MIMO-OFDM for LTE, WIFI and WIMAX Coherent versus Non-Coherent and Cooperative Turbo-Transceivers

by

L. Hanzo, J. Akhtman, M. Jiang, L. Wang

UNIVERSITY OF SOUTHAMPTON

We dedicate this monograph to the numerous contributors of this field, many of whom are listed in the Author Index

The MIMO capacity theoretically increases linearly with the number of transmit antennas, provided that the number of receive antennas is equal to the number of transmit antennas. With the further proviso that the total transmit power is increased proportionately to the number of transmit antennