to
k2 is at leastx%.

Finally, our task is to find a weight vectorα = [α1, α2, · · · , αP ]T , so that eq. (10.7) is
maximized, while satisfying the constraints of eq. (10.2) and eq. (10.8). This optimization
problem can be solved by slightly modifying the procedure proposed in [345], as it will be
illustrated by the following example.

10.9.5 An Example Irregular Convolutional Code

We assume the overall system coding rate to beR = 0.5. As stated in Section 10.9.3, the inner
code has a unitary code rate, hence all the redundancy is assigned to the outer code. We use a
half-rate, memory-4, maximum free distance NSC code havingthe generator polynomials of
g0 = 1+D +D2 +D4, andg1 = 1+D3 +D4. The extrinsic information transfer functions
of the inner code and the outer NSC code are shown in Fig. 10.19. It can be seen that the
minimum convergence SNR threshold for the benchmarker system using the NSC outer code
is about 1.2 dB, although we note that these curves are based on the assumption of having
an infinite interleaver length and a Gaussian Log LikelihoodRatio (LLR) distribution. In the
case of short block lengths, the actual SNR convergence threshold might be higher.

Hence, when constructing the IRCC, we choose the target inner code transfer function
TII(i) atEb/N0 = 1.5 dB, and the number of iterationsF = 6. For the constituent subcodes,
we use those proposed in [345] except that code rates ofrk > 0.75 are excluded from our de-
sign for the sake of avoiding significant error floors. The resultant code rates of the subcodes
span the range ofr1 = 0.1, r2 = 0.15, · · · , r14 = 0.75.

Initially the source constraint of eq. (10.8) was not imposed. By using the optimization pro-
cedure of [345], we arrive at the weight vector ofα0 = [0 0 0 0 0.01 0.13 0.18 0.19 0.14 0.12
0.10 0.01 0.03 0.10]T , and the percentage of the input speech data bits protected by the
different subcodes becomes[0, 0, 0, 0, 0.6%, 9.0%, 14.4%, 16.7%, 14.0%, 13.0%,
11.5%, 1.6%, 4.2%, 15.0%]T . The extrinsic output of Decoder I after 6 iterations becomes
µ6 = 0.98.

Observe in the context of the vector containing the corresponding speech bit fractions
that only 0.6% of the source bits are protected by ther5 = 0.3-rate subcode, whereas a
total of 23.4% of the speech bits is protected by ther6 = 0.35 and r7 = 0.4-rate sub-
codes. In order to enhance the protection of the more sensitive speech bits, we impose
now the source constraint of eq. (10.8) by requiring all the header information bits in a



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 525

10.9. A TURBO-DETECTED IRREGULAR CONVOLUTIONAL CODED AMR TRANSCEIVER 525

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

I E
1,

 I A
2

IA1, IE2

1.5 dB

1.2 dB

2 dB

inner code
NSC code

IRCC

Figure 10.19: Extrinsic information transfer functions of the outer NSC code and the designed IRCC,
as well as those of the inner code atEb/N0 = 1.2, 1.5 and 2 dB.

speech frame to be protected by the relatively strongr5 = 0.3-rate subcode. More explic-
itly, we impose the constraint ofα5r5/0.5 ≥ 7%, resulting in a new weight vector ofα1 =
[0 0 0 0 0.12 0.06 0.14 0.16 0.13 0.12 0.10 0.02 0.04 0.11]T , and the new vector of speech
bit fractions becomes[0, 0, 0, 0, 7.1%, 4.0%, 10.9%, 14.8%, 13.5%, 13.3%, 12.2%,
2.7%, 5.5%, 16%]T . The extrinsic output after 6 iterations is now slightly reduced to
µ6 = 0.97, which is close to the maximum value of 0.98. Furthermore, now, 14.9% of
the speech bits is protected by ther6 = 0.35 andr7 = 0.4-rate subcodes.

The extrinsic information transfer function of this IRCC isalso shown in Fig. 10.19. As
seen from the EXIT chart, the convergence SNR threshold for the system using the IRCC is
lower than 1.2 dB and there is a wider EXIT chart tunnel between the inner code’s curve and
the outer code’s curve which is particularly so at the lowIA values routinely encountered
during the first couple of iterations. Hence, given a limitednumber of iterations, we would
predict that the system using the IRCC may be expected to perform better than that using the
NSC outer code in the range ofEb/N0 = 1.5∼2 dB.

10.9.6 UEP AMR IRCC Performance Results

Finally, the achievable system performance was evaluated for a K = 340 speech bit per
20 ms transmission frame, resulting in an interleaver length of L = 688 bits, including
8 tail bits. This wideband-AMR speech coded [347] frame was generated at a bit rate of
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15.85 kbps in the codec’s mode 4. Before channel encoding, each frame of speech bits is
rearranged according to the descending order of the error sensitivity of the bits by considering
Figure 10.17, so that the more important data bits are protected by stronger IRCC subcodes.
An S-random interleaver [352] was employed withS = 15, where all of the subcodes’ bits
are interleaved together, and 10 iterations were performedby the iterative decoder.

The BER performance of the UEP system using IRCCs and that of the Equal Error Protec-
tion (EEP) benchmarker system using the NSC code are depicted in Fig. 10.20. It can be seen
that the UEP system outperforms the EEP system in the range ofEb/N0 = 1.5 ∼ 2.5 dB,
which matches our performance prediction inferred from theEXIT chart analysis of Section
10.9.4.
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Figure 10.20: BER performance of both the UEP system employing the IRCC and the EEP system
using the NSC code

The actual decoding trajectories of both the UEP system and the EEP system recorded
at Eb/N0=1.5 and 2 dB are shown in Fig. 10.21 and Fig. 10.22, respectively. These are
obtained by measuring the evolution of mutual information at the input and output of both
the inner decoder and the outer decoder as the iterative decoding algorithm is simulated. Due
to the relatively short interleaver block length of 688 bits, the actual decoding trajectories do
not closely follow the transfer functions especially when increasing the number of iterations.
Nonetheless, the UEP system does benefit from having a wider open tunnel during the first
couple of iterations and hence it is capable of reaching a higher extrinsic output in the end,
resulting in a lower BER.

The BER profiles of the UEP system atEb/N0=1.5, 2 and 2.5 dB are plotted in Fig.
10.23. As intended, different fractions of the speech framebenefitted from different degrees
of IRCC-aided protection. The first 60 bits represent the header information bits and the most
sensitive speech bits, which require the lowest BER.

The SegSNR performances of both the UEP and EEP system are depicted in Fig. 10.24.
The UEP system is seen to outperform the EEP system atEb/N0 ≤ 2.5 dB. Above this
Eb/N0 point, the two systems attained almost the same SegSNRs. To achieve a good speech
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Figure 10.21: The EXIT chart and the simulated decoding trajectories of the UEP system using our
IRCC as the outer code and a rate-1 recursive code as the inner code at bothEb/N0=1.5
and 2 dB

quality associated with SegSNR>9 dB, the UEP system requiresEb/N0 ≥ 2 dB, about 0.3
dB less than the EEP system.

10.9.7 UEP AMR Conclusions

In Figure 10.17 of Sectionsec:amr-wb-codec we briefly exemplified the error sensitivity of
the AMR-WB codec and then investigated the application of IRCCs for the sake of providing
UEP for the AMR-WB speech codec. The IRCCs were optimized withthe aid of EXIT charts
and the design procedure used was illustrated with the aid ofan example.

In the design of IRCCs, we aimed for matching the extrinsic information transfer function
of the outer IRCC to that of the inner code, where that of the latter is largely determined by
the channel SNR. At the same time, we imposed certain source constraints determined by the
error sensitivity of the AMR-WB source bits. Hence the designmethod proposed here may
be viewed as an attractive joint source/channel codec optimization.

The concatenated system using an IRCC benefits from having a low convergence SNR
threshold. Owing to its design flexibility, various transfer functions can be obtained for an
IRCC. We have shown that our IRCC was capable of achieving better convergence than a
regular NSC code having the same constraint length and code rate. Hence the system using
IRCCs has the potential of outperforming the correspondingarrangement using regular NSC
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Figure 10.22: The EXIT chart and the simulated decoding trajectories of the EEP system using our
NSC code as the outer code and a rate-1 recursive code as the inner code at both
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codes in the low SNR region.
Furthermore, IRCCs are capable of providing UEP, since it isconstituted by various sub-

codes having different code rates and hence different errorprotection capabilities. Multime-
dia source information, such as speech, audio and video source can benefit from this property,
when carefully designing the IRCC to match the source’s bit sensitivity. Our future research
aims for exchanging soft speech bits between the speech and channel decoders.

It is worth noting that an ISI channel can also be viewed as a rate-1 convolutional code, and
the transfer function of an equalizer for a precoded ISI channel [353] is similar to that of the
inner code here. Hence the proposed design method can be easily extended to ISI channels.

10.10 Chapter Summary
In Section 10.2 the various components of the narrowband AMRcodec have been discussed.
The error sensitivity of the narrowband AMR speech codec wascharacterised in 10.3, in
order to match various channel codecs to the different-sensitivity bits of the speech codec.
Specifically, we have shown that some bits in both the narrow-and wideband AMR codec are
more sensitive to channel errors than others and hence require different grade of protection
by channel coding. The error propagation properties of different bits over consecutive speech
frames have also been characterized. We have shown how the degradations produced by
errors propagate from one speech frame to the other and hencemay persist over consecutive
speech frames, especially in the scenario when the LSFs or the adaptive codebook delay bits
were corrupted.

In Section 10.4, a joint-detection assisted near-instantaneously adaptive CDMA speech
transceiver was designed, which allows us to switch betweena set of different source and
channel codec modes as well as transmission parameters, depending on the overall instanta-
neous channel quality. The 4.75 kbit/s and 10.2 kbit/s speech modes of the AMR codec have
been employed in conjunction with the novel family of RRNS based channel coding, using
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the reconfigurable BPSK or 4QAM based JD-CDMA scheme. In Section 10.6.2, the speech
bits were mapped into three different protection classes according to their respective error
sensitivities. In Section 10.8 the benefits of the multimodespeech transceiver clearly mani-
fested themselves in terms of supporting unimpaired speechquality under time-variant chan-
nel conditions, where a fixed-mode transceiver’s quality would become severely degraded by
the channel effects. The benefits of our dual-mode transceiver were further demonstrated with
the aid of the characteristic waveforms displayed in Figure10.15 and 10.16. Our AQAM/JD-
CDMA scheme achieved the best compromise between unimpaired error-free speech quality
and robustness, which has been verified by our informal listening tests shown in Table 10.6.

In Sectionsec:amr-wb-codec the wideband AMR codec was investigated and in Figure 10.17
we briefly exemplified the error sensitivity of the AMR-WB codec. Then IRCCs were in-
voked for the sake of providing UEP for the AMR-WB speech codec, which were optimized
with the aid of the novel tools of EXIT charts. More specifically, we aimed for matching the
EXIT transfer function of the outer IRCC to that of the inner code and we additionally im-
posed certain source constraints determined by the error sensitivity of the AMR-WB source
bits. This design procedure may be readily extended to otherjoint source and channel coding
schemes for the sake of attaining a near-capacity performance.
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Chapter 11
MPEG-4 Audio Compression and
Transmission

H-T. How and L. Hanzo

11.1 Overview of MPEG-4 Audio

The Moving Picture Experts Group (MPEG) was first established by the International Stan-
dard Organisation (ISO) in 1988 with the aim of developing a full audio-visual coding stan-
dard referred to as MPEG-1 [30–32]. The audio-related section MPEG-1 was designed to
encode digital stereo sound at a total bit rate of 1.4 to 1.5 Mbps - depending on the sampling
frequency, which was 44.1 kHz or 48 kHz - down to a few hundred kilobits per second [33].
The MPEG-1 standard is structured in layers, from Layer I to III. The higher layers achieve
a higher compression ratio, albeit at an increased complexity. Layer I achieves perceptual
transparency, i.e. subjective equivalence with the uncompressed original audio signal at 384
kbit/s, while Layer II and III achieve a similar subjective quality at 256 kbit/s and 192 kbit/s,
respectively [34–38].

MPEG-1 was approved in November 1992 and its Layer I and II versions were immediately
employed in practical systems. However, the MPEG Audio Layer III, MP3 for short only be-
came a practical reality a few years later, when multimedia PCs were introduced having im-
proved processing capabilities and the emerging Internet sparked off a proliferation of MP3
compressed teletraffic. This changed the face of the music world and its distribution of music.
The MPEG-2 backward compatible audio standard was approvedin 1994 [39], providing an
improved technology that would allow those who had already launched MPEG-1 stereo audio
services to upgrade their system to multichannel mode, optionally also supporting a higher
number of channels at a higher compression ratio. Potentialapplications of the multichannel
mode are in the field of quadraphonic music distribution or cinemas. Furthermore, lower
sampling frequencies were also incorporated, which include 16, 22.05, 24, 32, 44.1 and 48
kHz [39]. Concurrently, MPEG commenced research into even higher-compression schemes,

531
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Figure 11.1: MPEG-4 framework [41].

relinquishing the backward compatibility requirement, which resulted in the MPEG-2 Ad-
vanced Audio Coding standard (AAC) standard in 1997 [40]. This provides those who are
not constrained by legacy systems to benefit from an improvedmultichannel coding scheme.
In conjunction with AAC, it is possible to achieve perceptual transparent stereo quality at 128
kbit/s and transparent multichannel quality at 320 kbit/s for example in cinema-type applica-
tions.

The MPEG-4 audio recommendation is the latest standard completed in 1999 [41–45],
which offers in addition to compression further unique features that will allow users to inter-
act with the information content at a significant higher level of sophistication than is possible
today. In terms of compression, MPEG-4 supports the encoding of speech signals at bit rates
from 2 kbit/s up to 24 kbit/s. For coding of general audio, ranging from very low bit rates
up to high quality, a wide range of bit rates and bandwidths are supported, ranging from a bit
rate of 8 kbit/s and a bandwidth below 4 kHz to broadcast quality audio, including monoaural
representations up to multichannel configuration.

The MPEG-4 audio codec includes coding tools from several different encoding families,
covering parametric speech coding, CELP-based speech coding and Time/Frequency (T/F)
audio coding, which are characterised in Figure 11.1. It canbe observed that a parametric
coding scheme, namely Harmonic Vector eXcitation Coding (HVXC) was selected for cover-
ing the bit rate range from 2 to 4 kbit/s. For bit rates between4 and 24 kbit/s, a CELP-coding
scheme was chosen for encoding narrowband and wideband speech signals. For encoding
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general audio signals at bit rates between 8 and 64 kbit/s, a time/frequency coding scheme
based on the MPEG-2 AAC standard [40] endowed with additional tools is used. Here, a com-
bination of different techniques was established, becauseit was found that maintaining the
required performance for representing speech and music signals at all desired bit rates cannot
be achieved by selecting a single coding architecture. A major objective of the MPEG-4 au-
dio encoder is to reduce the bit rate, while maintaining a sufficiently high flexibility in terms
of bit rate selection. The MPEG-4 codec also offers other newfunctionalities, which include
bit rate scalability, object-based of a specific audio passage for example, played by a cer-
tain instrument representation, robustness against transmission errors and supporting special
audio effects.

MPEG-4 consists of Versions 1 and 2. Version 1 [41] contains the main body of the stan-
dard, while Version 2 [46] provides further enhancement tools and functionalities, that in-
cludes the issues of increasing the robustness against transmission errors and error protection,
low-delay audio coding, finely grained bit rate scalabilityusing the Bit-Sliced Arithmetic
Coding (BSAC) tool, the employment of parametric audio coding, using the CELP-based
silence compression tool and the 4 kbit/s extended variablebit rate mode of the HVXC tool.
Due to the vast amount of information contained in the MPEG-4standard, we will only con-
sider some of its audio compression components, which include the coding of natural speech
and audio signals. Readers who are specifically interested in text-to-speech synthesis or syn-
thetic audio issues are referred to the MPEG-4 standard [41]and to the contributions by
Scheireret al. [47, 48] for further information. Most of the material in this chapter will be
based on an amalgam of References [34–38, 40, 41, 43, 44, 46, 49]. In the next few sections,
the operations of each component of the MPEG-4 audio component will be highlighted in
greater detail. As an application example, we will employ the Transform-domain Weighted
Interleaved Vector Quantization (TWINVQ) coding tool, which is one of the MPEG-4 audio
codecs in the context of a wireless audio transceiver in conjunction with space-time cod-
ing [50] and various Quadrature Amplitude Modulation (QAM)schemes [51]. The audio
transceiver is introduced in Section 11.5 and its performance is discussed in Section 11.5.6.

11.2 General Audio Coding

The MPEG-4 General Audio (GA) coding scheme employs the Time/Frequency (T/F) coding
algorithm, which is capable of encoding music signals at bitrates from 8 kbit/s per channel
and stereo audio signals at rates from 16 kbit/s per stereo channel up to broadcast quality
audio at 64 kbit/s per channel and higher. This coding schemeis based on the MPEG-2
Advanced Audio Coding (AAC) standard [40], enriched by further addition of tools and
functionalities. The MPEG-4 GA coding incorporates a rangeof state-of-the-art coding tech-
niques, and in addition to supporting fixed bit rates it also accommodates a wide range of
bit rates and variable rate coding arrangements. This was facilitated with the aid of the con-
tinuous development of the key audio technologies throughout the past decades. Figure 11.2
shows in an non-exhaustive fashion some of the important milestones in the history of percep-
tual audio coding, with emphasis on the MPEG standardization activities. These important
developments and contributions, which will be highlightedin more depth during our further
discourse throughout this chapter, have also resulted in several well-known commercial audio
coding standards, such as the Dolby AC-2/AC-3 [412], the Sony Adaptive Transform Acous-
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Levine & Smith, Verma & Ming: 
Sinusoidal+Transients+Noise coding [100,101]

Park: Bit-Sliced Arithmetic Coding (BSAC) [98]

Herre & Johnston: Temporal Noise Shaping [97]
Iwakami: TWINVQ [96]

Herre: Intensity Stereo Coding [95]

Mahieux: backward adaptive prediction [91]
Edler: Window switching strategy [92]
Johnston: M/S stereo coding [93]

Johnston: Perceptual Transform Coding [90]

Scharf, Hellman: Masking effects [84,85]

Schroeder: Spread of masking [86]

Rothweiler: Polyphase Quadrature Filter [88]

Fletcher: Auditory patterns [81]

Nussbaumer: Pseudo-Quadrature Mirror Filter [87]

Princen: Time Domain Aliasing Cancellation [89]

Malvar: Modified Discrete Cosine Transform [94]

Sony: MiniDisc: Adaptive Transform
Acoustic Coding(ATRAC) [105]

NTT: Transform-domain Weighted
Interleaved Vector Quantization (TWINVQ) [96,108]

Philips: Digital Compact Cassette (DCC) [106]

Zwicker, Greenwood: Critical bands [82,83]

AT&T: Perceptual Audio Coder (PAC) [102]

Purnhagen: Parametric Audio Coding [99]

Figure 11.2: Important milestones in the development of perceptual audio coding.
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Figure 11.3: Threshold in quiet and masking threshold [416].

tic Coding (ATRAC) for MiniDisc [413], the Lucent Perceptual Audio Coder (PAC) [414]
and Philips Digital Compact Cassette (DCC) [415] algorithms. Advances in audio bit rate
compression techniques can be attributed to four key technologies:

A) Perceptual Coding
Audio coders reduce the required bit rates by exploiting thecharacteristics of masking the

effects of quantization errors in both the frequency and time domains by the human auditory
system, in order to render its effects perceptually inaudible [417–420]. The foundations of
modern auditory masking theory were laid down by Fletcher’sseminal paper in 1940 [421].
Fletcher [421] suggested that the auditory system behaves like a bank of bandpass filters
having continuously overlapping passbands. Research has shown that the ear appears to
perceive sounds in a number of critical frequency bands, as shown by Zwicker [418] and
Greenwood [422]. This model of the ear can be roughly described as a bandpass filterbank,
consisting of overlapping bandpass filters having bandwidths on the order of 100 Hz for signal
frequencies below 500 Hz. By contrast, the bandpass filter bandwidths of this model may be
as high as 5000 Hz at high frequencies. There exists up to twenty five such critical bands
in the frequency range up to 20 kHz [418]. Auditory masking refers to the mechanism by
which a fainter, but distinctly audible signal becomes inaudible, when a louder signal occurs
simultaneously (simultaneous masking), or within a very short time (forward or backward
masking) [423]. More specifically, in the case of simultaneous masking the two sounds occur
at the same time, for example in a scenario, when a conversation (masked signal) is rendered
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inaudible by a passing train (the masker). Forward masking is encountered when the masked
signal remains inaudible for a time after the masker has ended, while an example of this
phenomenon in backward masking takes place when the masked signal becomes inaudible
even before the masker begins. An example is the scenario during abrupt audio signal attacks
or transients, which create a pre-and post-masking regionsin time during which a listener will
not be able to perceive signals beneath the audibility thresholds produced by a masker. Hence,
specific manifestation of masking depends on the spectral composition of both the masker
and masked signal, and their variations as a function of time[424]. Important conclusions,
which can be drawn from all three masking scenarios [424,425] are firstly, that simultaneous
masking is more effective when the frequency of the masked signal is equal to or higher
than that of the masker. This result is demonstrated in Figure 11.3, where a masker rendered
three masked signals inaudible, which occurred at both lower and higher frequencies than
the masker. Secondly, while forward masking is effective for a considerable time after the
masker has decayed, backward masking may only be effective for less than 2 or 3 ms before
the onset of the masker [424].

A masking thresholdcan be determined, whereby signals below this threshold will be in-
audible. Again, Figure 11.3 depicts an example of the masking threshold of a narrowband
masker, having three masked signals in the neighbourhood. As long as the sound pressure
levels of the three maskees are below the masking threshold,the corresponding signals will
be masked. Observe that the slope of the masking threshold issteeper towards lower frequen-
cies, which implies that higher frequencies are easier to mask. When no masker is present, a
signal will be inaudible if its sound pressure level is belowthethreshold in quiet, as displayed
in Figure 11.3. Thethreshold in quietcharacterizes the amount of energy required for a pure
tone to be detectable by a listener in a noiseless environment. The situation discussed here
only involved one masker, but in real life, the source signals may consists of many simultane-
ous maskers, each having its own masking threshold. Thus, aglobal masking thresholdhas
to be computed, which describes the threshold ofjust noticeable distortionsas a function of
frequency [424].

B) Frequency Domain Coding
The evolution of time/frequency mapping or filterbank basedtechniques has contributed to

the rapid development in the area of perceptual audio coding. Some of the earliest frequency
domain audio coders include contributions from Brandenburg [426] and Johnston [427] al-
though subband based narrow- and wideband speech codecs were developed during the late
1970s and early 1980s [428–430]. Frequency domain encoders[431, 432], which are em-
ployed in all MPEG codecs offer a convenient way of controlling the frequency-domain dis-
tribution of the quantization noise, in conjunction with dynamic bit allocation applied to the
quantization of subband signals or transform coefficients.Essentially, the filterbank divides
the spectrum of the input signal into frequency subbands, which host the contributions of
the fullband signal in the subband concerned. Given the knowledge of an explicit perceptual
model, the filterbank facilitates the task of perceptually motivated noise shaping and that of
identifying the perceptually unimportant subbands. It is important to choose the appropri-
ate filterbank for bandsplitting. An adaptive filterbank exhibiting time-varying resolutions
in both the time and frequency domain is highly desirable. This issue has motivated inten-
sive research, experimenting with various switched or hybrid filterbank structures, where the
switching decisions were based on the time-variant input signal characteristics [433].

Depending on the frequency domain resolution, we can categorize frequency domain coders
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Figure 11.4: Uniform M -band analysis-synthesis filterbank [420].

as either transform coders [426, 427], or subband coders [434–436]. The basic principle of
transform coders is the multiplication of overlapping blocks of audio samples with a smooth
time-domain window function, followed by either the Discrete Fourier Transform (DFT) or
the Discrete Cosine Transform (DCT) [437], which transformthe input time-domain sig-
nal into a high resolution frequency domain representation, consisting of nearly uncorrelated
spectral lines or transform coefficients. The transform coefficients are subsequently quan-
tized and transmitted over the channel. At the decoder, the inverse transformation is applied.
By contrast, in subband codecs, the input signal is split into several uniform or non-uniform
width subbands using critically sampled [435], Perfect Reconstruction [438] (PR) or non-
PR [439] filterbanks. For example, as shown in Figure 11.4, when an input signal is split
into M bandpass signals, critical decimation by a factor ofM is applied. This means that
everymth sample of each bandpass signal is retained, which ensuresthat the total number
of samples across the subbands equals the number of samples in the original input signal.
At the synthesis stage, a summation of theM bandpass signals is performed, which leads to
interpolation between samples at the output.

The traditional categorization into the families of subband and transform coders has been
blurred by the emerging trend of combining both techniques in the codec design, as ex-
emplified by the MPEG codecs, which employ both techniques. In the contribution by
Temerinac [440], it was shown mathematically that all transforms used today in the audio
coding systems can be viewed as filterbanks. All uniform-width subband filterbanks can
be viewed as transforms of splitting a full-band signal inton components [440]. One of
the first filterbank structure proposed in early 1980s, was based on Quadrature Mirror Fil-
ters (QMF) [428]. Specifically, a near-PR QMF filter was proposed by Nussbaumer [441]
and Rothweiler [439]. In order to derive the pseudo-QMF structure, firstly the analysis-by-
synthesis filters have to meet the mirror image condition of [439]:

gk(n) = hk(L − 1 − n) . (11.1)
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Additionally, the precise relationships between the analysis and synthesis filtershk and
gk have to be established in order to eliminate aliasing. With reference to Figure 11.4, the
analysis and synthesis filters which eliminate both aliasing and phase distortions are given
by [435] :

hk(n) = 2w(n)cos

[

π

M
(k + 0.5)

(

n −
(L − 1)

2

)

+ θk

]

(11.2)

and

gk(n) = 2w(n)cos

[

π

M
(k + 0.5)

(

n −
(L − 1)

2

)

− θk

]

(11.3)

respectively, where

θk = (−1)k π

4
. (11.4)

The filterbank design is now reduced to the design of the time-domain window function,
w(n). The principles of Pseudo-QMFs have been applied in both theMPEG-1 and MPEG-2
schemes, which employ a 32-channel Pseudo-QMF for implementing spectral decomposition
in both the Layer I and II schemes. The same Pseudo-QMF filter was used in conjunction
with a PR cosine-modulated filterbank in Layer III in order toform a hybrid filterbank [35].
This hybrid combination could provide a high frequency resolution by employing a cascade
of a filterbank and an Modified Discrete Cosine Transform (MDCT) transform that splits each
subband further in the frequency domain [37].

The MDCT [437], which has been defined in the current MPEG-2 and 4 codecs, was
first proposed under the name of Time Domain Aliasing Cancellation (TDAC) by Princen
and Bradley [442] in 1986. It is essentially a PR cosine modulated filterbank satisfying the
constraint ofL = 2M , whereL is the window size whileM is the transform length. In
conventional block transforms, such as the DFT or DCT, blocks of samples are processed
independently, due to the quantization errors the decoded signal will exhibit discontinuities
at the block boundaries since in the context of conventionalblock-based transforms the time-
domain signal is effectively multiplied by a rectangular time-domain window, its sinc-shaped
frequency domain representation is convolved with the spectrum of the audio signal. This
results in the well-known Gibbs phenomenon. This problem ismitigated by applying the
MDCT, using a specific window function in combination with overlapping the consecutive
time-domain blocks. As shown in Figure 11.5, a window of2M samples collected from
two consecutive time-domain blocks undergoes cosine transformation, which producesM
frequency-domain transform coefficients. The time-domainwindow is then shifted byM
samples for computing the nextM transform coefficients. Hence, there will be a 50% overlap
in each consecutive DCT transform coefficient computation.This overlap will ensure a more
smooth evolution of the reconstructed time-domain samples, even though there will be some
residual blocking artifacts due to the quantization of the transform coefficients. Nonetheless,
the MDCT virtually eliminates the problem of blocking artifacts that plague the reconstructed
signal produced by non-overlapped transform coders. This problem often manifestated itself
as a periodic clicking in the reconstructed audio signals. Again, the processes associated
with the MDCT-based overlapped analysis and the corresponding overlap-add synthesis are
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Figure 11.5: (a) MDCT analysis process,2M samples are mapped intoM spectral coefficients (b)
MDCT synthesis process,M spectral coefficients are mapped to a vector of2M samples
which is overlapped byM samples with the vector of2M samples from the previous
frame, and then added together to obtain the reconstructed output ofM samples [420].

illustrated in Figure 11.5. At the analysis stage, the forward MDCT is defined as [443]:

X(k) =

2M−1
∑

n=0

x(n)hk(n), k = 0...M − 1 , (11.5)

where theM MDCT coefficientsX(k), k = 0...M −1 are generated by computing a series
of inner products between the2M samplesx(n) of the input signal and the corresponding
analysis filter impulse responsehk(n). The analysis filter impulse response,hk(n), is given
by [443]:

hk(n) = w(n)

√

2

M
cos

[

(2n + M + 1)(2k + 1)π

4M

]

, (11.6)

wherew(n) is a window function, and the specific window function used inthe MPEG stan-
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dard is the sine window function, given by [443]:

w(n) = sin

[(

n +
1

2

)

π

2M

]

. (11.7)

At the synthesis stage, the inverse MDCT is defined by [443]:

x(n) =

M−1
∑

k=0

[X(k)hk(n) + XP (k)hk(n + M)] . (11.8)

In Equation 11.8 we observe that the time-domain reconstructed samplex(n) is obtained
by computing a sum of the basis vectorshk(n) andhk(n + M) weighted by the transform
coefficientsX(k) andXP (k) on the basis of the current and previous blocks as it was also
illustrated in Figure 11.5. More specifically, the firstM -sample block of thekth basis vector,
hk(n), for 0 ≤ n ≤ M−1, is weighted by thekth MDCT coefficients of the current block. By
contrast, the second M-sample block of thekth basis vector,hk(n), for M ≤ n ≤ 2M − 1
is weighted by thekth MDCT coefficients of the previous block, namely byXP (k). The
inverse MDCT operation is also illustrated in Figure 11.5.

C) Window Switching
The window switching strategy was first proposed in 1989 by Edler [444], where a bit rate

reduction method was proposed for audio signals based on overlapping transforms. More
specifically, Edler proposed adapting the window functionsand the transform lengths to the
nature of the input signal. This improved the performance ofthe transform codec in the
presence of impulses and rapid energy on-set occurrences inthe input signal. The notion of
applying different windows according to the input signal’sproperties has been subsequently
incorporated in the MPEG codecs employing the MDCT, for example MPEG-1 Layer III and
MPEG-2 AAC codecs [40].

Typically, a long time-domain window is employed for encoding the identifiable stationary
signal segments while primarily a short window is used for localizing the pre-echo effects due
to the occurrence of sudden signal on-sets, as experienced during transient signal periods, for
example [40]. In order to ensure that the conditions of PR-based analysis and synthesis
filtering are property are preserved, transitional windowsare needed for switching between
the long and short windows [443]. These transitional windows are depicted graphically in
Figure 11.6, utilizing four window functions, namely long,short, start and stop windows,
which are also used in the MPEG-4 General Audio coding standard.

D) Dynamic Bit Allocation
Dynamic bit allocation aims for assigning bits to each of thequantizers of the transform

coefficients or subband samples, in such a way that the overall perceptual quality is maxi-
mized [445]. This is an iterative process, where in each iteration, the number of quantizing
levels is increased, while satisfying the constraint that the number of bits used must not ex-
ceed the number of bits available for that frame.

Furthermore, another novel bit allocation technique referred to as the “bit reservoir” scheme
was proposed for accommodating the sharp signal on-sets, which resulted in an increased
number of required bits during the encoding of transient signals [445]. This is due to the
fact that utilising the window switching strategy does not succeed in avoiding all audible
pre-echos, in particular, when sudden signal on-set occurrences near the end of a transform
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Figure 11.6: Window transition during (a) steady state using long windows and (b) transient conditions
employing start, short, and stop windows [40].

block [420]. In block-based schemes like conventional transform codecs, the inverse trans-
form spreads the quantization errors evenly in time over theduration of the reconstruction
block. This results in audible unmasked distortion throughout the low-energy signal segment
the instant of the signal attack [420]. Hence, the “bit reservoir” technique was introduced for
allocating more bits to those frames, which invoked pre-echo control. This “bit reservoir”
technique was employed in the MPEG Layer III and MPEG-2 AAC codecs [40].

11.2.1 Advanced Audio Coding

The MPEG-2 Advanced Audio Coding (AAC) scheme was declared an international stan-
dard by MPEG at the end of April 1997 [40]. The main driving factor behind the MPEG-2
AAC initiative was the quest for an efficient coding method for multichannel surround sound
signals such as the 5-channel (left, right, centre, left-surround and right-surround) system de-
signed for cinemas. The main block diagram of the MPEG-4 Time/Frequency (T/F) codec is
as shown in Figure 11.7, which was defined to be backward compatible to the MPEG-2 AAC
scheme [40].

In this section we commence with an overview of the AAC profiles based on Figure 11.7
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and each block will be discussed in more depth in Section 11.2.2 - 11.2.10. Following the
diagram shown in Figure 11.7, the T/F coder first decomposes the input signal into a T/F rep-
resentation by means of an analysis filterbank prior to subsequent quantization and coding.
The filterbank is based on the Modified Discrete Cosine Transform (MDCT) [442], which
is also known as Modulated Lapped Transform (MLT) [446]. In the case when the Scalable
Sampling Rate (SSR) mode is invoked, the MDCT will be preceded by a Polyphase Quadra-
ture Filter (PQF) [439] and a gain control module, which are not explicitly shown in Figure
11.7 but will be described in Section 11.2.2. In the encodingprocess, the filterbank takes in a
block of samples, applies the appropriate windowing function and performs the MDCT within
the filterbank block. The MDCT block length can be either 2048or 256 samples, switched
dynamically depending on the input signal’s characteristics. This window switching mecha-
nism was first introduced by Edler in [444]. Long block transform processing (2048 samples)
will improve the coding efficiency of stationary signals, but problems might be incurred when
coding transients signals. Specifically, this gives rise tothe problem of pre-echos, which oc-
cur when a signal exhibiting a sudden sharp signal envelope rise begins near the end of a
transform block [420]. In block-based schemes, such as transform codecs, the inverse trans-
form will spread the quantization error evenly in time over the reconstructed block. This may
result in audible unmasked quantization distortion throughout the low-energy section preced-
ing the instant of the signal attack [420]. By contrast, a shorter block length processing (256
samples) will be optimum for coding transient signals, although it suffers from inefficient
coding of steady-state signals due to the associated poorerfrequency resolution.

Figure 11.6 shows the philosophy of the block switching mechanisms during both steady
state and transient conditions. Specifically, two different window functions, the Kaiser-Bessel
derived (KBD) window [412] and the sine window can be used forwindowing the incoming
input signal for the sake of attaining an improved frequencyselectivity and for mitigating
the Gibb-oscillation, before the signal is transformed by the MDCT [412]. The potential
problem of appropriate block alignment due to window switching is solved as follows. Two
extra window shapes, so-called start and stop windows are introduced together with the long
and short windows depicted in Figure 11.6. The long window consists of 2048 samples while
a short window is composed of eight short blocks arranged to overlap by 50% with each other.
At the boundaries between long and short blocks, half of the transform blocks overlap with
the start and stop windows. Specifically, thestart window enables the transition between the
long and short window types. The left half of astart window seen at the bottom of Figure
11.6 shares the form as the left half of the long window type depicted at the top of Figure
11.6. The right half of thestart window has the value of unity for one-third of the length
and the shape of the right half of a short window for the central one-third duration of its total
length, with remaining one-third of thestart window duration length set to zero. Figure 11.6
(a) shows at the top of Figure 11.6 the steady state condition, where only long transform
blocks are employed. By contrast, Figure 11.6 (b) displays the block switching mechanism,
where we can observe that the start (#1) and stop (#10) windowsequences ensure a smooth
transition between long and short transforms. The start window can be either the KBD or the
sine-window, in order to match the previous long window type, while the stop window is the
time-reversed version of the start window.

Like all other perceptually motivated coding schemes, the MPEG-4 AAC-based codec
makes use of the signal masking properties of the human ear, in order to reduce the required
bit rate. By doing so, the quantization noise is distributedto frequency bands in such a



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 544

544 CHAPTER 11. MPEG-4 AUDIO COMPRESSION AND TRANSMISSION

way that it is masked by the total signal and hence it remains inaudible. The input audio
signal simultaneously passes through a psychoacoustic model as shown in Figure 11.7, that
determines the ratio of the signal energy to the masking threshold. An estimate of the masking
threshold is computed using the rules of psychoacoustics [34]. Here, a perceptual model
similar to the MPEG-1 psychoacoustic model II [40] is used, which will be described in
Section 11.2.3. A signal-to-mask ratio is computed from themasking threshold, which is
used to decide on the bit allocation, in an effort to minimizethe audibility of the quantization
noise.

After the MDCT carried out in the filterbank block of Figure 11.7 the spectral coefficients
are passed to the Spectral Normalization ’toolbox’, if the TWINVQ mode is used. The Spec-
tral Normalization tool will be described in Section 11.2.9. For AAC-based coding, the spec-
tral coefficients will be processed further by the Temporal Noise Shaping (TNS) ’toolbox’ of
Figure 11.7, where TNS uses a prediction approach in the frequency domain for shaping and
distributing the quantization noise over time.

Time domain ’Prediction’ block of Figure 11.7 or Long-Term Prediction (LTP) is an impor-
tant tool, which increases redundancy reduction of stationary signals. It utilises a second or-
der backward adaptive predictor, which is similar to the scheme proposed by Mahieux [447].
In the case of multichannel input signals, ’Intensity Stereo’ coding is also applied as seen
in Figure 11.7, which is a method of replacing the left and right stereo signals by a single
signal having embedded directional information. Mid/Side(M/S) stereo coding, as described
by Johnston [448] can also be used as seen in Figure 11.7, where instead of transmitting the
left and right signals, the sum and difference signals are transmitted.

The data-compression based bit rate reduction occurs in thequantization and coding stage,
where the spectral values can be coded either using the AAC, Bit Sliced Arithmetic Cod-
ing [449] (BSAC) or TWINVQ [450] techniques as seen in Figure 11.7. The AAC quanti-
zation scheme will be highlighted in Section 11.2.6 while the BSAC and TWINVQ-based
techniques will be detailed in Section 11.2.8 and 11.2.9, respectively. The AAC technique
invokes an adaptive non-linear quantizer and a further noise shaping mechanism employ-
ing scale-factors is implemented. The allocation of bits tothe spectral values is carried out
according to the psychoacoustic model, with the aim of suppressing the quantization noise
below the masking threshold. Finally, the quantized and coded spectral coefficients and con-
trol parameters are packed into a bitstream format ready fortransmission. In the following
sections, the individual components of Figure 11.7 will be discussed in further details.

11.2.2 Gain Control Tool

When the Scalable Sampling Rate (SSR) mode is activated, which facilitates the employment
of different sampling rates, the MDCT transformation taking place in the Filterbank block
of Figure 11.7 is preceded by uniformly-spaced 4-band Polyphase Quadrature Filter [441]
(PQF), plus a gain control module [41]. The PQF splits the input signal into four frequency
bands of equal width. When the SSR mode is invoked, lower bandwidth output signals, and
hence lower sampling rate signals can be obtained by neglecting the signals residing in the
lower-energy upper bands of the PQF. In the scenario, when the bandwidth of the input signal
is 24 kHz, equivalent to a 48 kHz sampling rate, output bandwidths of 18, 12 and 6 kHz can
be obtained when one, two or three PQF outputs are ignored, respectively [40].

The purpose of the gain control module is to appropriately attenuate or amplify the output
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Figure 11.8: Flow diagram of the psychoacoustic model II in MPEG-4 AAC coding.

of each PQF band, in order to reduce the potential pre-echo effects [420]. The gain control
module, which estimates and adjusts the gain factor of the subbands, according to the psy-
choacoustic requirements, can be applied independently toeach subband. At the encoder, the
gain control ’toolbox’ receives the time domain signals as its input and outputs the gain con-
trol data and the appropriately scaled signal whose length is equal to the length of the MDCT
window. The ’gain control data’ consists of the number of bands which experienced gain
modification, the number of modified segments and the indicesindicating the location and
level of gain modification for each segment. Meanwhile, the ’gain modifier’ associated with
each PQF band controls the gain of each band. This effectively smoothes the transient peaks
in the time domain prior to MDCT spectral analysis. Subsequently, the normal procedure of
coding stationary signals using long blocks can be applied.

11.2.3 Psychoacoustic Model

As argued in Section 11.2, the MPEG-4 audio codec and other perceptually optimized codecs
reduce the required bit rate by taking advantage of the humanauditory system’s inability to
perceive the quantization noise satisfying the conditionsof auditory masking. Again, per-
ceptual masking occurs, when the presence of a strong signalrenders the weaker signals
surrounding it in the frequency-domain imperceptible [424]. The psychoacoustic model used
in the MPEG-4 audio codec is similar to the MPEG-1 psychoacoustic model II [34].

Figure 11.8 shows the flow chart of the psychoacoustic model II. First a Hann window [41]
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is applied to the input signal and then the Fast Fourier Transform (FFT) provides the necessary
time-frequency mapping. The Hann window is defined as [41]:

w(n) =
1

2
[1 − cos(

2πn

N
)] (11.9)

whereN is the FFT length. This windowing procedure is applied for the sake of reducing the
frequency-domain Gibbs oscillation potentially imposed by a rectangular transform window.
Depending on whether the signal’s characteristics are of stationary or transient nature, FFT
sizes of either 1024 or 128 samples can be applied. The FFT-based spectral coefficient values
are then grouped according to the corresponding critical frequency band widths. This is
achieved by transforming the spectral coefficient values into the “partition index” domain,
where the partition indices are related near-linearly to the critical bands that were summarised
in Figure 11.9 (a) recorded at the sampling rate of 44.1 kHz. At low frequencies, a single
spectral line constitutes a partition, while at high frequencies many lines will be combined
in order to form a partition, as displayed in Figure 11.9 (b).This facilitates the appropriate
representation of the critical bands of the human auditory system [36]. Tables of the mapping
functions between the spectral and partition domains and their respective values for threshold
in quiet are supplied in the MPEG-4 standard for all available sampling rates [41].

During the FFT process of Figure 11.8, the polar representation of the transform-domain
coefficients is also calculated. Both the magnitude and phase of this polar representation
will be used for the calculation of the ’predictability measure’, which is used for quantifying
the predictability of the signal, as an indicator of the grade of tonality. The psychoacoustic
model identifies the tonal and noise-like components of the audio signal, because the masking
abilities of the two types of signals differ. In this psychoacoustic model, the masking ability of
a tone masking the noise, which is denoted byTMN(b), is fixed at 18 dB in all the partitions,
which implies that any noise within the critical band more than 18 dB belowTMN(b) will be
masked by the tonal component. The masking ability of noise masking tone, which is denoted
by NMT (b), is set to 6 dB for all partitions. The previous two frequency-domain blocks are
used for predicting the magnitude and phase of each spectralline for the current frequency-
domain block, via linear interpolation in order to obtain the ’predictability’ values for the
current block. Tonal components are more predictable and hence will have higher tonality
indices. Furthermore, a spreading function [41] is appliedin order to take into consideration
the masking ability of a given spectral component, which could spread across its surrounding
critical band.

The masking threshold is calculated in Figure 11.8 by using the tonality index and the
threshold in quiet,Tq, which is known as the lower threshold bound above which a sound is
audible. The masking threshold in each frequency-domain partition corresponds to the power
spectrum multiplied by an attenuation factor given by [41]:

Attenuation Factor = 10−SNR(b), (11.10)

implying that the higher the SNR, the lower the attenuation factor and also the masking
threshold, where the Signal-to-Noise (SNR) ratio is derived as:

SNR(b) = tb(b) · TMN(b) + (1 − tb(b)) · NMT (b), (11.11)
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Figure 11.9: (a) Relationship between the partition index and critical bands. (b) The conversion from
the FFT spectral lines to the partition index domain at the sampling rate of 44.1kHz for a
total of 1024 spectral lines per time-domain audio frame [34].

where the masking ability of tone-masking-noise and noise-masking-tone is considered, by
exploiting the tonality index in each partition.

The masking threshold is transformed back to the linear frequency scale by spreading
it evenly over all spectral lines corresponding to the partitions, as seen in Figure 11.10 in
preparation for the calculation of the Signal-to-Mask Ratios (SMR) for each subband. The
minimum masking threshold, as shown in Figure 11.10, takes into account the value of the
threshold in quiet,Tq, raising the masking threshold value to the value ofTq, if the masking
threshold value is lower thanTq. Finally, the SMR is computed for each scalefactor band
as the ratio of the signal energy within a frequency-domain scalefactor band to the minimum
masking threshold for that particular band, as depicted graphically in Figure 11.10. The SMR
values will then be used for the subsequent allocation of bits in each frequency band.

11.2.4 Temporal Noise Shaping

Temporal Noise Shaping (TNS) in audio coding was first introduced by Herreet al. in [451].
The TNS tool seen in Figure 11.7 is a frequency domain technique, which operates on the
spectral coefficients generated by the analysis filterbank.The idea is to employ linear predic-
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tive coding across the frequency range, rather than in the time-domain. TNS is particularly
important, when coding signals that vary dynamically over time, such as for example tran-
sient signals. Transform codecs often encounter problems when coding such signals since
the distribution of the quantization noise can be controlled over the frequency range but this
spectral noise shaping is typically time-invariant over a complete transform block. When a
signal changes drastically within a time-domain transformblock without activating a switch
to shorter time-domain transform lengths, the associated time-invariant distribution of quan-
tization noise may lead to audible audio artifacts.

The concept of TNS is based upon the time- and frequency-domain duality of the LPC
analysis paradigm [433], since it is widely recognized thatsignals exhibiting a non-uniform
spectrum can be efficiently coded either by directly encoding the spectral-domain transform
coefficients using transform coding, or by applying linear predictive coding methods to the
time-domain input signal. The corresponding ’duality statement’ relates to the encoding of
audio signals exhibiting a time-variant time-domain behaviour, such as in case of transient
signals. Thus, efficient encoding of transient signals can be achieved by either directly en-
coding their time domain representation or by employing predictive audio coding methods
across the frequency domain.
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Figure 11.11 shows the more detailed TNS filtering process seen in the centre of Fig-
ure 11.7. The TNS tool is applied to the spectral-domain transform coefficients after the
filterbank stage of Figure 11.7. The TNS filtering operation replaces the spectral-domain
coefficients with the prediction residual between the actual and predicted coefficient values,
thereby increasing their representation accuracy. Similarly, at the decoder an inverse TNS
filtering operation is performed on the transform coefficient prediction residual in order to
obtain the decoded spectral coefficients. TNS can be appliedto either the entire frequency
spectrum, or only to a part of the spectrum, such that the frequency-domain quantization can
be controlled in a time-variant fashion [40], again, with the objective of achieving agile and
responsive adjustment of the frequency-domain quantization scheme for sudden time-domain
transients. In combination with further techniques such aswindow switching and gain con-
trol, the pre-echo problem can be further mitigated. In addition, the TNS technique enables
the peak bit rate demand of encoding transient signals to be reduced. Effectively, this implies
that an encoder may stay longer in the conventional and more bit-rate efficient long encoding
block.

Additionally, the long-term time-domain redundancy of theinput signal may be exploited
using the well-documented Long Term Prediction (LTP) technique, which is frequently used
in speech coding [41,335,367].

11.2.5 Stereophonic Coding

The MPEG-4 scheme includes two specific techniques for encoding stereo coding of signals,
namely intensity-based stereo coding [452] and Mid/Side (M/S) stereo coding [453], both
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of which will be described in this section. These coding strategies can be combined by
selectively applying them to different frequency regions.

Intensity-based stereophonic coding is based on the analysis of high-frequency audio per-
ception, as outlined by Herreet al. in [452]. Specifically, high-frequency audio perception
is mainly based on the energy-time envelope of this region ofthe audio spectrum. It allows
a stereophonic channel pair to share a single set of spectralintensity values for the high-
frequency components with little or no loss in sound quality. Effectively, the intensity signal
spectral components are used to replace the corresponding left channel spectral coefficients,
while the corresponding spectral coefficients of the right channel are set to zero. Intensity-
based stereophonic coding can also be interpreted as a simplified approximation to the idea
of directional coding. Thus, only the information of one of the two stereo channel is retained,
while the directional information is obtained with the aid of two scalefactor values assigned
to the left and right channels [454].

On the other hand, M/S stereo coding allows the pair of stereochannels to be conveyed as
left/right (L/R) or as the mid/side (M/S) signals representing the M/S information on a block-
by-block basis [453], where M=(L+R)/2 and S=(L-R)/2. Here,The M/S matrix takes the sum
information M + S, and sends it to the left channel, and the difference information M - S, and
sends it to the right channel. When the left and right signals are combined, (M + S) + (M -
S) = 2M, the sum is M information only. The number of bit actually required to encode the
M/S information and L/R information is then calculated. In cases where the M/S channel pair
can be represented with the aid of fewer bits, while maintaining a certain maximum level of
quantization distortion, the corresponding spectral coefficients are encoded, and a flag bit is
set for signalling that the block has utilized M/S stereo coding. During decoding the decoded
M/S channel pair is converted back to its original left/right format.

11.2.6 AAC Quantization and Coding

After all the pre-processing stages of Figure 11.7 using various coding tools, as explained in
earlier sections, all parameters to be transmitted will nowhave to be quantized. The quan-
tization procedure follows an analysis-by-synthesis process, consisting of two nested itera-
tion loops, which are depicted in Figure 11.12. This involves the non-uniform quantization
of the spectral-domain transform coefficients [40]. Transform-domain non-linear quantizers
have the inherent advantage of facilitating spectral-domain noise shaping in comparison to
conventional linear quantizers [431]. The quantized spectral-domain transform coefficients
are then coded using Huffman coding. In order to improve the achievable subjective audio
quality, the quantization noise is further shaped using scalefactors [455], as it is highlighted
below.

Specifically, the spectrum is divided into several groups ofspectral-domain transform coef-
ficients, which are referred to as scalefactor bands (SFB). Each frequency-domain scalefactor
band will have its individual scalefactor, which is used to scale the amplitude of all spectral-
domain transform coefficients in that scalefactor band. This process shapes the spectrum of
the quantization noise according to the masking threshold portrayed in Figure 11.10, as esti-
mated on the basis of the psychoacoustic model. The width of the frequency-domain scalefac-
tor bands is adjusted according to the critical bands of the human auditory system [423], seen
in Figure 11.9. The number of frequency-domain scalefactorbands and their width depend on
the transform length and sampling frequency. The spectral-domain noise shaping is achieved
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Figure 11.12: AAC inner and outer quantization loops designed for encoding the frequency-domain
transform coefficients.

by adjusting the scalefactor using a step size of 1.5 dB. The decision as to which scalefactor
bands should be amplified/attenuated relies on the threshold computed from the psychoa-
coustic model and also on the number of bits available. The spectral coefficients amplified
have high amplitudes and this results in a higher SNR after quantization in the corresponding
scalefactor bands. This also implies that more bits are needed for encoding the transform
coefficients of the amplified scalefactor bands and hence thedistribution of bits across the
scalefactor bands will be altered. Naturally, the scalefactor information will be needed at the
decoder, hence the scalefactors will have to be encoded as efficiently as possible. This is
achieved by first exploiting the fact that the scalefactors usually do not change dramatically
from one scalefactor band to another. Thus a differential encoding proved useful. Secondly,
Huffman coding is applied, in order to further reduce the redundancy associated with the
encoding of the scalefactors [40].

Again, the AAC quantization and coding process consists of two iteration loops, the in-
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ner and outer loops. The inner iteration loop shown in Figure11.12 consists of a non-linear
frequency-domain transform coefficient quantizer and the noiseless Huffman coding module.
The frequency-domain transform coefficient values are firstquantized using a non-uniform
quantizer, and further processing using the noiseless Huffman coding tool is applied for
achieving a high coding efficiency. The quantizer step size is decreased until the number
of bits generated exceeds the available bit rate budget of the particular scalefactor band con-
sidered. Once the inner iteration process is completed, theouter loop evaluates the Mean
Square Error (MSE) associated with all transform coefficients for all scalefactor bands. The
task of the outer iteration loop is to amplify the transform coefficients of the scalefactor bands,
in order to satisfy the requirements of the psychoacoustic model. The MSE computed is com-
pared to the masking threshold value obtained from the associated psychoacoustic analysis.
When the best result, i.e. the lowest MSE is achieved, the corresponding quantization scheme
will be stored in memory. Subsequently, the scalefactor bands having a higher MSE than the
acceptable threshold are amplified, using a step size of 1.5 dB. The iteration process will be
curtailed, when all scalefactor bands have been amplified orit was found that the MSE of
no scalefactor band exceeds the permitted threshold. Otherwise, the whole process will be
repeated, using new SFB amplification values, as seen in Figure 11.12.

11.2.7 Noiseless Huffman Coding

The noiseless Huffman coding tool of Figure 11.12 is used forfurther reducing the redun-
dancy inherent in the quantized frequency-domain transform coefficients of the audio signal.
One frequency-domain transform coefficients quantizer perscalefactor band is used. The step
size of each of these frequency-domain transform coefficients quantizers is specified in con-
junction with a global gain factor that normalizes the individual scalefactors. The global gain
factor is coded as an 8-bit unsigned integer. The first scalefactor associated with the quan-
tized spectrum is differentially encoded relative to the global gain value and then Huffman
coded using the scalefactor codebook. The remaining scalefactors are differentially encoded
relative to the previous scalefactor and then Huffman codedusing the scalefactor codebook.

Noiseless coding of the quantized spectrum relies on partitioning of the spectral coeffi-
cients into sets. The first partitioning divides the spectrum into scalefactor bands that contain
an integer multiple of 4 quantized spectral coefficients. The second partitioning divides the
quantized frequency-domain transform coefficients into sections constituted by several scale-
factor bands. The quantized spectrum within such a section will be represented using a single
Huffman codebook chosen from a set of twelve possible codebooks. This includes a partic-
ular codebook that is used for signalling that all the coefficients within that section are zero.
Hence no spectral coefficients or scalefactors will be transmitted for that particular band, and
thus an increased compression ratio is achieved. This is a dynamic quantization process,
which varies from block to block, such that the number of bitsneeded for representing the
full set of quantized spectral coefficients is minimized. The bandwidth of the section and it
AUTOINDEX number=27 closes associated Huffman codebook indices must be transmitted
as side information, in addition to the section’s Huffman coded spectrum.

Huffman coding creates variable length codes [431,456], where higher probability symbols
are encoded by shorter codes. The Huffman coding principlesare highlighted in Figure 11.13.
Specifically, successive Column 0 in Figure 11.13 shows the set of symbols A, B, C and D,
which are Huffman coded in the successive columns. At first, the symbols are sorted from
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Figure 11.13: Huffman coding

top to bottom with decreasing probability. In every following step, the two lowest probability
symbols at the bottom are combined to one symbol, which is assigned the sum of the single
probabilities. The new symbol is then fitted into the list at the correct position according to its
new probability of occurrence. This procedure is continued, until all codewords are merged,
which leads to a coding tree structure, as seen in Figure 11.13. The assignment of Huffman
coded bits is carried out as follows. At every node, the upperbranch is associated with a
binary ’1’, and the lower branch with a binary ’0’, or the other way round. The complete
binary tree can be generated by recursively reading out the symbol list, starting with symbol
’III’. As a result, symbolA is coded as ’0’,B with ’1111’, C as ’10’ andD with ’110’since
none of the symbols constitutes a prefix of the other symbols,their decoding is unambiguous.

11.2.8 Bit-Sliced Arithmetic Coding

The Bit-Sliced Arithmetic Coding (BSAC) tool, advocated byParket al. [449] is an alterna-
tive to the AAC noiseless Huffman coding module of Section 11.2.7, while all other modules
of the AAC-based codec remain unchanged, as shown earlier inFigure 11.7. BSAC is in-
cluded in the MPEG-4 Audio Version 2 for supporting finely-grained bitstream scalability,
and further reducing the redundancy inherent in the scalefactors and in the quantized spec-
trum of the MPEG-4 T/F codec [457].

In MPEG-4 Audio Version 1, the General Audio (GA) codec supports coarse scalability
where a base layer bitstream can be combined with one or more enhancement layer bitstreams
in order to achieve a higher bit rate and thus an improved audio quality. For example, in a
typical scenario we may utilise a 24 kbit/s base layer together with two 16 kbit/s enhancement
layers. This gives us the flexibility of decoding in three modes, namely 24 kbit/s, 24+16=40
kbit/s or 24+16+16=56 kbit/s modes. Each layer carries significant amount of side informa-
tion and hence finely-grained scalability was not supportedefficiently in Version 1.

The BSAC tool provides scalability in steps of 1 kbit/s per channel. In order to achieve
finely-grained scalability, a ’bit-slicing’ scheme is applied to the quantized spectral coeffi-
cients [449]. A simple illustration assisting us in understanding the operation of this BSAC
algorithm is shown in Figure 11.14. Let us consider a quantized transform coefficient se-
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quence, x[n], each coefficient quantized with the aid of fourbits, assuming the values of
x[0]=5, x[1]=1, x[2]=7 and x[3]=2. Firstly, the bits of thisgroup of sequences are processed
in slices according to their significance, commencing with the MSB or LSB. Thus, the Most
Significant Bits (MSB) of the quantized vectors are grouped together yielding the bit-sliced
vector of 0000, followed by the 1st significant vector (1010), 2nd significant vector (0011)
and the least significant vector (1110), as displayed in the top half of Figure 11.14.

The next step is to process the four bit-sliced vectors, exploiting their previous values,
which is first initialized to zero. The MSB vector (0000) is first decomposed into two sub-
vectors. Subvector 0 is is composed of the bit values of the current vector whose previous
state is 0, while Subvector 1 consists of bit values of the current vector whose previous state
is 1. Note that when a specific previous state bit is zero, the next state bit will remain zero
if the corresponding bit value of the current vector is zero and it is set to 1, when either the
previous state bit or the current vector’s bit value, or bothis 1.

By utilising this BSAC scheme, finely-grained bit rate scalability can be achieved by em-
ploying first the most significant bits. An increasing numberof enhancement layers can be
utilised by using more of the less significant bits obtained through the bit-slicing procedure.
The actively encoded bandwidth can also be increased by providing bit slices of the transform
coefficients in the higher frequency bands.

11.2.9 Transform-domain Weighted Interleaved Vector Quantization

As shown in Figure 11.7, the third quantization and coding tool employed for compress-
ing the spectral components is the so-called Transform-domain Weighted Interleaved Vector
Quantization (TWINVQ) [41] scheme. It is based on an interleaved vector quantization and
LPC spectral estimation technique, and its performance wassuperior in comparison to AAC
coding at bit rates below 32 kbit/s per channel [450, 458–460]. TWINVQ invokes some of
the compression tools employed by the G.729 8 kbit/s standard codec [372], such as the LPC
analysis, LSF parameter quantization employing conjugatestructure VQ [461]. The opera-
tion of the TWINVQ encoder is shown in Figure 11.15. Each blockwill be described during
our further discourse in a little more depth. Suffice to say that TWINVQ was found to be
superior for encoding audio signals at extremely low bit rates, since the AAC codec per-
forms poorly at low bit rates, while the CELP mode of MPEG-4 isunable to encode music
signals [462]. The TWIN-VQ scheme has also been used as a general coding paradigm for
representing both speech and music signals at a rate of 1 bit per sample [463].

More specifically, the input signal, as shown in Figure 11.15, is first transformed into the
frequency domain using the MDCT. Before the transformation, the input signal is classified
into one of three modes, each associated with a different transform window size, namely a
long, medium or short window. In the long-frame mode, the transform size is equal to the
frame size of 1024. The transform operations are carried outtwice in a 1024-sample frame
with a half-transform size in the medium-frame mode, and eight times having a one-eighth
transform size in the short-frame mode. These different window sizes cater for different input
signal characteristics. For example, transient signals are best encoded using a small transform
size, while stationary signals can be windowed employing the normal long frame mode.

As shown in Figure 11.15, the spectral envelope of the MDCT coefficients is approximated
with the aid of LPC analysis applied to the time-domain signal. The LPC coefficients are then
transformed to the Line Spectrum Pair (LSP) parameters. A two-stage split vector quantizer
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Figure 11.15: TWINVQ encoder [458].

with inter-frame moving-average prediction was used for quantizing the LSPs, which was
also employed in the G.729 8 kbit/s standard codec [372]. TheMDCT coefficients are then
smoothed in the frequency domain using this LPC spectral envelope. After the smoothing by
the LPC envelope, the resultant MDCT coefficients still retain their spectral fine structure.
In this case, the MDCT coefficients would still exhibit a highdynamic range, which is not
amenable to vector quantization. Pitch analysis is also employed, in order to obtain the
basic harmonic of the MDCT coefficients, although this is only applied in the long frame
mode. The periodic MDCT peak components correspond to the pitch period of speech or
audio signal. The extracted pitch parameters are quantizedby the interleaved weighted vector
quantization scheme [464], as it will be explained later in this section.

As seen in Figure 11.15, the Bark-envelope is then determined from the MDCT coeffi-
cients, which is smoothed by the LPC spectrum. This is achieved by first calculating the
square-rooted power of the smoothed MDCT coefficients corresponding to each Bark-scale
subband. Subsequently, the average MDCT coefficient magnitudes of the Bark-scale sub-
bands are normalized by their overall average value in orderto create the Bark-scale enve-
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Figure 11.16: TWINVQ interleaved weighted vector quantization process [41].

lope. Before quantizing the Bark-scale envelope, further redundancy reduction is achieved
by employing interframe backward prediction, whereby the correlation between the Bark-
scale envelope of the current 23.2 ms frame and that of the previous frame is exploited. If
the correlation is higher than 0.5, the prediction is activated. Hence, an extra flag bit has
to be transmitted. The Bark-scale envelope is then vector quantized using the technique of
interleaved weighted vector quantization, as seen at the bottom of Figure 11.15 [463] and
augmented below.

At the final audio coding stage, the smoothed MDCT coefficients are normalized by a
global frequency-domain gain value, which is then scalar quantized in the logarithm do-
main, which takes place in the ’Weighted VQ’ block of Figure 11.15. Finally, the MDCT
coefficients are interleaved, divided into subvectors for the sake of reducing the associated
matching complexity, and vector quantized using a weighteddistortion measure derived from
the LPC spectral envelope [464]. The role of the weighting isthat of reducing the spectral-
domain quantization errors in the perceptually most vulnerable frequency regions. Moriya
et al. [464] proposed this vector quantizer, since it constitutesa promising way of reducing
the computational complexity incurred by vector quantization [461], as it will be highlighted
below. Specifically, this two-stage MDCT VQ-scheme uses twosets of trained codebooks
for vector quantizing the MDCT coefficients of a subvector, and the MDCT subvector is
reconstructed by superimposing the two codebook vectors. In the encoder, a full-search is
invoked for finding the combination of the code vector indices that minimizes the distortion
between the input and reconstructed MDCT subvector. This two-stage MDCT VQ-scheme
constitutes a sub-optimal arrangement in comparison to a single-stage VQ, however it signif-
icantly reduces the memory and the computational complexity required. The employment of
a fixed frame rate combined with the above vector quantizer improves its robustness against
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Parameters No. of Bits
Window mode 4
MDCT coefficients 295
Bark-envelope VQ 44
Prediction switch 1
Gain factor 9
LSF VQ 19
Total bits 372

Table 11.1: MPEG-4 TWINVQ bit allocation scheme designed for a rate of 16 kbit/s, which corre-
sponds to 372 bits per 23.22 ms frame.

errors, since it does not use any error sensitive compression techniques, such as adaptive bit
allocation or variable length codes [458].

The MPEG-4 TWINVQ bitstream structure is shown in Table 11.1 in its 16 kbit/s mode,
which will be used in our investigations in order to construct a multi-mode speech transceiver,
as detailed in Section 11.5. A substantial fraction of the bits were allocated for encoding the
MDCT coefficients, which were smoothed by the LPC and Bark-scale spectra. Specifically, a
total of 44 bits were allocated for vector quantizing the Bark-scale envelope, while one bit is
used for the interframe prediction flag. Nine bits were used for encoding the global spectral-
domain gain value obtained from the MDCT coefficients and theLSF VQ requires 19 bits
per 23.22 ms audio frame.

11.2.10 Parametric Audio Coding

An enhanced functionality provided by the MPEG-4 Audio Version 2 scheme is parametric
audio coding, with substantial contributions from Purnhagen et al. [465–467], Edler [468],
Levine [469] and Verma [470]. This compression tool facilitates the encoding of audio signals
at the very low bit rate of 4 kbit/s, using a parametric representation of the audio signal.
Similarly to the philosophy of parametric speech coding, here instead of waveform coding
the audio signal is decomposed into audio objects, which aredescribed by appropriate source
models and the quantized models parameters are transmitted. This coding scheme is referred
to as the Harmonic and Individual Lines plus Noise (HILN) technique, which includes object
models for sinusoids, harmonic tones and noise components [466].

Due to the limited bit rate budget at low target bit rate, onlythe specific parameters that are
most important for maintaining an adequate perceptual quality of the signal are transmitted.
More specifically, in the context of the HILN technique, the frequency and amplitude param-
eters are quantized using existing masking rules from psychoacoustics [424]. The spectral
envelope of the noise and harmonic tones is described using LPC techniques. Parameter pre-
diction is employed in order to exploit the correlation between the parameters across consec-
utive 23.22 ms frames. The quantized parameters are finally encoded using high-efficiency,
but error-sensitive Huffman coding. Using a speech/music classification tool in the encoder, it
is possible to automatically activate the coding of speech signals using the HVXC parametric
encoder or the HILN encoder contrived for music signals.

The operating bit rate of the HILN scheme is at a fixed rate of 6 kbit/s in the mono, 8kHz
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sampling rate mode and 16 kbit/s in the mono, 16 kHz sampling rate mode, respectively. In an
alternative proposal by Levineet al. in [471], an audio codec employing switching between
parametric and transform coding based representations wasadvocated. Sinusoidal signals and
noise are modelled using multiresolution sinusoidal modelling [469] and Bark-scale based
noise modelling, respectively, while the transients are represented by short-window based
of transform coding. Vermaet al. in [470] extended the work in [469] by proposing an
explicit transient model for sinusoidal-like signals and for noise. A slowly varying sinusoidal
signal is impulse-like in the frequency domain. By contrast, transients are impulse-like in the
time domain and cannot be readily represented with the aid ofShort-Time Fourier Transform
(STFT) based analysis. However, due to the duality between time and frequency, transients
which are impulse-like in the time domain, appear to be oscillatory in the frequency domain.
Hence, sinusoidal modelling can be applied after the transformation of the transient time-
domain signals to sinusoidal-like signals in the frequencydomain by quantizing their DCT
[470] coefficients.

11.3 Speech Coding in MPEG-4 Audio

While the employment of transform coding is dominant in coding music audio and speech
signals at rates above 24 kbit/s, its performance deteriorates, as the bit rate decreases. Hence,
in the MPEG-4 audio scheme, dedicated speech coding tools are included, operating at the
bit rates in the range between 2 and 24 kbit/s [44, 49]. Variants of the Code Excite Linear
Prediction (CELP) technique [365] are used for the encodingof speech signals at the bit
rates between 4 and 24 kbit/s, incorporating the additionalflexibility of encoding speech
represented at both 8 and 16 kHz sampling rates. Below 4 kbit/s, a sinusoidal technique,
namely the so-called Harmonic Vector eXcitation Coding (HVXC) scheme was selected for
encoding speech signals at rates down to a bit rate of 2 kbit/s. The HVXC technique will be
described in the next section, while CELP schemes will be discussed in Section 11.3.2.

11.3.1 Harmonic Vector Excitation Coding

Harmonic Vector Excitation Coding (HVXC) is based on the signal classification of voiced
and unvoiced speech segments, facilitating the encoding ofspeech signals at 2 kbit/s and 4
kbit/s [472, 473]. Additionally, it also supports variablerate encoding by including specific
coding modes for both background noise and mixed voice generation in order to achieve an
average bit rate as low as 1.2 - 1.7 kbit/s.

The basic structure of an HVXC encoder is shown in Figure 11.17, which first performs
LPC analysis for obtaining the LPC coefficients. The LPC coefficients are then quantized
and used in the inverse LPC filtering block in order to obtain the prediction residual signal.
The prediction residual signal is then transformed into thefrequency domain using the Dis-
crete Fourier Transform (DFT) and pitch analysis is invoked, in order to assist in the V/UV
classification process. Furthermore, the frequency-domain spectral envelope of the prediction
residual is quantized by using a combination of two-stage shape vector quantizer and a scalar
gain quantizer. For unvoiced segments, a closed-loop codebook search is carried out in order
to find the best excitation vector.

Specifically, the HVXC codec operates on the basis of a 20 ms frame length for speech
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Figure 11.17: Harmonic Vector Excitation Coding

signals represented at an 8 kHz sampling rate. Table 11.2 shows the bit allocation schemes of
the HVXC codec at rates of 2 and 4 kbit/s [474]. Both voiced andunvoiced speech segments
use the LSF parameters and the voiced/unvoiced indicator flag. For 2 kbit/s transmission
of voiced speech, the parameters include 18 bits for LSF quantization using a two-stage
split vector quantizer, which facilitates the reduction ofthe codebook search complexity by
mitigating the VQ matching complexity. Furthermore, 2 bitsare used for the V/UV mode
indication, where the extra one bit is used to indicate the background noise interval and
mixed speech modes for variable rate coding, as will be explained later. Furthermore, 7
bits are dedicated to pitch encoding, while 8 and 5 bits are used for encoding the harmonic
shape and gain of the prediction residual in Figure 11.17, respectively. Explicitly, for the
quantization of the harmonic spectral magnitudes/shapes of the prediction residual in Figure
11.17, a two-stage shape vector quantizer is used, where thesize of both the shape codebooks
is 16, both requiring a four-bit index. The codebook gains are quantized using three and two
bits, respectively. In the case of unvoiced speech transmission at 2 kbit/s, besides the LSF
quantization indices and the V/UV indication bits, the shape and gain codebook indices of
the Vector eXCitation (VXC) requires 6 and 4 bits, respectively for a 10 ms frame length.

For 4 kbit/s transmission, a coding enhancement layer is added to the base layer of 2 kbit/s.
In the case of LSF quantization, a 10-dimensional vector quantizer using an 8-bit codebook
is added to the 18 bits/20 ms LSF quantizer scheme of the 2 kbit/s codec mode seen at the
top of Table 11.2. This results in an increased bit rate requirement for LSF quantization,
namely from 18 bits/20ms to 26 bits/20ms. A split VQ scheme, composed of four vector
quantizers having addresses of 7, 10, 9 and 6 bits, respectively is added to the two-stage vector
quantizer required for the quantization of the harmonic shapes of the prediction residual in
Figure 11.17. This results in a total of bit rate budget increase of 32 bits/20 ms, as seen in
Table 11.2. For unvoiced speech segment encoding at 4 kbit/s, the excitation vectors of the
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Voiced Common Unvoiced
LSF1 (2-stage Split VQ at 2 kbit/s 18bits/20ms
LSF2 (at 4 kbit/s) 8bits/20ms
V/UV 2bits/20ms
Pitch 7bits/20ms
Harmonic1 Shape (at 2 kbit/s) 4+4bits/20ms
Harmonic1 Gain (at 2 kbit/s) 5bits/20ms
Harmonic2 Split (at 4 kbit/s) 32bits/20ms
VXC1 Shape (at 2 kbit/s) 6bits/10ms
VXV1 Gain (at 2 kbit/s) 4bits/10ms
VXC2 Shape (at 4 kbit/s) 5bits/5ms
VXC2 Gain (at 4 kbit/s) 3bits/5ms
2 kbit/s mode 40bits/20ms 40bits/20ms
4 kbit/s mode 80bits/20ms 80bits/20ms

Table 11.2: MPEG-4 Bit allocations at the fixed rates of 2.0 and 4.0 kbit/s using the HVXCcoding
mode [41].

Mode Background Noise Unvoiced Mixed Voiced/Voiced
V/UV 2bits/20ms 2bits/20ms 2bits/20ms
LSF 0bits/20ms 18bits/20ms 18bits/20ms
Excitation 0bits/20ms 8bits/20ms 20bits/20ms

(gain only) (pitch & harmonic
spectral parameters)

Total 2bits/20ms 28bits/20ms 40bits/20ms
= 0.1 kbit/s = 1.4 kbit/s = 2.0kbit/s

Table 11.3: Bit allocations for variable rate HVXC coding [41].

enhancement layer are obtained by utilising codebook search and the gain/shape codebook
indices, which minimize the weighted distortion are transmitted. Specifically, a 5-bit shape
codebook as well as 3-bit gain codebook are used and this procedure is updated every 5 ms.
For the unvoiced speech segments, the LPC coefficients of only the current 20 ms frame are
used for two 10 ms subframes without any interpolation procedure using the LPC coefficients
from the previous frame. Again, the codec’s performance wassummarised in Table 11.2.

Optional variable rate coding can be applied to the HVXC codec, incorporating back-
ground noise detection, where only the mode bits are received during the “background noise
mode”. When the HVXC codec is in the “background noise mode”, the decoding is similar
to the manner applied in an UV frame, but in this scenario no LSF parameters are transmit-
ted while only the mode bits are transmitted. Instead two sets of LSF parameters generated
during the previous two UV frames will be used for the LPC synthesis process. During the
background noise mode, fully encoded unvoiced (UV) frames are inserted every nine 20 ms
frames, in order to transmit the background noise parameters. This means only eight con-
secutive “background noise” frame are allowed to use the same two sets of LSF parameters
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CELP

Mode Narrowband Wideband
Sampling Rate (kHz) 8 16
Bandwidth (Hz) 300 - 3400 50 - 7000
Bit Rate (kbit/s) 3.85 - 12.2 10.9 - 24.0
Excitation Scheme MPE/RPE RPE
Frame Size (ms) 10 - 40 10 - 20
Delay (ms) 15 - 85 18.75 - 41.75

Multi Bit Rate Coding
Features Bit Rate Scalability

Bandwidth Scalability
Complexity Scalability

Table 11.4: Summary of various features of the MPEG-4 CELP codec [41].

from the previous UV frames. Hereafter new UV frame will be transmitted. This UV frame
may or may not be a real UV frame indicating the beginning of active speech bursts. This is
signalled by the transmitted gain factor. If the gain factoris smaller or equal to the previous
two gain values, then this UV frame is regarded as backgroundnoise. In this case the most
recent previously transmitted LSF parameters are used for maintaining the smooth variation
of the LSF parameters. Otherwise, the currently transmitted LSFs are used, since the frame
is deemed a real UV frame. During background noise periods, again-normalised Gaussian
noise vector is used instead of the stochastic prediction residual shape codebook entry em-
ployed during UV frame decoding. The prediction residual gain value is encoded using an
8-bit codebook entry, as displayed in Table 11.3.

Table 11.3 shows the bit allocation scheme of variable rate HVXC coding for four differ-
ent encoding modes, which are the modes dedicated to background noise, unvoiced, mixed
voiced and voiced segments. The mixed voiced and voiced modes share the same bit allo-
cation at 2 kbit/s. The unvoiced mode operates at 1.4 kbit/s,where only the gain parameter
of the vector excitation is transmitted. Finally, for the background noise mode only the two
voiced/unvoiced/noise signalling bits are transmitted.

11.3.2 CELP Coding in MPEG-4

While the HVXC mode of MPEG-4 supports the very low bit rate encoding of speech signals
for rates below 4 kbit/s, the CELP compression tool is used for bit rates in excess of 4 kbit/s,
as illustrated in the summary of Table 11.4. The MPEG-4 CELP tool enables the encoding
of speech signals at two different sampling rates, namely at8 and 16 kHz [475]. For nar-
rowband speech coding, the operating bit rates are between 3.85 and 12.0 kbit/s. Higher bit
rates between 10.9 and 24 kbit/s are allocated for wideband speech coding, which cater for a
higher speech quality due to their extended bandwidth of about 7 kHz. The MPEG-4 CELP
codec supports a range of further functionalities, which include the possibility of supporting
multiple bit rates, bit rate scalability, bandwidth scalability and complexity scalability. Addi-
tionally, the MPEG-4 CELP mode supports both fixed and variable bit rate transmission. The
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Figure 11.18: CELP encoder.

bit rate is specified by the user’s requirements, taking account of the sampling rate chosen
and also of the type of LPC quantizer (scalar quantizer or vector quantizer) selected. The
default CELP codec operating at 16 kHz sampling rate employsa scalar quantizer and in this
mode also the Fine Rate Control (FRC) switch is turned on. TheFRC mode allows the codec
to change the bit rate by skipping the transmission of the LPCcoefficients, by utilising the
Interpolation and theLPC Present flags [476], as it will be discussed in Section 11.3.3.
By contrast, at the 8 kHz sampling rate, the default MPEG-4 CELP mode utilises vector
quantizer and the FRC switch is turned off.

As shown in Figure 11.18, first the LPC coefficients of the input speech are determined
and converted to Log Area Ratios (LAR) or LSF. The LARs or LSFsare then quantized and
also inverse quantized, in order to obtain the quantized LPCcoefficients. These coefficients
are used by the LPC synthesis filter. The excitation signal consists of the superposition of
contributions by the adaptive codebook and one or more fixed codebooks. The adaptive
codebook represents the periodic speech components, whilethe fixed codebooks are used for
encoding the random speech components. The transmitted parameters include the LAR/LSF
codebook indices, the pitch lag for the adaptive codebook, the shape codebook indices of
the fixed codebook and the gain codebook indices of the adaptive as well as fixed codebook
gains. Multi-Pulse Excitation (MPE) [477] or Regular PulseExcitation (RPE) [478] can also
be used for the fixed codebooks. The difference among the two lies in the degree of freedom
for pulse positions. MPE allows more freedom in the choice ofthe inter-pulse distance than
RPE, which has a fixed inter-pulse distance. As a result, MPE typically achieves a better
speech coding quality than RPE at a given bit rate. On the other hand, the RPE scheme
imposes a lower computational complexity than MPE, which renders MPE a useful tool for
wideband speech coding, where the computational complexity is naturally higher than in
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Figure 11.19: LSF VQ operating in two modes, with or without LSF prediction at the second stage
VQ.

narrowband speech coding due to the doubled sampling rate used.

11.3.3 LPC Analysis and Quantization

Depending on the tolerable complexity, the LPC coefficientscan be quantized using either a
scalar or a vector quantization scheme. When a scalar quantizer is used, the LPC coefficients
have to be transformed to the LAR parameters. In order to obtain the LAR parameters,
the LPC coefficients are first transformed to the reflection coefficients [339]. The reflection
coefficients are then quantized using a look-up table. The relationship between the LARs and
the reflection coefficients are described by:

LAR[i] = log((1 − q rfc[i])/(1 + q rfc[i])) (11.12)

whereq rfc represents the quantized reflection coefficients. The necessity to transmit the
LARs depends on the amount of change between the current audio/speech spectrum and the
spectrum described by the LARs obtained by interpolation from the LARs of the adjacent
frame. If the spectral change is higher than a pre-determined threshold, then the current
LAR coefficients are transmitted to the decoder. The threshold is adaptive, depending on the
desired bit rate. If the resultant bit rate is higher than thedesired bit rate, the threshold is
raised, otherwise, it is lowered. In order to reduce the bit rate further, the LAR coefficients
can be losslessly Huffman coded. We note however that lossless coding will only be applied
to the LARs but not to the LSF, since only the LARs are scalar quantized and there is no LAR
VQ in the standard.

If vector quantization of the LPC coefficients is used, the LPC coefficients are be trans-
formed into the LSF domain. There are two methods of quantizing the LSFs in the CELP
MPEG-4 mode. We can either employ a two-stage vector quantizer without interframe LSF
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Interpolation LPC Present Description
1 1 LPCcur = interpolate(LPCprev + LPCnext)
0 0 LPCcur = LPCprev

0 1 LPCcur = LPC received in current frame

Table 11.5: Fine Rate Control utilising theInterpolation andLPC Present flags [41].

prediction, or in combination with interframe LSF prediction, as shown in Figure 11.19. In
the case of using a two-stage vector quantizer without interframe LSF prediction, the second-
stage VQ quantizes the LSF quantization error of the first stage. When interframe LSF predic-
tion is employed, the difference between the input LSFs and the predicted LSFs is quantized.
At the encoder, both methods are applied and the better method is selected by comparing the
LSF quantization error, obtained by calculating the weighted mean squared LSF error. In nar-
rowband speech coding, the number of LSF parameters is 10, while it is 20 in the wideband
MPEG-4 CELP speech encoding mode. The number of bits used forLSF quantization is 22
for the narrowband case and 46 bits for the wideband scenario, which involves 25 bits used
for quantizing the first ten LSF coefficients and 21 bits for the 10 remaining LSFs [41].

The procedure of spectral envelope interpolation can also be employed for interpolating
both the LARs and LSFs. TheInterpolation flag, together with theLPC Present flag un-
ambiguously describe, how the LPC coefficients of the current frame are derived. The asso-
ciated functionalities are summarised in Table 11.5. Specifically, if the Interpolation flag is
set to one, this implies that the LPC coefficients of the current 20 ms frame are calculated by
using the LPC coefficients of the previous and next frames. This would mean in general the
decoding of the current frame must be delayed by one frame. Inorder to avoid the latency
of one frame delay at the decoder, the LPC coefficients of the next frame are enclosed in
the current frame [41]. In this case, theLPC Present flag is set. Since the LPC coefficients
of the next frame are already present in the current frame, the next frame will contain no
LPC information. When theInterpolation flag is zero and theLPC Present flag is zero,
the LPC parameters of the current frame are those received inthe previous frame. When
the Interpolation flag is zero and theLPC Present flag is one, then the current frame is a
complete frame and the LPC parameters received in the current frame belong to the current
frame. Note that in order to maintain good subjective speechquality, it is not allowed to have
consecutive frames without the LPC information. This meanstheInterpolation flag may not
have a value of 1 in two successive frames.

11.3.4 Multi Pulse and Regular Pulse Excitation

In MPEG-4 CELP coding, the excitation vectors can be encodedeither using the Multi-Pulse
Excitation (MPE) [477] or Regular-Pulse Excitation (RPE) [478] techniques. MPE is the
default mode used for narrowband speech coding while RPE is the default mode for wideband
speech coding, due to its simplicity in comparison to the MPEtechnique.

In Analysis-by-Synthesis (AbS) based speech codecs, the excitation signal is represented
by a linear combination of the adaptive codevector and the fixed codevector scaled by their re-
spective gains. Each component of the excitation signal is chosen by an analysis-by-synthesis
search procedure in order to ensure that the perceptually weighted error between the input sig-
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Bit Rate Frame Length No. subframes No. pulses
Range (kbit/s) (ms) per frame per subframe

3.85 - 4.65 40 4 3...5
4.90 - 5.50 30 3 5...7
5.70 - 7.30 20 2 6...12
7.70 - 10.70 20 4 4...12
11.00 - 12.20 10 2 8...12

Table 11.6: Excitation configurations for narrowband MPE.

Bit Rate Frame Length No. subframes No. pulses
Range (kbit/s) (ms) per frame per subframe

10.9 - 13.6 20 4 5...11
13.7 - 14.1 20 8 3...10
14.1 - 17.0 10 2 5...11
21.1 - 23.8 10 4 3...10

Table 11.7: Excitation configurations for wideband MPE

nal and the reconstructed signal is minimized [367]. The adaptive codebook parameters are
constituted by the closed-loop delay and gain. The closed-loop delay is selected with the
aid of a focussed search in the range around the estimated open-loop delay. The adaptive
codevector is generated from a block of the past excitation signal samples associated with
the selected closed-loop delay. The fixed codevector contains several non-zero excitation
pulses. The excitation pulse positions obey an algebraic structure [367,479]. In order to im-
prove the achievable performance, after determining several sets of excitation pulse position
candidates, a combined search based on the amalgamation of the excitation pulse position
candidates and the pulse amplitudes is carried out.

For narrowband speech coding utilising Multi-Pulse Excitation (MPE) [477], the bit rate
can vary from 3.85 to 12.2 kbit/s when using different configurations based on varying the
frame length, the number of subframes per frame, and the number of pulses per subframe.
These different configurations are shown in Table 11.6 and Table 11.7 for narrowband MPE
and wideband MPE, respectively.

On the other hand, Regular Pulse Excitation (RPE) [478, 480]enables implementations
having significantly lower encoder complexity and only slightly reduced compression ef-
ficiency. The RPE principle is used in wideband speech encoding, replacing MPE as the
default mode and supporting bit rates between 13 and 24 kbit/s. RPE employs fixed pulse
spacing, which implies that the distance of subsequent excitation pulses in the fixed code-
book is fixed. This reduces the codebook search complexity required for obtaining the best
indices during the analysis-by-synthesis procedure.

Having introduced the most important speech and audio coding modes of the MPEG-4
codec, let us now characterize its performance in the next section.
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Figure 11.20: Segmental SNR performance for the encoding of speech signals, with respect to three
different MPEG-4 coding modes, where the MPE codec and the RPE codec are employed
at the sampling rates of 8 kHz and 16 kHz, respectively, while the TWINVQaudio codec
of Section 11.2.9 operates at 16 kHz sampling rate.

11.4 MPEG-4 Codec Performance

Figure 11.20 shows the achievable Segmental SNR performance of the MPEG-4 codec at
various bit rates applying various speech and audio coding modes. The MPE speech codec
mode has been applied for bit rates between 3.85 kbit/s and 12.2 kbit/s for encoding narrow-
band speech while the RPE codec in the CELP ’toolbox’ is employed for wideband speech
encoding spans from 13 kbit/s to 24 kbit/s. The TWINVQ audio codec of Section 11.2.9 was
utilised for encoding music signals for bit rates of 16 kbit/s and beyond. In Figure 11.20, the
codecs were characterized in terms of their performance, when encoding speech signals. As
expected, the Segmental SNR increases upon increasing the bit rate. When the RPE codec
mode is used, the wideband speech quality is improved in terms of both the objective Seg-
mental SNR measure and the subjective quality. For the case of TWINVQ codec mode of
Section 11.2.9, the Segmental SNR increases near-linearlywith the bit rates. It is worth not-
ing in Figure 11.20, that the RPE codec mode outperformed theTWINVQ codec mode over
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Figure 11.21: Segmental SNR performances versus frame index for three different bit rates of 3.85, 6.0
and 12.0 kbit/s, using the CELP tool in MPEG-4 Audio at a sampling rate of 8 kHz for
the speech file of five.bin.

its entire bit rate range in the context of wideband speech encoding. This is because the RPE
scheme is a dedicated speech codec while the TWINVQ codec is a more general audio codec,
but capable of also encoding speech signals.

Figure 11.21 displays the achievable Segmental SNR performance versus frame index for
the three different narrowband speech coding bit rates of 3.85, 6.0 and 12.0 kbit/s, using the
MPE tool of the MPEG-4 Audio standard. The MPE tool offers theoption of multi-rate
coding, which is very useful in adaptive transmission schemes that can adapt the source bit
rate according to the near-instantaneous channel conditions.

The performance of various codecs of the MPEG-4 toolbox is used for the encoding of
music signals is shown in Figure 11.22 at a sampling rate of 16kHz. We observe that as
expected, the TWINVQ codec of Section 11.2.9 performed better, than the CELP codec when
encoding music signals. The difference in Segmental SNR performance can be as high as 2
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Figure 11.22: Comparing Segmental SNR performances for two different codecs -CELP and
TWINVQ codecs at 16 kHz sampling rate, for coding of music file of moza.bin.

dB at the same bit rate.

11.5 MPEG-4 Space-Time Block Coded OFDM Audio Transceiver
1 The Third Generation (3G) mobile communications standards[481] are expected to provide
a wide range of bearer services, spanning from voice to high-rate data services, supporting
rates of at least 144 kbit/s in vehicular, 384 kbit/s in outdoor-to-indoor and 2 Mbit/s in indoor
as well as in picocellular applications.

In an effort to support such high rates, the bit/ symbol capacity of band-limited wireless
channels can be increased by employing multiple antennas [482]. The concept of Space-Time

1This section is based on How, Liew and Hanzo: An MPEG-4 Space-Time OFDM Audio Transceiver, submitted
to IEEE Proceedings of VTC, New Jersey, USA, 2001 and it was based on collaborative research with the co-authors.



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 570

570 CHAPTER 11. MPEG-4 AUDIO COMPRESSION AND TRANSMISSION

Trellis Codes (STTCs) was proposed by Tarokh, Seshadri and Calderbank [483] in 1998.
By jointly designing the FEC, modulation, transmit diversity and optional receive diversity
scheme, they increased the effective bits/symbol (BPS) throughput of band-limited wireless
channels, given a certain channel quality. A few months later, Alamouti [50] invented a low-
complexity Space-Time Block Code (STBC), which imposes a significantly lower complexity
at the cost of a slight performance degradation. Alamouti’sinvention motivated Tarokhet
al. [484,485] to generalise Alamouti’s scheme to an arbitrary number of transmitter antennas.
Then, Tarokhet al., Bauchet al. [486], Agrawal [487], Liet al. [488] and Naguibet al.
[489] extended the research of space-time codes from considering narrow-band channels to
dispersive channels [490]. The benefits of space time codingin terms of mitigating the effects
of channel fading are substantial and hence they were optionally adopted in the forthcoming
3G cellular standards [491].

In recent years substantial advances have been made in the field of Orthogonal Frequency
Division Multiplexing (OFDM), which was first proposed by Chang in his 1966 paper [492].
Research in OFDM was revived amongst others by Cimini in his often cited paper [493] and
the field was further advanced during the nineties, with a host of contributions documented
for example in [494]. In Europe, OFDM has been favoured for both Digital Audio Broad-
casting (DAB) and Digital Video Broadcasting (DVB) [495, 496] as well as for high-rate
Wireless Asynchronous Transfer Mode (WATM) systems due to its ability to combat the ef-
fects of highly dispersive channels [497]. Most recently OFDM has been also proposed for
the downlink of high-rate wireless Internet access [498].

At the time of writing we are witnessing the rapid emergence of intelligent multi-mode
High-Speed Downlink Packet Access (HSDPA) style mobile speech and audio communica-
tors [339, 371, 499], that can adapt their parameters in response to rapidly changing propa-
gation environments. Simultaneously, significant effortshave been dedicated to researching
multi-rate source coding, which are required by the near-instantaneously adaptive transceivers
[500]. The recent GSM Adaptive Multi-Rate (AMR) standardization activities have prompted
significant research interests in invoking the AMR mechanism in half-rate and full-rate chan-
nels [28]. Recently ETSI also standardized the wideband AMR(AMR-WB) speech codec
[337] for the GSM system, which provides a high speech quality due to representing the ex-
tra audio bandwidth of 7 kHz, instead of the conventional 3.1kHz bandwidth. Finally, the
further enhanced AMR-WB+ audio- and speech codec was detailed in Section 9.7.

The standardization activities within the framework of theMPEG-4 audio coding initia-
tive [501] have also reached fruition, supporting the transmission of natural audio signals,
including the representation of synthetic audio, such as Musical Instrument Digital Interface
(MIDI) [48] and Text-to-Speech (TTS) systems [42]. A wide ranging set of bit rates span-
ning from 2 kbit/s per channel up to 64 kbit/s per channel are supported by the MPEG-4 audio
codec.

Against this backcloth, in this section the underlying trade-offs of using the multi-rate
MPEG-4 TWINVQ audio encoder of Section 11.2.9, in conjunction with a turbo-coded [502]
and space-time coded [483], reconfigurable BPSK/QPSK/16QAM OFDM system [51] are
investigated, in order to provide an attractive system design example.



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 571

11.5. MPEG-4 SPACE-TIME BLOCK CODED OFDM AUDIO TRANSCEIVER 571

Source
Encoder

Channel
Interleaver

Modulator
IFFT

IFFT

Channel

Source
Decoder

Turbo
Decoder

Channel
Deinterleaver

Demodulator Space Time
Decoder FFT

FFT

Encoder
Space TimeTurbo

Encoder

Figure 11.23: Schematic overview of the turbo-coded and space-time coded OFDM system.

11.5.1 System Overview

Figure 11.23 shows the schematic of the turbo-coded and space-time coded OFDM system.
The source bits generated by the MPEG-4 TWINVQ encoder [41] are passed to the turbo
encoder using the half-rate, constraint length three turboconvolutional encoder TC(2,1,3),
employing an octal generator polynomial of (7,5). The encoded bits were channel inter-
leaved and passed to the modulator. The choice of the modulation scheme to be used by
the transmitter for its next OFDM symbol is determined by thechannel quality estimate of
the receiver based on the current OFDM symbol. Here, perfectchannel quality estimation
and perfect signalling of the required modem modes were assumed. In order to simplify
the task of signalling the required modulation modes from receiver A to transmitter B, we
employed the subband-adaptive OFDM transmission scheme proposed by Kelleret al. [51].
More specifically, the total OFDM symbol bandwidth was divided into equi-width subbands
having a similar channel quality, where the same modem mode was assigned. The modulated
signals were then passed to the encoder of the space-time block codeG2 [50], which employs
two transmitters and one receiver. The space-time encoded signals were OFDM modulated
and transmitted by the corresponding antennas.

The received signals were OFDM demodulated and passed to thespace-time decoders.
Logarithmic Maximum Aposteriori (Log-MAP) decoding [503]of the received space-time
signals was performed, in order to provide soft-outputs forthe TC(2,1,3) turbo decoder. The
received bits were then channel deinterleaved and passed tothe TC decoder, which again,
employs the Log-MAP decoding algorithm. The decoded bits were finally passed to the
MPEG-4 TWINVQ decoder for obtaining the reconstructed audiosignal.

11.5.2 System parameters

Table 11.8 and 11.9 gives an overview of the proposed system’s parameters. The transmission
parameters have been partially harmonised with those of theTDD-mode of the Pan-European
UMTS system [491]. The sampling rate is assumed to be 1.9 MHz,leading to a 1024 sub-
carrier OFDM symbol. The channel model used was the four-path COST 207 Typical Urban
(TU) Channel Impulse Response (CIR) [409], where each impulse was subjected to indepen-
dent Rayleigh fading having a normalised Doppler frequencyof 2.25 · 10−6, corresponding
to a pedestrian scenario at a walking speed of 3mph. The channel impulse response is shown
in Figure 11.24.

The channel encoder is a convolutional constituent coding based turbo encoder [502], em-
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System Parameters Value
Carrier Frequency 1.9 GHz
Sampling Rate 3.78 MHz
Channel
Impulse Response COST207
Normalised Doppler Frequency2.25 · 10−6

OFDM
Number of Subcarriers 1024
OFDM Symbols/Packet 1
OFDM Symbol Duration (1024+64)

x 1/(3.78 · 106)
Guard Period 64 samples
Modulation Scheme Fixed Modulations
Space Time Coding
Number of transmitters 2
Number of receivers 1
Channel Coding Turbo Convolutional
Constraint Length 3
Code Rate 0.5
Generator Polynomials 7, 5
Turbo Interleaver Length 464/928/1856/2784
Decoding Algorithm Log MAP
Number of Iterations 8
Source Coding MPEG-4 TWINVQ
Bit Rates (kbit/s) 16 - 64
Audio Frame Length (ms) 23.22
Sampling Rate (kHz) 44.1

Table 11.8: System Parameters

ploying block turbo interleavers and a pseudo-random channel interleaver. Again, the con-
stituent Recursive Systematic Convolutional (RSC) encoder employs a constraint length of
3 and the octal generator polynomial of (7,5). Eight iterations are performed at the decoder,
utilising the MAP-algorithm and the Log-Likelihood Ratio (LLR) soft inputs provided by the
demodulator.

The MPEG-4 TWINVQ audio coder has been chosen for this system,which can be pro-
grammed to operate at bit rates between 16 and 64 kbit/s. It provides a high audio quality at
an adjustable bit rate and will be described in more depth in the next section.

11.5.3 Frame Dropping Procedure

For completeness, we investigated the bit sensitivity of the TWINVQ codec. A high robust-
ness against bit errors, inflicted by wireless channels is animportant criterion for the design
of a communication system. A commonly used approach in quantifying the sensitivity of a
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Data + Parity Bits 928 1856 3712
Source Coded Bits/Packet 372 743 1486
Source Coding Bit Rate (kbit/s) 16 32 64
Modulation Mode BPSK QPSK 16QAM
Minimum Channel SNR for 1% FER (dB) 4.3 7.2 12.4
Minimum Channel SNR for 5% FER (dB) 2.7 5.8 10.6

Table 11.9: System parameters
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Figure 11.24: COST207 channel impulse response [409].
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Figure 11.25: SEGSNR degradation against bit index using MPEG-4 TWINVQ at 16 kbit/s.The cor-
responding bit allocation scheme was given in Table 11.1.

given bit is to invert this bit consistently in every audio frame and to evaluate the associated
Segmental SNR (SEGSNR) degradation [371]. Figure 11.25 shows the bit error sensitivity
of the MPEG-4 TWINVQ encoder of Section 11.2.9 at 16 kbit/s. This figure shows that the
bits representing the gain factors (bit 345-353), the LSF parameters (bit 354-372), and the
Bark-envelope (bit 302-343) are more sensitive to channel errors, compared to the bits rep-
resenting the MDCT coefficients (bit 7-301). The bits signalling the window mode used are
also very sensitive to transmission errors and hence have tobe well protected. The window
modes were defined in Section 11.2.

In Section 7.13.5.2 we studied the benefits of invoking multi-class embedded error cor-
rection coding assigned to the narrowband AMR speech codec,while in Section 10 in the
context of the AMR-WB codec. By contrast, in the wideband MPEG-4 TWINVQ system
studied here erroneously received audio frames are droppedand replaced by the previous
audio frame, since the system is aiming for maintaining a high audio quality and the error-
infested audio frames would result in catastrophic inter-frame error propagation. Hence the
system’s audio quality is determined by the tolerable transmission Frame Error Rate (FER),
rather than by the BER. In order to determine the highest FER that can be tolerated by the
MPEG-4 TWINVQ codec, it was exposed to random frame dropping and the associated
SEGSNR degradation as well as the informally assessed perceptual audio degradation was
evaluated. The corresponding SEGSNR degradation is plotted in Figure 11.26. Observe in
the figure that at a given FER the higher rate modes suffer froma higher SEGSNR degra-
dation. This is because their audio SEGSNR is inherently higher and hence for example
obliterating one frame in 100 frames inevitably reduces theaverage SEGSNR more dramat-
ically. We found that the associated audio quality expressed in terms of Segmental SNR
(SEGSNR) degradation was deemed to be perceptually objectionable for frame error rates in
excess of 1%. Again, frame dropping was preferred, which wasfound to be more beneficial
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Figure 11.26: SEGSNR degradation against FER for the MPEG-4 TWINVQ codec of Section 11.2.9,
at bit rates of 16, 32 and 64 kbit/s. The SEGSNR degradation values wereobtained, in
conjunction with the employment of frame dropping.

in audio quality terms, than retaining corrupted audio frames.
For the sake of completeness, Figure 11.27 shows the SEGSNR degradation when inflict-

ing random bit errors but retaining the corrupted audio frames. As expected, the highest bit
rate mode of 64 kbit/s suffered the highest SEGSNR degradation upon increasing the BER,
since a higher number of bits per frame was corrupted by errors, which degraded the audio
quality more considerably.

11.5.4 Space-Time Coding

Traditionally, the most effective technique of combating fading has been the exploitation
of diversity [483]. Diversity techniques can be divided into three broad categories, namely
temporal diversity, frequency diversity and spatial diversity. Temporal and frequency diver-
sity schemes [50] introduce redundancy in the time and/or frequency domain, which results
in a loss of bandwidth efficiency. Examples of spatial diversity are constituted by multi-
ple transmit- and/or receive-antenna based systems [483].Transmit-antenna diversity relies
on employing multiple antennas at the transmitter and henceit is more suitable for downlink
transmissions, since having multiple transmit antennas atthe base station is certainly feasible.
By contrast, receive-antenna diversity employs multiple antennas at the receiver for acquiring
multiple copies of the transmitted signals, which are then combined in order to mitigate the
channel-induced fading.

Space time coding [50,483] is a specific form of transmit-antenna diversity, which aims for
usefully exploiting the multipath phenomenon experiencedby signals propagating through
the dispersive mobile channel. This is achieved by combining multiple transmission antennas
in conjunction with appropriate signal processing at the receiver, in order to provide diversity
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Figure 11.27: SEGSNR degradation against BER for the MPEG-4 TWINVQ codec of Section 11.2.9,
at bit rates of 16, 32 and 64 kbit/s.

and coding gain in comparison to uncoded single-antenna scenarios [489].
In the system investigated, we employ a two-transmitter andone-receiver configuration, in

conjunction with turbo channel coding [502]. In Figure 11.28, we show the instantaneous
channel SNR experienced by the 512-subcarrier OFDM modem for a one-transmitter, one-
receiver scheme and for the space time block codeG2 [50] using two transmitters and one
receiver for transmission over the COST207 channel. The average channel SNR was 10 dB.
We can see in Figure 11.28 that the variation of the instantaneous channel SNR for a one-
transmitter, one-receiver scheme is severe. The instantaneous channel SNR may become as
low as 4 dB due to the deep fades inflicted by the channel. On theother hand, we can see
that for the space-time block codeG2 using one receiver the variation of the instantaneous
channel SNR is less severe. Explicitly, by employing multiple transmit antennas in Figure
11.28, we have significantly reduced the depth of the channelfades. Whilst space-time coding
endeavours to mitigate the fading-related time- and frequency-domain channel-quality fluc-
tuations at the cost of increasing the transmitter’s complexity, adaptive modulation attempts
to accommodate these channel quality fluctuations, as it will be outlined in the next section.

11.5.5 Adaptive Modulation

In order to accommodate the time- and frequency-domain channel quality variations seen in
case of the 1Tx 1Rx scenario of Figure 11.28, the employment of a multi-mode system is
desirable, which allows us to switch between a set of different source- and channel encoders
as well as various transmission parameters, depending on the instantaneous channel quality
[51].

In the proposed system, we have defined three operating modes, which correspond to the
uncoded audio bit rates of 16, 32 and 64 kbit/s. This corresponds to 372, 743 and 1486 bits
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Figure 11.28: Instantaneous channel SNR of 512-subcarrier OFDM symbols for one-transmitter one-
receiver (1Tx 1Rx) and for the space-time block code using two-transmitter one-receiver
(2Tx 1Rx).
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Figure 11.29: FER against channel BER performance of the adaptive OFDM modem conveying 512,
1024 and 2048 BPS for transmission over the channel model of Figure11.24.

per 23.22 ms audio frame. In conjunction with half-rate channel coding and also allowing
for check sums and signalling overheads, the number of transmitted turbo coded bits per
OFDM symbol is 928, 1856 and 3712 for the three source-coded modes, respectively. Again,
these bit rates are also summarised in Table 11.9. Each transmission mode uses a different
modulation scheme, depending on the instantaneous channelconditions. It is beneficial, if
the transceiver can drop its source rate, for example from 64kbit/s to 32 kbit/s and invoke
QPSK modulation instead of 16QAM, while maintaining the same bandwidth. Hence, during
good channel conditions the higher throughput, higher audio quality but less robust modes
of operation can be invoked, while the more robust but lower audio quality BPSK/16kbit/s
mode can be applied during degrading channel conditions.

Figure 11.29 shows the FER observed for all three modes of operation, namely for the 512,
1024 and 2048 versus the channel BER that was predicted by theOFDM receiver during the
channel quality estimation process. Again, the rationale behind using the FER, rather than
the BER for estimating the expected channel quality of the next transmitted OFDM symbol
is, because the MPEG-4 audio codec has to drop the turbo-decoded received OFDM symbols,
which contained transmission errors. This is because corrupted audio packets would result
in detrimental MPEG-4 decoding error propagation and audioartifacts. A FER of 1% was
observed for an estimated input bit error rate of about 4% forthe 16 and 32 kbit/s modes,
while a BER of over 5% was tolerable for the 64 kbit/s mode. This was, because the number
of bits per OFDM symbol was quadrupled in the 16QAM mode over which turbo interleaving
was invoked compared to the BPSK mode. The quadrupled interleaving length substantially
increased the turbo codec’s performance.

In Figure 11.30, we show our Bits Per Symbol (BPS) throughputperformance comparison
between the subband-adaptive and fixed mode OFDM modulationschemes. From the figure
we can see that at a low BPS throughput the adaptive OFDM modulation scheme outper-
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Figure 11.30: BPS performance comparison between the adaptive and fixed-mode OFDM modulation
schemes, when using space-time coding, for transmission over the channel model of
Figure 11.24.

forms the fixed OFDM modulation scheme. However, as the BPS throughput of the system
increases, the fixed modulation schemes become preferable.This is, because adaptive modu-
lation is advantageous, when there are high channel qualityvariations in the one-transmitter,
one receiver scheme. However, we have shown in Figure 11.28 that the channel quality
variations have been significantly reduced by employing twoG2 space-time transmitters.
Therefore, the advantages of adaptive modulation eroded due to the reduced channel qual-
ity variations in the space-time coded system. As a consequence, two different-complexity
system design principles can be proposed. The first system isthe lower-complexity one-
transmitter, one receiver scheme, which mitigates the severe variation of the channel quality
by employing subband adaptive OFDM modulation. By contrast, we can design a more
complexG2 space-time coded system, which employs fixed modulation schemes, since no
substantial benefits accrue from employing adaptive modulation, once the fading-induced
channel-quality fluctuations have been sufficiently mitigated by theG2 space-time code. In
the remainder of this section, we have opted for investigating the performance of the more
powerful space-time coded system, requiring an increased complexity.

11.5.6 System Performance

As mentioned before, the detailed subsystem parameters used in our space-time coded OFDM
system are listed in Table 11.8. Again, the channel impulse response profile used was the
COST 207 Typical Urban (TU) channel [409] having four paths and a maximum dispersion
of 4.5 µs, where each path was faded independently at a Doppler frequency of2.25 · 10−6

Hz.
The BER is plotted versus the channel SNR in Figure 11.31 for the three different fixed
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Figure 11.31: BER against Channel SNR performance of the fixed-mode OFDM transceiver of Ta-
ble 11.8 in conjunction with and without space time coding, in comparison to thecon-
ventional one-transmitter, one-receiver benchmarker for transmission over the channel
model of Figure 11.24.
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Figure 11.32: FER against Channel SNR performance of the fixed-mode OFDM transceiver of Table
11.8 in conjunction with and without space time coding, in comparison with the con-
ventional one-transmitter, one-receiver benchmarker for transmission over the channel
model of Figure 11.24.
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modes of operation conveying 512, 1024 or 2048 bits per OFDM symbol both with and
without space-time coding. The employment of space time coding improved the system’s
performance significantly, giving an approximately 3 dB channel SNR improvement at a BER
of 1%. As expected, the lowest throughput BPSK/ 16kbit/s mode was more robust in BER
terms, than the QPSK/32kbit/s and the 16QAM /64kbit/s configurations, albeit delivering a
lower audio quality. Similar results were obtained in termsof FER versus the channel SNR,
which are displayed in Figure 11.32, indicating that the most robust BPSK/16kbit/s scheme
performed better than the QPSK/32kbit/s and 16QAM/64kbit/s configurations, albeit at a
lower audio quality.

The overall SEGSNR versus channel SNR performance of the proposed audio transceiver
is displayed in Figure 11.33, again, employingG2 space-time coding using two transmitters
and one receiver. The lower-complexity benchmarker using the conventional one-transmitter,
one-receiver scheme was also characterized in the figure. Weobserve again that the employ-
ment of space time coding provides a substantial improvement in terms maintaining an error
free audio performance. Specifically, an SNR advantage of 4 dB was recorded compared
to the conventional lower-complexity one-transmitter, one-receiver benchmarker for all three
modulation modes. Furthermore, focussing on the three different operating modes using
space-time coding, namely on the curves drawn in continuouslines, the 16QAM/64kbit/s
mode was shown to outperform the QPSK/32kbit/s scheme in terms of both objective and
subjective audio quality for channel SNRs in excess of about10 dB. At a channel SNR of
about 9 dB, where the 16QAM and QPSK SEGSNR curves cross each other in Figure 11.33,
it is preferable to invoke the inherently lower audio quality, but unimpaired QPSK mode of
operation. Similarly, at a Channel SNR around 5 dB, when the QPSK/32kbit/s scheme’s
performance starts to degrade, it is better to invoke the unimpaired BPSK/ 16kbit/s mode of
operation, in order to avoid the channel-induced audio artifacts.

11.6 Turbo-Detected Space-Time Trellis Coded
MPEG-4 Audio Transceivers

N. S. Othman, S. X. Ng and L. Hanzo

11.6.1 Motivation and Background

In this section a jointly optimised turbo transceiver capable of providing unequal error pro-
tection is proposed for employment in an MPEG-4 coded audio transceiver. The transceiver
advocated consists of Space-Time Trellis Coding (STTC), Trellis Coded Modulation (TCM)
and two different-rate Non-Systematic Convolutional codes (NSCs) used for unequal error
protection. A benchmarker scheme combining STTC and a single-class protection NSC is
used for comparison with the proposed scheme. The audio performance of the both schemes
will be evaluated when communicating over uncorrelated Rayleigh fading channels. We will
demosntrate that the proposed unequal protection turbo-transceiver scheme requires about
two dBs lower transmit power than the single-class turbo benchmarker scheme in the context
of the MPEG-4 audio transceiver, when aiming for an effective throughput of 2 bits/symbol,
while exhibiting a similar decoding complexity.
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Figure 11.33: SEGSNR against channel SNR of the MPEG-4 TWINVQ based fixed modeOFDM
transceiver in conjunction with and without space time coding, in comparison to the
conventional one-transmitter, one-receiver benchmarker.

The previously characterized MPEG-4 standard [504, 505] defines a comprehensive mul-
timedia content representation scheme that is capable of supporting numerous applications
- such as streaming multimedia signals over the internet/intranet, content-based storage and
retrieval, digital multimedia broadcast or mobile communications. The audio-related section
of the MPEG-4 standard [506] defines audio codecs covering a wide variety applications -
ranging from narrowband low-rate speech to high quality multichannel audio, and from nat-
ural sound to synthesized sound effects as a benefit of its object-based approach used for
representing the audio signals.

The MPEG-4 General Audio (GA) encoder is capable of compressing arbitrary natural
audio signals. One of the key components of the MPEG-4 GA encoder is the Time/Frequency
(T/F) compression scheme constituted by the Advanced AudioCoding (AAC) and Transform
based Weighted Vector Quantization (TwinVQ), which is capable of operating at bitrates
ranging from 6 kbit/s to broadcast quality audio at 64 kbit/s[504].

The MPEG-4 T/F codec is based on the MPEG-2 AAC standard, extended by a number of
additional functionalities, such as Perceptual Noise Substitution (PNS) and Long Term Pre-
diction (LTP) for enhancing the achievable compression performance, and combined with the
TwinVQ for operation at extremely low bit rates. Another important feature of this codec is its



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 583

11.6. TURBO-DETECTED STTC AIDED MPEG-4 AUDIO TRANSCEIVERS 583

TCM

Encoder

STTC

Encoder

Fading

Channels

Iterative

Decoder

Audio/

DecoderEncoder

Audio/

SpeechSpeech

Encoder

Encoder

NSC1

NSC2

s

b1

b2

u1

u2

c

xNt

x1

.

yNr

y1 b̂1

b̂2

ŝ
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Figure 11.34: Block diagram of the serially concatenated STTC-TCM-2NSC assisted MPEG-4 audio

scheme. The notationss, ŝ, bi, b̂i, ui, c, xj andyk denote the vector of the audio
source symbol, the estimate of the audio source symbol, the class-i audio bits, the es-
timates of the class-i audio bits, the encoded bits of class-i NSC encoders, the TCM
coded symbols, the STTC coded symbols for transmitterj and the received symbols
at receiverk, respectively. Furthermore,Nt andNr denote the number of transmitters
and receivers, respectively. The symbol-based channel interleaver between the STTC
and TCM schemes as well as the two bit-based interleavers at the output ofNSC en-
coders are not shown for simplicity. The iterative decoder seen at the right is detailed in
Figure 11.35.

robustness against transmission errors in error-prone propagation channels [507]. The error
resilience of the MPEG-4 T/F codec is mainly attributed to the so-called Virtual Codebook
tool (VCB11), Reversible Variable Length Coding tool (RVLC) and Huffman Codeword Re-
ordering tool (HCR) [507, 508], which facilitate the integration of the MPEG-4 T/F codec
into wireless systems.

In this study the MPEG-4 audio codec was incorporated in a sophisticated unequal-protection
turbo transceiver using joint coding and modulation as inner coding, twin-class convolutional
outer coding as well as space time coding based spatial diversity. Specifically, maximal
minimum distance Non-Systematic Convolutional codes (NSCs) [509, p. 331] having two
different code-rates were used as outer encoders for providing unequal audio protection. On
one hand, Trellis Coded Modulation (TCM) [510–512] constitutes a bandwidth-efficient joint
channel coding and modulation scheme, which was originallydesigned for transmission over
Additive White Gaussian Noise (AWGN) channels. On the other hand, Space-Time Trel-
lis Coding (STTC) [511, 513] employing multiple transmit and receive antennas is capable
of providing spatial diversity gain. When the spatial diversity order is sufficiently high, the
channel’s Rayleigh fading envelope is transformed to a Gaussian-like near-constant enve-
lope. Hence, the benefits of a TCM scheme designed for AWGN channels will be efficiently
exploited, when TCM is concatenated with STTC.

We will demonstrate that significant iteration gains are attained with the aid of the pro-
posed turbo transceiver. The section is structured as follows. In Section 11.6.2 we describe
the MPEG-4 audio codec, while in Section 11.6.3 the architecture of the turbo transceiver
is described. We elaborate further by characterising the achievable system performance in
Section 11.6.4 and conclude in Section 11.6.5.

11.6.2 Audio Turbo Transceiver Overview

As mentioned above, the MPEG-4 AAC is based on time/frequency audio coding, which pro-
vides redundancy reduction by exploiting the correlation between subsequent audio samples
of the input signal. Furthermore, the codec uses perceptualmodelling of the human auditory
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system for masking the quantisation distortion of the encoded audio signals by allowing more
distortion in those frequency bands, where the signal exhibits higher energy peaks and vice
versa [507,508].

The MPEG-4 AAC is capable of providing an attractive audio quality versus bitrate per-
formance, yielding high-fidelity audio reconstruction forbit rates in excess of 32 kbit/s per
channel. In the proposed wireless system the MPEG-4 AAC is used for encoding the stereo
audio file at a bit rate of 48 kbit/s. The audio input signal wassampled at 44.1 kHz and hence
results in an audio framelength of 23.22 ms, which corresponds to 1024 audio input samples.
The compressed audio information is formatted into a packetized bitstream, which conveyed
one audio frame. In our system, the average transmission frame size is approximately 1116
bits per frame. The audio Segmental Signal to Noise Ratio (SegSNR) of this configuration
was found to beS0 = 16.28dB, which gives a transparent audio quality.

It is well recognised that in highly compressed audio bitstreams a low bit error ratio (BER)
may lead to perceptually unacceptable distortion. In orderto prevent the complete loss of
transmitted audio frames owing to catastrophic error propagation, the most sensitive bits
have to be well protected from channel errors. Hence, in the advocated system Unequal Error
Protection (UEP) is employed, where the compressed audio bitstream was partitioned into
two sensitivity classes. More explicitly, an audio bit, which resulted in a SegSNR degradation
above 16 dB upon its corruption was classified into protection class-1. A range of different
audio files were used in our work and the results provided are related to a 60 seconds long
excerpt of Mozart’s ”Clarinet Concerto (2nd movement - Adagio)”. From the bit sensitivity
studies using this audio file as the source, we found that approximately 50% of the total
number of MPEG-4 encoded bits falls into class-1.

At the receiver, the output of the turbo transceiver is decoded using the MPEG-4 AAC
decoder. During the decoding process, the erroneously received audio frames were dropped
and replaced by the previous error-free audio frame for the sake of avoiding an even more
dramatic error-infested audio-quality degradation [514,515].

11.6.3 The Turbo Transceiver

The block diagram of the serially concatenated STTC-TCM-2NSC turbo scheme using a
STTC, a TCM and two different-rate NSCs as its constituent codes is depicted in Figure 11.40.
Since the number of class-1 audio bits is approximately the same as that of the class-2 audio
bits and there are approximately 1116 bits per audio frame, we protect the 558-bit class-
1 audio sequence using a rate-R1 NSC encoder and the 558-bit class-2 sequence using a
rate-R2 NSC encoder. Let us denote the turbo scheme as STTC-TCM-2NSC-1 when the
NSC coding rates ofR1 = k1/n1 = 1/2 and R2 = k2/n2 = 3/4 are used. Further-
more, when the NSC coding rates ofR1 = 2/3 andR2 = 3/4 are used, we denote the
turbo scheme as STTC-TCM-2NSC-2. The code memory of the class-1 and class-2 NSC
encoders isL1 = 3 and L2 = 3, respectively. The class-1 and class-2 NSC coded bit
sequences are interleaved by two separate bit interleavers, before they are fed to the rate-
R3 = 3/4 TCM [510–512] scheme having a code memory ofL3 = 3. Code termination
was employed for the NSCs, TCM [510–512] and STTC codecs [511, 513]. The TCM sym-
bol sequence is then symbol-interleaved and fed to the STTC encoder. We invoke a 16-state
STTC scheme having a code memory ofL4 = 4 andNt = 2 transmit antennas, employing
M = 16-level Quadrature Amplitude Modulation (16QAM) [512]. TheSTTC employing
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Figure 11.35: Block diagram of the STTC-TCM-2NSC turbo detection scheme seen at theright of
Figure 11.40. The notationsπ(s,bi) andπ−1

(s,bi)
denote the interleaver and deinterleaver,

while the subscripts denotes the symbol-based interleaver of TCM and the subscriptbi

denotes the bit-based interleaver for class-i NSC. Furthermore,Ψ andΨ−1 denote LLR-
to-symbol probability and symbol probability-to-LLR conversion, whileΩ andΩ−1 de-
note the parallel-to-serial and serial-to-parallel converter, respectively. The notationm
denotes the number of information bits per TCM coded symbol. The thickness of the
connecting lines indicates the number of non-binary symbol probabilities spanning from
a single LLR per bit to2m and2m+1 probabilities [516] c©IEE, 2004, Ng, Chung and
Hanzo.

Nt = 2 requires one 16QAM-based termination symbol. The overall coding rate is given
by Rs1 = 1116/2520 ≈ 0.4429 andRs2 = 1116/2152 ≈ 0.5186 for the STTC-TCM-
2NSC-1 and STTC-TCM-2NSC-2 schemes, respectively. The effective throughput of the
STTC-TCM-2NSC-1 and STTC-TCM-2NSC-2 schemes islog2(M)Rs1 ≈ 1.77 Bits Per
Symbol (BPS) andlog2(M)Rs2 ≈ 2.07 BPS, respectively.

At the receiver, we employNr = 2 receive antennas and the received signals are fed to
the iterative decoders for the sake of estimating the audio bit sequences in both class-1 and
class-2, as seen in Figure 11.40. The STTC-TCM-2NSC scheme’s turbo decoder structure
is illustrated in Figure 11.35, where there are four constituent decoders, each labelled with a
round-bracketed index. The Maximum A-Posteriori (MAP) algorithm [511] operating in the
logarithmic-domain are employed by the STTC, TCM and the twoNSC decoders, respec-
tively. The notationsP (.) andL(.) in Figure 11.35 denote the logarithmic-domain symbol
probabilities and the Logarithmic-Likelihood Ratio (LLR)of the bit probabilities, respec-
tively. The notationsc, u andbi in the round brackets(.) in Figure 11.35 denote TCM coded
symbols, TCM information symbols and the class-i audio bits, respectively. The specific na-
ture of the probabilities and LLRs is represented by the subscriptsa, p, e andi, which denote
a priori, a posteriori, extrinsic andintrinsic information, respectively. The probabilities
and LLRs associated with one of the four constituent decoders having a label of{1, 2, 3a, 3b}
are differentiated by the identical superscripts of{1, 2, 3a, 3b}. Note that the superscript3
is used for representing the two NSC decoders of3a and3b. The iterative turbo-detection
scheme shown in Figure 11.35 enables an efficient information exchange between STTC,
TCM and NSCs constituent codes for the sake of achieving spatial diversity gain, coding
gain, unequal error proctection and a near-channel-capacity performance. The information
exchange mechanism between each constituent decoders is detailed in [516].

For the sake of benchmarking the scheme advocated, we created a powerful benchmark
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scheme by replacing the TCM and NSC encoders of Figure 11.40 by a single NSC codec
having a coding rate ofR0 = k0/n0 = 1/2 and a code memory ofL0 = 6. We will refer to
this benchmarker scheme as the STTC-NSC arrangement. All audio bits are equally protected
in the benchmarker scheme by a single NSC encoder and a STTC encoder. A bit-based
channel interleaver is inserted between the NSC encoder andSTTC encoder. Taking into
account the bits required for code termination, the number of output bits of the NSC encoder
is (1116 + k0L0)/R0 = 2244, which corresponds to 561 16QAM symbols. Again, a 16-
state STTC scheme havingNt = 2 transmit antennas is employed. After code termination,
we have561 + 1 = 562 16QAM symbols or4(562) = 2248 bits in a transmission frame
at each transmit antenna. The overall coding rate is given byR = 1116/2248 ≈ 0.4964
and the effective throughput islog2(16)R ≈ 1.99 BPS, both of which are very close to
the corresponding values of the STTC-TCM-2NSC-2 scheme. A decoding iteration of the
STTC-NSC benchmarker scheme is comprised of a STTC decodingand a NSC decoding
step.

We will quantify the decoding complexity of the proposed STTC-TCM-2NSC scheme and
that of the benchmarker scheme using the number of decoding trellis states. The total number
of decoding trellis states per iteration for the proposed scheme employing 2 NSC decoders
having a code memory ofL1 = L2 = 3, TCM havingL3 = 3 and STTC havingL4 = 4, is
given byS = 2L1 + 2L2 + 2L3 + 2L4 = 40. By contrast, the total number of decoding trellis
states per iteration for the benchmarker scheme having a code memory ofL0 = 6 and STTC
havingL4 = 4, is given byS = 2L0 + 2L4 = 80. Therefore, the complexity of the proposed
STTC-TCM-2NSC scheme having two iterations is equivalent to that of the benchmarker
scheme having a single iteration, which corresponds to 80 decoding states.

11.6.4 Turbo Transceiver Performance Results

In this section we evaluate the performance of the proposed MPEG-4 based audio transceiver
schemes using both the achievable Bit Error Ratio (BER) and the attainable Segmental Signal
to Noise Ratio (SegSNR).

Figures 11.36 and 11.37 depict the BER versus Signal to NoiseRatio (SNR) per bit, namely
Eb/N0, performance of the 16QAM-based STTC-TCM-2NSC-1 and STTC-TCM-2NSC-2
schemes, respectively, when communicating over uncorrelated Rayleigh fading channels. As
we can observe from Figures 11.36 and 11.37, the gap between the BER performance of
the class-1 and class-2 audio bits is wider for STTC-TCM-2NSC-1 compared to the STTC-
TCM-2NSC-2 scheme. More explicitly, the class-1 audio bitsof STTC-TCM-2NSC-1 have
a higher protection at the cost of a lower throughput compared to the STTC-TCM-2NSC-2
scheme. However, the BER performance of the class-2 audio bits of the STTC-TCM-2NSC-1
arrangement is approximately 0.5 dB poorer than that of STTC-TCM-2NSC-2 at BER=10−5.

Let us now study the audio SegSNR performance of the schemes in Figures 11.38 and 11.39.
As we can see from Figure 11.38, the SegSNR performance of STTC-TCM-2NSC-1 is infe-
rior in comparison to that of STTC-TCM-2NSC-2, despite providing a higher protection for
the class-1 audio bits. More explicitly, STTC-TCM-2NSC-2 requiresEb/N0 = 2.5 dB, while
STTC-TCM-2NSC-1 requiresEb/N0 = 3 dB, when having an audio SegSNR in excess of
16 dB after the fourth turbo iteration. Hence the audio SegSNR performance of STTC-TCM-
2NSC-1 is 0.5 dB poorer than that of STTC-TCM-2NSC-2 after the fourth iteration. Note
that the BER of the class-1 and class-2 audio bits for the corresponding values ofEb/N0,



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 587

11.6. TURBO-DETECTED STTC AIDED MPEG-4 AUDIO TRANSCEIVERS 587

ber12-a.gle

0 1 2 3 4 5 6
Eb/N0 (dB)

10-6

10-5

10-4

10-3

10-2

10-1

100
B

E
R

STTC-TCM-2NSC-1

class 2
class 1

6 iter
4 iter
2 iter
1 iter

Figure 11.36: BER versusEb/N0 performance of the 16QAM-based STTC-TCM-2NSC-1 assisted
MPEG-4 audio scheme, when communicating over uncorrelated Rayleighfading chan-
nels. The effective throughput was1.77 BPS.
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Figure 11.37: BER versusEb/N0 performance of the 16QAM-based STTC-TCM-2NSC-2 assisted
MPEG-4 audio scheme, when communicating over uncorrelated Rayleighfading chan-
nels. The effective throughput was2.07 BPS.
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Figure 11.38: Average SegSNR versusEb/N0 performance of the 16QAM-based STTC-TCM-2NSC
assisted MPEG-4 audio scheme, when communicating over uncorrelatedRayleigh fad-
ing channels. The effective throughput of STTC-TCM-2NSC-1 and STTC-TCM-2NSC-
2 was1.77 and2.07 BPS, respectively.
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Figure 11.39: Average SegSNR versusEb/N0 performance of the 16QAM-based STTC-NSC assisted
MPEG-4 audio benchmarker scheme, when communicating over uncorrelated Rayleigh
fading channels. The effective throughput was1.99 BPS.



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 589

11.6. TURBO-DETECTED STTC AIDED MPEG-4 AUDIO TRANSCEIVERS 589

SegSNR and iteration index is less than10−7 and10−4, respectively, for the two different
turbo schemes. After the sixth iteration, the SegSNR performance of both turbo schemes
becomes quite similar since the corresponding BER is low. These results demonstrate that
the MPEG-4 audio decoder requires a very low BER for both class-1 and class-2 audio bits,
when aiming for a SegSNR above 16 dB. In this context it is worth mentioning that Recursive
Systematic Convolutional codes (RSCs) [509–511] are capable of achieving a higher itera-
tion gain, but suffer from an error floor. Owing to this reasonthe SegSNR performance of the
schemes employing RSCs instead of NSCs was found to be poorer. The SegSNR results of
the turbo schemes employing RSCs instead of NSCs as the outercode were not shown here
for reasons of space economy.

Figure 11.39 portrays the SegSNR versusEb/N0 performance of the STTC-NSC audio
benchmarker scheme, when communicating over uncorrelatedRayleigh fading channels.
Note that if we reduce the code memory of the NSC constituent code of the STTC-NSC
benchmarker arrangement fromL0=6 to 3, the achievable performance becomes poorer, as
expected. If we increasedL0 from 6 to 7 (or higher), the decoding complexity would increase
significantly, while the attainable best possible performance is only marginally increased.
Hence, the STTC-NSC scheme havingL0=6 constitutes a good benchmarker scheme in terms
of its performance versus complexity tradeoffs. It is shownin Figures 11.38 and 11.39 that the
first iteration based performance of the STTC-NSC benchmarker scheme is better than that
of the proposed STTC-TCM-2NSC arrangements. However, at the same decoding complex-
ity of 160 (240) trellis decoding states STTC-TCM-2NSC-2 having 4 (6) iterations performs
approximately 2 (1.5) dB better than the STTC-NSC arrangement having 2 (3) iterations.

It is worth mentioning that other joint coding and modulation schemes directly designed for
fading channels, such as for example Bit Interleaved Coded Modulation (BICM) [511, 512,
517] were outperformed by the TCM-based scheme, since the STTC arrangement rendered
the error statistics more Gaussian-like [518].

11.6.5 MPEG-4 Turbo Transceiver Summary

In conclusion, a jointly optimised audio source-coding, outer unequal protection NSC channel-
coding, inner TCM and spatial diversity aided STTC turbo transceiver was proposed for
employment in a MPEG-4 wireless audio transceiver. With theaid of two different-rate
NSCs the audio bits were protected differently according totheir error sensitivity. The em-
ployment of TCM improved the bandwidth efficiency of the system and by utilising STTC
spatial diversity was attained. The performance of the proposed STTC-TCM-2NSC scheme
was enhanced with the advent of an efficient iterative joint decoding structure. The high-
compression MPEG-4 audio decoder is sensitive to transmission errors and hence it was
found to require a low BER for both classes of audio bits in order to attain a perceptually
pleasing, artefact-free audio quality. The proposed twin-class STTC-TCM-2NSC scheme
performs approximately 2 dB better in terms of the requiredEb/N0 than the single-class
STTC-NSC audio benchmarker.
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11.7 Turbo-Detected Space-Time Trellis Coded MPEG-4 Ver-
sus AMR-WB Speech Transceivers

N. S. Othman, S. X. Ng and L. Hanzo

11.7.1 Motivation and Background

The MPEG-4 TwinVQ audio codec and the AMR-WB speech codec are investigated in the
context of a jointly optimised turbo transceiver capable ofproviding unequal error protec-
tion. The transceiver advocated consists of serially concatenated Space-Time Trellis Coding
(STTC), Trellis Coded Modulation (TCM) and two different-rate Non-Systematic Convolu-
tional codes (NSCs) used for unequal error protection. A benchmarker scheme combining
STTC and a single-class protection NSC is used for comparison with the proposed scheme.
The audio and speech performance of both schemes is evaluated, when communicating over
uncorrelated Rayleigh fading channels. We will demonstrate that anEb/N0 value of about
2.5 (3.5) dB is required for near-unimpaired audio (speech)transmission, which is about 3.07
(4.2) dB from the capacity of the system.

In recent years, joint source-channel coding (JSCC) has been receiving significant research
attention in the context of both delay- and complexity-constrained transmission scenarios.
JSCC aims at designing the source codec and channel codec jointly for the sake of achieving
the highest possible system performance. As it was argued in[518], this design philosophy
does not contradict to the classic Shannonian source and channel coding separation theo-
rem. This is because instead of considering perfectly lossless Shannonian entropy coders
for source coding and transmitting their bitstreams over Gaussian channels, we consider
low-bitrate lossy audio and speech codecs, as well as Rayleigh-fading channels. Since the
bitstreams of the speech and audio encoders are subjected toerrors during wireless trans-
mission, it is desirable to provide stronger error protection for the audio bits, which have a
substantial effect on the objective or subjective quality of the reconstructed speech or audio
signals. Unequal error protection (UEP) is a particular manifestation of JSCC, which offers
a mechanism to match the error protection capabilities of channel coding schemes having
different error correction capabilities to the differing bit-error sensitivities of the speech or
audio bits [519].

Speech services are likely to remain the most important onesin wireless systems. However,
there is an increasing demand for high-quality speech transmissions in multimedia applica-
tions, such as video-conferencing [514]. Therefore, an expansion of the speech bandwidth
from the 300-3400 Hz range to a wider bandwidth of 50-7000 Hz is a key factor in meeting
this demand. This is because the low-frequency enhancementranging from 50 to 200 Hz
contributes to the increased naturalness, presence and comfort, whilst the higher-frequency
extension spanning from 3400 to 7000 Hz provides a better fricative differentiation and there-
fore a higher intelligibility. A bandwidth of 50 to 7000 Hz not only improves the intelligibil-
ity and naturalness of speech, but also adds an impression oftransparent communication and
eases speaker recognition. The Adaptive Multi-Rate Wideband (AMR-WB) voice codec has
become a 3GPP standard, which provides a superior speech quality [520].

For the sake of supporting high-quality multimedia services over wireless communica-
tion channels requires the development of techniques for transmitting not only speech, but
also video, music, and data. Therefore, in the field of audio-coding, high-quality, high-



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 591

11.7. TURBO-DETECTED STTC AIDED MPEG-4 VERSUS AMR-WB TRANSCEIVERS 591

TCM

Encoder

STTC

Encoder

Fading

Channels

Iterative

Decoder

Audio/

DecoderEncoder

Audio/

SpeechSpeech

Encoder

Encoder

NSC1

NSC2

s

b1

b2

u1

u2

c

xNt

x1

.

yNr

y1 b̂1

b̂2

ŝ
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Figure 11.40: Block diagram of the serially concatenated STTC-TCM-2NSC assisted audio/speech

scheme. The notationss, ŝ, bi, b̂i, ui, c, xj andyk denote the vector of the audio/speech
source symbol, the estimate of the audio/speech source symbol, the class-i audio/speech
bits, the estimates of the class-i audio/speech bits, the encoded bits of class-i NSC en-
coders, the TCM coded symbols, the STTC coded symbols for transmitterj and the
received symbols at receiverk, respectively. Furthermore,Nt andNr denote the num-
ber of transmitters and receivers, respectively. The symbol-basedchannel interleaver
between the STTC and TCM schemes as well as the two bit-based interleavers at the
output of NSC encoders are not shown for simplicity. The iterative decoder seen at the
right is detailed in Figure 11.43.

compression and highly error-resilient audio-coding algorithms are required. The MPEG-4
Transform-domain Weighted Interleaved Vector Quantization (TwinVQ) scheme is a low-bit-
rate audio-coding technique that achieves a high audio quality under error-free transmission
conditions at bitrates below 40 kbps [506]. In order to render this codec applicable to wireless
systems, which typically exhibit a high bit-error ratio (BER), powerful turbo transceivers are
required.

Trellis Coded Modulation (TCM) [510–512] constitutes a bandwidth-efficient joint chan-
nel coding and modulation scheme, which was originally designed for transmission over Ad-
ditive White Gaussian Noise (AWGN) channels. Space-Time Trellis Coding (STTC) [511,
513] is a joint spatial diversity and channel coding technique. STTC may be efficiently
employed in an effort to mitigate the effects of Rayleigh fading channels and render them
Gaussian-like for the sake of supporting the operation of a TCM code. Recently, a sophis-
ticated unequal-protection turbo transceiver using twin-class convolutional outer coding, as
well as joint coding and modulation as inner coding combinedwith STTC-based spatial di-
versity scheme was designed for MPEG-4 video telephony in [516, 518]. Specifically, max-
imal minimum distance Non-Systematic Convolutional codes(NSCs) [509, p. 331] having
two different code-rates were used as outer encoders for providing unequal MPEG-4 video
protection. Good video quality was attained at a low SNR and medium complexity by the
proposed transceiver. By contrast, in this section we studythe achievable performance of
the AMR-WB and the MPEG-4 TwinVQ speech and audio codecs in conjunction with the
sophisticated unequal-protection turbo transceiver of [516,518].

11.7.2 The AMR-WB Codec’S Error Sensitivity

The synthesis filter’s excitation signal in the AMR-WB codec is based on the Algebraic Code
Excited Linear Predictor (ACELP) algorithm, supporting nine different speech codec modes
having bitrates of 23.85, 23.05, 19.85, 18.25, 15.85, 14.25, 12.65, 8.85 and 6.6 kbps [520].
Like most ACELP-based algorithms, the AMR-WB codec interprets 20 ms segments of
speech as the output of a linear synthesis filter synthesizedfrom an appropriate excitation
signal. The task of the encoder is to optimise the filter as well as the excitation signal and
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Figure 11.41: SegSNR degradations versus bit index due to inflicting 100% Bit Error Rate(BER) in
the 317-bit, 20 ms AMR-WB frame

then represent both as efficiently as possible with the aid ofa frame of binary bits. At the
decoder, the encoded bit-based speech description is used to synthesize the speech signal by
inputting the excitation signal to the synthesis filter, thereby generating the speech segment.
Again, each AMR-WB frame represents 20 ms of speech, producing 317 bits at a bitrate of
15.85 kbps. The codec parameters that are transmitted over the noisy channel include the
so-called imittance spectrum pairs (ISPs), the adaptive codebook delay (pitch delay), the al-
gebraic codebook excitation index, and the jointly vector quantized, pitch gains as well as
algebraic codebook gains.

Most source coded bitstreams contain certain bits that are more sensitive to transmission
errors than others. A common approach used for quantifying the sensitivity of a given bit
is to consistently invert this bit in every speech or audio frame and evaluate the associated
Segmental SNR (SegSNR) degradation [515]. The SegSNR degradation is computed by
subtracting from the SegSNR recorded under error-free conditions the corresponding value
when there are channel-induced bit-errors.

The error sensitivity of the various encoded bits in the AMR-WB codec determined in this
way is shown in Figure 2. The results are based on samples taken from the EBU SQAM
(Sound Quality Assessment Material) CD, sampled at 16 kHz and encoded at 15.85 kbps. It
can be observed that the bits representing the ISPs, the adaptive codebook delay, the algebraic
codebook index and the vector quantized gain are fairly error sensitive. The least sensitive
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bits are related to the fixed codebook’s excitation pulse positions, as shown in Figure 11.41.
This is because, when one of the fixed codebook index bits is corrupted, the codebook entry
selected at the decoder will differ from that used in the encoder only in the position of one
of the non-zero excitation pulses. Therefore the corruptedexcitation codebook entry will be
similar to the original one. Hence, the algebraic codebook structure used in the AMR-WB
codec is quite robust to channel errors.

11.7.3 The MPEG-4 TwinVQ Codec’S Error Sensitivity

The MPEG-4 TwinVQ scheme is a transform coder that uses the modified discrete cosine
transformation (MDCT) [506] for transforming the input signal into the frequency-domain
transform coefficients. The input signal is classified into one of three modes, each associated
with a different transform window size, namely a long, medium or short window, catering for
different input signal characteristics. The MDCT coefficients are normalized by the spectral
envelope information obtained through the Linear Predictive Coding (LPC) analysis of the
signal. Then the normalized coefficients are interleaved and divided into sub-vectors by us-
ing the so-called interleave and division technique of [506], and all sub-vectors are encoded
separately by the VQ modules.
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Figure 11.42: SegSNR degradations due to inflicting a 100% BER in the 743-bit, 23.22 ms MPEG-4
TwinVQ frame

Similarly, bit error sensitivity investigations were performed in the same way, as described
in the previous section. Figure 11.42 shows the error sensitivity of the various bits of the
MPEG-4 TwinVQ codec for a bitrate of 32 kbps. The results provided are based on a 60
seconds long excerpt of Mozart’s ”Clarinet Concerto (2nd movement - Adagio)”. This stereo
audio file was sampled at 44.1 kHz and again, encoded at 32 kbps. Since the analysis frame
length is 23.22 ms, which corresponds to 1024 audio input samples, there are 743 encoded
bits in each frame. This figure shows that the bits representing the gain factors, the Line
Spectral Frequency (LSF) parameters, and the Bark-envelope are more sensitive to channel
errors, compared to the bits representing the MDCT coefficients. The bits signalling the
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Figure 11.43: Block diagram of the STTC-TCM-2NSC turbo detection scheme seen at theright of
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while the subscripts denotes the symbol-based interleaver of TCM and the subscriptbi

denotes the bit-based interleaver for class-i NSC. Furthermore,Ψ andΨ−1 denote LLR-
to-symbol probability and symbol probability-to-LLR conversion, whileΩ andΩ−1 de-
note the parallel-to-serial and serial-to-parallel converter, respectively. The notationm
denotes the number of information bits per TCM coded symbol [516]c©IEE, 2004,
Hanzo.

window mode used are also very sensitive to transmission errors and hence have to be well
protected. The proportion of sensitive bits was only about 10%. This robustness is deemed to
be a benefit of the weighted vector-quantization procedure which uses a fixed-length coding
structure as opposed to using an error-sensitive variable-length structure, where transmission
errors would result in a loss of synchronisation.

11.7.4 The Turbo Transceiver

Once the bit error sensitivity of the audio/speech codecs was determined, the bits of the
AMR-WB and the MPEG-4 TwinVQ codec are protected according totheir relative impor-
tance. Figure 11.40 shows the schematic of the serially concatenated STTC-TCM-2NSC
turbo scheme using a STTC and a TCM scheme as well as two different-rate NSCs as its
constituent codes. Let us denote the turbo scheme using the AMR-WB codec as STTC-
TCM-2NSC-AMR-WB, whilst STTC-TCM-2NSC-TVQ refers to the turbo scheme using
the MPEG-4 TwinVQ as the source codec. For comparison, both schemes protect 25% of
the most sensitive bits in class-1 using an NSC code rate ofR1 = k1/n1 = 1/2. By con-
trast, the remaining 75% of the bits in class-2 are protectedby an NSC scheme having a
rate of R2 = k2/n2 = 3/4. The code memory of the class-1 and class-2 encoders is
L1 = 3 andL2 = 3, respectively. The class-1 and class-2 NSC coded bit sequences are
interleaved by two separate bit interleavers, before they are fed to the rate-R3 = 3/4 TCM
scheme [510–512] having a code memory ofL3 = 3. Code termination was employed for
the NSCs, as well as for the TCM [510–512] and STTC codecs [511,513]. The TCM symbol
sequence is then symbol-interleaved and fed to the STTC encoder as seen in Figure 11.43.
We invoke a 16-state STTC scheme having a code memory ofL4 = 4 andNt = 2 transmit
antennas, employingM = 16-level Quadrature Amplitude Modulation (16QAM) [512]. The
STTC scheme employingNt = 2 requires a single 16QAM-based termination symbol. In
the STTC-TCM-2NSC-AMR-WB scheme the 25% of the bits that are classified into class-1
includes 23 header bits, which gives a total of 340 NSC1-encoded bits. In the ITU stream
format [521], the header bits of each frame include the frametypes and the window-mode
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used.
Hence, the overall coding rate of the STTC-TCM-2NSC-AMR-WB scheme becomesRAMRWB =

340/720 ≈ 0.4722. By contrast, the overall coding rate of the STTC-TCM-2NSC-TVQ
scheme isRTV Q = 744/1528 ≈ 0.4869. The effective throughput of the STTC-TCM-
2NSC-AMR-WB and STTC-TCM-2NSC-TVQ schemes islog2(M) · RAMRWB ≈ 1.89
Bits Per Symbol (BPS) andlog2(M) · RTV Q ≈ 1.95 BPS, respectively.

At the receiver, we employNr = 2 receive antennas and the received signals are fed to
the iterative decoders for the sake of estimating the audio bit sequences in both class-1 and
class-2, as seen in Figure 11.40. The STTC-TCM-2NSC scheme’s turbo decoder structure
is illustrated in Figure 11.43, where there are four constituent decoders, each labelled with
a round-bracketed index. The Maximum A-Posteriori (MAP) algorithm [511] operating in
the logarithmic-domain is employed by the STTC and TCM schemes as well as by the two
NSC decoders, respectively. The iterative turbo-detection scheme shown in Figure 11.43
enables an efficient information exchange between the STTC,TCM and NSCs constituent
codes for the sake of achieving spatial diversity gain, coding gain, unequal error protection
and a near-channel-capacity performance. The informationexchange mechanism between
each constituent decoders is detailed in [516].

For the sake of benchmarking both audio schemes advocated, we created a powerful bench-
mark scheme for each of them by replacing the TCM and NSC encoders of Figure 11.40 by
a single-class NSC codec having a coding rate ofR0 = k0/n0 = 1/2 and a code memory
of L0 = 6. Note that if we reduce the code memory of the NSC constituentcode of the
STTC-NSC benchmarker arrangement fromL0=6 to 3, the achievable performance becomes
poorer, as expected. If we increasedL0 from 6 to 7 (or higher), the decoding complexity
would double, while the attainable performance is only marginally increased. Hence, the
STTC-NSC scheme havingL0=6 constitutes a good benchmarker scheme in terms of its
performance versus complexity tradeoffs. We will refer to this benchmarker scheme as the
STTC-NSC-TVQ and the STTC-NSC-AMR-WB arrangement designedfor the audio and
the speech transceiver, respectively. Again, all audio andspeech bits are equally protected
in the benchmarker scheme by a single NSC encoder and a STTC encoder. A bit-based
channel interleaver is inserted between the NSC encoder andSTTC encoder. Taking into
account the bits required for code termination, the number of output bits of the NSC en-
coder of the STTC-NSC-TVQ benchmarker scheme is(744 + k0L0)/R0 = 1500, which
corresponds to 375 16QAM symbols. By contrast, in the STTC-NSC-AMR-WB scheme
the number of output bits after taking into account the bits required for code termination
becomes(340 + k0L0)/R0 = 692, which corresponds to 173 16QAM symbols. Again, a
16-state STTC scheme havingNt = 2 transmit antennas is employed. After code termina-
tion, we have375 + 1 = 376 16QAM symbols or4(376) = 1504 bits in a transmission
frame at each transmit antenna for the STTC-NSC-TVQ. The overall coding rate is given by
RTV Q−b = 744/1504 ≈ 0.4947 and the effective throughput islog2(16)RTV Q−b ≈ 1.98
BPS, both of which are very close to the corresponding valuesof the STTC-TCM-2NSC-
TVQ scheme. Similary, for the STTC-NSC-AMR-WB scheme, aftercode termination, we
have173 + 1 = 174 16QAM symbols or4(174) = 696 bits in a transmission frame at each
transmit antenna. This gives the overall coding rate asRAMRWB−b = 340/696 ≈ 0.4885
and the effective throughput becomeslog2(16)RAMRWB−b ≈ 1.95 BPS. Again, both of the
values are close to the corresponding values of the STTC-TCM-2NSC-AMR-WB scheme. A
decoding iteration of each of the STTC-NSC benchmarker schemes is comprised of a STTC
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decoding and a NSC decoding step.
We will quantify the decoding complexity of the proposed STTC-TCM-2NSC schemes and

that of its corresponding benchmarker schemes using the number of decoding trellis states.
The total number of decoding trellis states per iteration ofthe proposed scheme employing 2
NSC decoders having a code memory ofL1 = L2 = 3, using the TCM scheme havingL3 =
3 and the STTC arrangement havingL4 = 4, becomesS = 2L1 +2L2 +2L3 +2L4 = 40. By
contrast, the total number of decoding trellis states per iteration for the benchmarker scheme
having a code memory ofL0 = 6 and for the STTC havingL4 = 4 is given byS = 2L0 +
2L4 = 80. Therefore, the complexity of the proposed STTC-TCM-2NSC scheme having two
iterations is equivalent to that of the benchmarker scheme having a single iteration, which
corresponds to 80 decoding states.

11.7.5 Performance Results

In this section we comparatively study the performance of the audio and speech transceiver
using the Segmental Signal to Noise Ratio (SegSNR) metric.
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Figure 11.44: Average SegSNR versusEb/N0 performance of the 16QAM-based STTC-TCM-2NSC
assisted MPEG-4 TwinVQ audio scheme, when communicating over uncorrelated
Rayleigh fading channels. The effective throughput was1.95 BPS.

Figures 11.44 and 11.45 depict the audio SegSNR performanceof the STTC-TCM-2NSC-
TVQ and that of its corresponding STTC-NSC-TVQ benchmarkerschemes, respectively,
when communicating over uncorrelated Rayleigh fading channels. It can be seen from Fig-
ures 11.44 and 11.45 that the non-iterative single-detection based performance of the STTC-
NSC-TVQ benchmarker scheme is better than that of the STTC-TCM-2NSC assisted MPEG-
4 TwinVQ audio scheme. However, at the same decoding complexity quantified in terms
of the number of trellis decoding states the STTC-TCM-2NSC-TVQ arrangement performs
approximately 0.5 dB better in terms of the required channelEb/N0 value than the STTC-
NSC-TVQ benchmarker scheme, both exhibiting a SegSNR of 13.8 dB. For example, at
the decoding complexity of 160 trellis decoding states, this corresponds to the STTC-TCM-
2NSC-TVQ scheme’s 4th iteration, whilst in the STTC-NSC-TVQ scheme this corresponds
to the 2nd iteration. Therefore, we observe in Figures 11.44and 11.45 that the STTC-TCM-



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 597

11.7. TURBO-DETECTED STTC AIDED MPEG-4 VERSUS AMR-WB TRANSCEIVERS 597

segsnr-tvqbench.gle

0 1 2 3 4 5 6
Eb/N0 (dB)

4

6

8

10

12

14

16

S
eg

S
N

R

STTC-NSC-TVQ

4 iter
3 iter
2 iter
1 iter

Figure 11.45: Average SegSNR versusEb/N0 performance of the 16QAM-based STTC-NSC assisted
MPEG-4 TwinVQ audio benchmarker scheme, when communicating overuncorrelated
Rayleigh fading channels. The effective throughput was1.98 BPS.
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Figure 11.46: Average SegSNR versusEb/N0 performance of the 16QAM-based STTC-TCM-2NSC
assisted AMR-WB speech scheme, when communicating over uncorrelated Rayleigh
fading channels. The effective throughput was1.89 BPS.
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Figure 11.47: Average SegSNR versusEb/N0 performance of the 16QAM-based STTC-NSC as-
sisted AMR-WB speech benchmarker scheme, when communicating over uncorrelated
Rayleigh fading channels. The effective throughput was1.95 BPS.

2NSC-TVQ arrangement performs by 0.5 dB better in terms of the required channelEb/N0

value than its corresponding benchmarker scheme.

Similarly, it can be observed from Figures 11.46 and 11.47 that at the decoding complex-
ity of 160 trellis decoding states the STTC-TCM-2NSC-AMR-WBarrangement performs
0.5 dB better in terms of the required channelEb/N0 value than the STTC-NSC-AMR-WB
scheme, when targetting a SegSNR of 10.6 dB. By comparing Figures 11.44 and 11.46,
we observe that the SegSNR performance of the STTC-TCM-2NSC-AMR-WB scheme is
inferior in comparison to that of STTC-TCM-2NSC-TVQ.

More explicitly, the STTC-TCM-2NSC-TVQ system requires anEb/N0 value of 2.5 dB,
while the STTC-TCM-2NSC-AMR-WB arrangement necessitatesEb/N0 = 3.0 dB, when
having their respective maximum attainable average SegSNRs. The maximum attainable av-
erage SegSNRs for STTC-TCM-2NSC-TVQ and STTC-TCM-2NSC-AMR-WB are 13.8 dB
and 10.6 dB, respectively.

This discrepancy is due to the reason that both schemes map the most sensitive 25% of the
encoded bits to class-1. By contrast, based on the bit error sensitivity study of the MPEG-4
TwinVQ codec outlined in Section 3, only 10% of the MPEG-4 TwinVQ encoded bits were
found to be gravely error sensitive. Therefore, the 25% class-1 bits of the MPEG-4 TwinVQ
also includes some bits, which were found to be only moderately sensitive to channel errors.
However, in the case of the AMR-WB codec all the bits of the 25%-partition were found to
be quite sensitive to channel errors. Furthermore, the frame length of the STTC-TCM-2NSC-
TVQ scheme is longer than that of the STTC-TCM-2NSC-AMR-WB arrangement and hence
benefits from a higher coding gain.

It is worth mentioning that the channel capacity for the system employing the full-diversity
STTC scheme with the aid ofNt = 2 transmit antennas andNr = 2 receive antennas is -
0.57 dB and -0.70 dB for the throughputs of 1.95 BPS and 1.89 BPS, respectively, when
communicating over uncorrelated Rayleigh fading channels[522].
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11.7.6 AMR-WB and MPEG-4 TwinVQ Turbo Transceiver Summary

In this section we comparatively studied the performance ofthe MPEG-4 TwinVQ and AMR-
WB audio/speech codecs combined with a jointly optimised source-coding, outer unequal
protection NSC channel-coding, inner TCM and spatial diversity aided STTC turbo transceiver.
The audio bits were protected differently according to their error sensitivity with the aid of
two different-rate NSCs . The employment of TCM improved thebandwidth efficiency of
the system and by utilising STTC spatial diversity was attained. The performance of the
STTC-TCM-2NSC scheme was enhanced with the advent of an efficient iterative joint de-
coding structure. Both proposed twin-class STTC-TCM-2NSCschemes perform approxi-
mately 0.5 dB better in terms of the requiredEb/N0 than the corresponding single-class
STTC-NSC audio benchmarker schemes. This relatively modest advantage of the twin-class
protected transceiver was a consequence of having a rather limited turbo-interleaver length.
In the longer interleaver of the videohphone system of [516,518] an approximately 2 dB
Eb/N0 gain was achieved. For a longer-delay non-realtime audio streaming scheme a simliar
performance would be achieved to that of [516]. Our future work will further improve the
achievable audio performance using the soft speech-bit decoding technique of [523].

11.8 Chapter Summary

In this chapter the MPEG-4 Audio standard was discussed in detail. The MPEG-4 audio
standard is constituted by a toolbox of different coding algorithms, designed for coding both
speech and music signals in the range spanning from very low bit rates, such as 2 kbit/s to
rates as high as 64 kbit/s. In Section 11.2, the important milestones in the field of audio
coding were described and summarised in Figure 11.2. Specifically, four key technologies,
namely perceptual coding, frequency domain coding, the window switching strategy and the
dynamic bit allocation technique were fundamentally important in the advancement of audio
coding. The MPEG-2 AAC codec [40], as described in Section 11.2.1 forms a core part of
the MPEG-4 audio codec. Various tools that can be used for processing the transform coeffi-
cients in order to achieve an improved coding efficiency werehighlighted in Sections 11.2.2
to 11.2.5. The AAC quantization procedure was discussed in Section 11.2.6, while two other
tools provided for encoding the transform coefficients, namely the BSAC and TWIVQ tech-
niques were detailed in Sections 11.2.8 and 11.2.9, respectively. More specifically, the BSAC
coding technique provides finely-grained bitstream scalability, in order to further reduce the
redundancy inherent in the quantized spectrum of the audio signal generated by the MPEG-4
codec. The TWINVQ codec [463] described in Section 11.2.9 wasfound to be capable of
encoding both speech and music signals, which provides an attractive option for low bit rate
audio coding.

In Section 11.3, which was dedicated to speech coding tools,the HVXC and CELP codecs
were discussed. The HVXC codec was employed for encoding speech signals in the bit rate
range spanning from 2 to 4 kbit/s, while the CELP codec is usedat bit rates between 4 and
24 kbit/s, with the additional capability of encoding speech signals at the sampling rates of 8
and 16 kHz.

In Section 11.5 turbo coded and space-time coded adaptive aswell as fixed modulation
based OFDM assisted MPEG-4 audio systems have been investigated. The transmission pa-
rameters have been partially harmonised with the UMTS TDD mode [491], which provides an
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attractive system design framework. More specifically, we employed the MPEG-4 TWINVQ
codec at the bit rates of 16, 32 and 64 kbit/s. We found that by employing space-time coding,
the channel quality variations have been significantly reduced and no additional benefits could
be gained by employing adaptive modulation. However, adaptive modulation was found
beneficial when it was employed in a low-complexity one-transmitter, one-receiver scenario
when high channel quality variations were observed. The space-time coded, two-transmitter,
one-receiver configuration was shown to outperform the conventional one-transmitter, one-
receiver scheme by about 4 dB in channel SNR terms over the highly dispersive COST207
TU channel.

In Section 11.7.6 we comparatively studied the performanceof the MPEG-4 TwinVQ and
AMR-WB audio/speech codecs combined with a jointly optimised source-coding, outer un-
equal protection NSC channel-coding, inner TCM and spatialdiversity aided STTC turbo
transceiver. The employment of TCM provided further error protection without expanding
the bandwidth of the system and by utilising STTC spatial diversity was attained, which
rendered the error statistics experienced pseudo-random,as required by the TCM scheme,
since it was designed for Gaussian channels inflicting randomly dispersed channel errors. Fi-
nally, the performance of the STTC-TCM-2NSC scheme was enhanced with the advent of
an efficient iterative joint decoding structure. Both proposed twin-class STTC-TCM-2NSC
schemes perform approximately 0.5 dB better in terms of the requiredEb/N0 than the cor-
responding single-class STTC-NSC audio benchmarker schemes. This relatively modest ad-
vantage of the twin-class protected transceiver was a consequence of having a rather lim-
ited turbo-interleaver length imposed by the limited tolertable audio delay. In the longer
interleaver of the less delay-limited videophone system of[516,518] an approximately 2 dB
Eb/N0 gain was achieved. For a longer-delay non-realtime audio streaming scheme a similiar
performance would be achieved to that of [516].
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Déry, S. [529] . . . . . . . . . . . . . . . . 566–568, 723
Di Benedetto, M.G. [319] . . . . . . . . . . . . . . . 447
Dietz, M. [40] . . 5, 6, 490, 491, 498, 499, 502,

507–509, 557
Dietz, M. [455] . . . . . . . . . . . . . . . . . . . . . . . . 508
Dite, W. [65] . . . . . . . . . . . . . . . . . . . . . . . . . . . .32
Doward, S. [414] . . . . . . . . . . . . . . . . . . . . . . . 493
Dowling, E.M. [180] . . . . . . . . . . . . . . . . . . . 204

E
Ebrahimi, T. [508] . . . . . . . . . . . . . . . . . 541, 542
Edler, B. [45] . . . . . . . . . . . . . . . . . . . . . . . . 5, 490
Edler, B. [468] . . . . . . . . . . . . . . . . . . . . . . . . . 516
Edler, B. [444] . . . . . . . . . . . . . . . . . . . . 498, 501
Edler, B. [49] . . . . . . . . . . . . . . . . . . . 6, 491, 517
Edler, B. [440] . . . . . . . . . . . . . . . . . . . . . . . . . 495
Ekudden, E. [231] . . . . . . . . . . . . . . . . . 319, 323
Ekudden, E. [29] . . . . . . . . . . . . . . . . . . . . . . . . . 4
El-Jaroudi, A. [552]. . . . . . . . . . . . . . . .594, 621
Erdmann, C. [337] . . . . . . . . . . . . . . . . . 464, 528
Erfanian, J.A. [581] . . . . . . . . . . . . . . . . . . . . 683
Eriksson, T. [148] . . . . . . . . . . . . . . . . . . . . . . 149
Eriksson, T. [149] . . . . . . . . . . . . . . . . . 149, 150
Erzin, E. [599] . . . . . . . . . . . . . . . . . . . . . . . . . 723
Esteban, D. [286] . . . . 421, 422, 424, 425, 692
Esteban, D. [428] . . . . . . . . . . . . . . . . . . 494, 495
Evans, B.G. [187] . . . . . . . . . . . . . . . . . 210, 211
Evans, B.G. [161] . . . 176, 437, 438, 440, 445,

446, 487
Evans, B.G. [130] . . . . . . . . . . . . . . . . . . . . . . 129
Evans, B.G. [188] . . . . . . . . . . . . . . . . . . . . . . 212
Evans, B.G. [293] . . . . . . . . . . . . . . . . . . . . . . 439
Evans, B.G. [597] . . . . . . . . . . . . . . . . . . . . . . 723
Evans, B.G. [585] . . . . . . . . . . . . . . . . . 693, 758

F
Faili, M. [409] . . . . . . . . . . . . . . . . 529, 531, 537
Failli, M. [331] . . 449, 681, 683, 684, 714, 715
Failli, M. [269] . . . . . . . . . . . . . . . . . . . . . . . . 336
Farvardin, N. [137] . . . . . . . . . . . . . . . . . . . . . 135
Farvardin, N. [115] . . . . . . . . . . . . . . . . 117, 134



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 891

AUTHOR INDEX 891

Fastl, H. [424] . . . . . . . . . . . . . . . . 494, 503, 516
Faudeil, S. [583] . . . . . . . . . . . . . . . . . . .683, 714
Fazel, K. [321] . . . . . . . . . . . . . . . . . . . . . . . . . 447
Fazel, K. [312] . . . . . . . . . . . . . . . . . . . . . . . . . 447
Fazel, K. [494] . . . . . . . . . . . . . . . . . . . . . . . . . 528
Fazel, P.R.K. [495] . . . . . . . . . . . . . . . . . . . . . 528
Ferreira, A. [448] . . . . . . . . . . . . . . . . . . . . . . 502
Fettweis, G. [312] . . . . . . . . . . . . . . . . . . . . . . 447
Fettweis, G. [494] . . . . . . . . . . . . . . . . . . . . . . 528
Fielder, L. [40] . 5, 6, 490, 491, 498, 499, 502,

507–509, 557
Fielder, L. [412] . . . . . . . . . . . . . . . . . . . 491, 501
Fingscheidt, T. [523] . . . . . . . . . . . . . . . . . . . 557
Fischer, K. [143] . . . . . . . . . . . . . . 138, 456, 457
Fischer, K. [336] . . . . . . . . . . . . . . . . . . . . . . . 463
Fischer, K. [337] . . . . . . . . . . . . . . . . . . 464, 528
Fischer, K.A. [568] . . . . . . . . . . . . 621, 627, 631
Flanagan, J.L. [284] . . . . . . . . . . . 419, 561, 687
Flanagan, J.L. [429] . . . . . . . . . . . . . . . . . . . . 494
Flanagan, J.L. [587] . . . . . . . . . . . . . . . . . . . . 719
Flannery, B.P. [177]. . . . . . .203–206, 404, 605
Fletcher, H. [421] . . . . . . . . . . . . . . . . . . . . . . 493
Fortune, P.M. [184] . . . . . . . 209, 216, 217, 220
Foschini, G. Jr [482] . . . . . . . . . . . . . . . . . . . .527
Fransen, L.J. [118]. . . . . . . .118–121, 124, 577
Fratti, M. [176] . . . . . . . . . . . . . . . . . . . . 202, 207
Frullone, M. [193] . . . . . . . . . . . . . . . . . . . . . 230
Fuchs, H. [40] . . 5, 6, 490, 491, 498, 499, 502,

507–509, 557
Fudseth, A. [138] . . . . . . . . . . . . . . . . . . 137, 138
Furui, S. [22] . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

G
Galand, C. [286] . . . . . 421, 422, 424, 425, 692
Galand, C. [428] . . . . . . . . . . . . . . . . . . .494, 495
Galand, C.R. [289] . . . . . . . . . . . . . . . . . . . . . 427
Gans, M. [482] . . . . . . . . . . . . . . . . . . . . . . . . 527
Gardner, W. [235] . . . . . . . . . . . . . . . . . 320, 321
Gardner, W. [206] . . . . . . . . . . . . . 253, 255, 261
Gardner, W. [48] . . . . . . . . . . . . . . . . 6, 491, 528
Geher, K. [122] . . . . . . . . . . . . . . . . . . . . . . . . 123
George, E.B. [590] . . 720, 721, 723, 732–734,

754, 758
George, E.B. [591] . . . 720, 721, 733, 754, 758
George, E.B. [537] . . . . . . . . . . . . . . . . . . . . . 571
Gerrits, A.J. [476] . . . . . . . . . . . . . . . . . . . . . . 521
Gersho, A. [274] . . . . . . . . . . . . . . . . . . 352, 354
Gersho, A. [52] . . . . . . . . . . . . . . . . . . . . . . . . 561
Gersho, A. [108] . . . . . 102, 247, 352, 355, 366
Gersho, A. [273] . . . . . . . . . . . . . . . . . . 352, 378

Gersho, A. [110]103, 264, 268, 284, 327, 607,
609

Gersho, A. [232] . . . . . . . . . . . . . . . . . . . . . . . 320
Gersho, A. [599] . . . . . . . . . . . . . . . . . . . . . . . 723
Gersho, A. [236] . . . . . . . . . . . . . . . . . . . . . . . 320
Gersho, A. [142] . . . . . . . . . . . . . . . . . . . . . . . 138
Gersho, A. [126] 129, 142, 143, 364, 738–740
Gersho, A. [239] . . . . . . . . . . . . . . . . . . 320, 321
Gersho, A. [101] . . . . . . . . . . . . . . . . . . . . . . . 101
Gersho, A. [133] . . . . . . . . . . . . . . 131, 134, 320
Gersho, A. [278] . . . . . . . . . . . . . . . . . . . . . . . 364
Gerson, I.A. [204] . . . . . . . . 249, 251, 271, 272
Gerson, I.A. [202] . . . . . . . . 247, 249, 251, 269
Gerson, I.A. [164] . . . . . . . . . . . . . . . . . 181, 187
Gerson, I.A. [203] . . . . . . . . 247, 249, 251, 269
Gerson, I.A. [211] . . . . . . . . . . . . . . . . . 269, 272
Ghiselli-Crippa, T. [552] . . . . . . . . . . . 594, 621
Ghitza, O. [601] . . . . . . . . . . . . . . . . . . . 744, 745
Gish, H. [91] . . . . . . . . . . . . . . . . . . 78, 129, 132
Glavieux, A. [216]. . .289, 447, 449, 680, 681,

713
Glavieux, A. [502] . . . . . . . . . . . . 528, 529, 534
Glavieux, A. [217]. . .289, 447, 449, 680, 681,

713
Glisson, T.H. [68] . . . . . . . . . . . . . . . . . . . . . . . 38
Golden, R.M. [587] . . . . . . . . . . . . . . . . . . . . 719
Goldsmith, A.J. [300] . . . . . . . . . . . . . . . . . . 445
Goldsmith, A.J. [266] . . . . . . . . . . . . . . 336, 445
Goldsmith, A.J. [307] . . . . . . . . . . . . . . . . . . 447
Goldsmith, A.J. [301] . . . . . . . . . . . . . . . . . . 445
Goldsmith, A.J. [302] . . . . . . . . . . . . . . . . . . 445
Golub, G.H. [178] . . . . . . . . . . . . . . . . . 203, 204
Goodman, D.J. [192] . . . . . 221, 226, 229, 235
Gordos, G. [15] . . . . . . . . . . 105, 107, 110, 111
Gray, A.H. [86] . . . . . . . . . . . . . . . . . . . . . 67, 134
Gray, A.H. Jr [5] . . . . . . . . . . . . . . . . . . . . . 16, 87
Gray, R. [233] . . . . . . . . . . . . . . . . . . . . . . . . . 320
Gray, R.M. [280] . . . . . . . . . . . . . . . . . . 378, 440
Gray, R.M. [126] 129, 142, 143, 364, 738–740
Grazioso, P. [193] . . . . . . . . . . . . . . . . . . . . . . 230
Greenwood, D.D. [422] . . . . . . . . . . . . . . . . . 493
Griffin, D.W. [103] . . 101, 566, 567, 569, 570,

687
Grill, B. [507] . . . . . . . . . . . . . . . . . . . . . 541, 542
Gulak, G. [581] . . . . . . . . . . . . . . . . . . . . . . . . 683
Guyader, A.L. [336] . . . . . . . . . . . . . . . . . . . . 463

H
Haagen, J. [533] . . . . . . . . . . . . . . 567, 573, 653
Haavisto, P. [225] . . . . . . . . 298, 302, 303, 307



VOICE-BOOK-2E-SAMPLE-CHAPS
2007/8/20
page 892

892 AUTHOR INDEX

Haavisto, P. [228] . . . . . . . . . . . . . . . . . .304, 307
Hagen, R. [540] . . . . . . . . . . . . . . . . . . . . . . . . 573
Hagenauer, J. [582] . . . . . . . . . . . . . . . . 683, 714
Hagenauer, J. [58] . . . . . . . . . . . . . . . . . . . . . . . 15
Hagenauer, J. [27] . . . . . . . . . . . . . . . . . . . . . . 683
Hagenauer, J. [218] . . . . . . . . . . . . . . . . . . . . .289
Hagenauer, J. [519] . . . . . . . . . . . . . . . . . . . . .548
Hall, J.L. [543] . . . . . . . . . . . . . . . . . . . . . . . . 578
Hanauer, S.L. [526] . . . . . . . . . . . 562, 563, 687
Hankanen, T. [225] . . . . . . . 298, 302, 303, 307
Hansen, J.H.L. [19] . . . . . . . . . . . . . . . . . . . . 562
Harborg, H. [138] . . . . . . . . . . . . . . . . . 137, 138
Harri Holma, [491] . . . . . . . . . . . . 528, 529, 557
Hashimoto, S. [173] . . . . . . . . . . . . . . . 200, 201
Hassanein, H. [529] . . . . . . . . . . . 566–568, 723
Hassanein, H. [102] . . . . . . . . . . . . . . . . . . . . 101
Hayashi, S. [212] . . . . . . . . . . . . . . . . . . . . . . 274
Haykin, S. [72] . . . . . . . . . . . . . . . . . . . . . . 45, 46
Hbner, J. [497] . . . . . . . . . . . . . . . . . . . . . . . . . 528
Heddle, R. [413] . . . . . . . . . . . . . . . . . . . . . . . 493
Hellman, R. [425] . . . . . . . . . . . . . . . . . . . . . . 494
Hellwig, K. [231] . . . . . . . . . . . . . . . . . . 319, 323
Hellwig, K. [29] . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Hellwig, K. [257] . . . . . . . . . . . . . . . . . . 323, 328
Herre, J. [40] . . . 5, 6, 490, 491, 498, 499, 502,

507–509, 557
Herre, J. [451] . . . . . . . . . . . . . . . . . . . . . . . . . 505
Herre, J. [452] . . . . . . . . . . . . . . . . . . . . .507, 508
Herre, J. [507] . . . . . . . . . . . . . . . . . . . . .541, 542
Herre, J. [433] . . . . . . . . . . . . . . . . . . . . .494, 506
Hess, W. [14] . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Hikmet Sari, I.J. [496] . . . . . . . . . . . . . . . . . . 528
Hiotakakos, D.J. [541] . . . .574, 575, 641, 646,

648, 652, 653, 659, 660, 684, 758,
807

Ho, P. [238] . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Hoeher, P. [582] . . . . . . . . . . . . . . . . . . . 683, 714
Hoeher, P. [578] . . . . . . . . . . . . . . . . . . . 681, 683
Hoffmann, R. [13]. . . . . . . . . . . . . . . . . . . . . .162
Holmes, J.N. [539] . . . . . . . . . . . . 572, 610, 612
Holmes, W.H. [95] . . . . . . . . . . . . . . . . . . . . . . 96
Holtzwarth, H. [64] . . . . . . . . . . . . . . . . . . . . . .32
Honda, M. [85] . . . . . . . . . . . . . . . . 67, 210, 578
Honda, M. [464] . . . . . . . . . . . . . . . . . . .514, 515
Hong, C. [270]. . . . . . . . . . . . . . . .351, 371, 382
Honkanen, T. [228] . . . . . . . . . . . . . . . . 304, 307
Huang, J.J.Y. [134] . . . . . . . . . . . . . . . . . . . . . 131
Huber, J.B. [314] . . . . . . . . . . . . . . . . . . . . . . .447
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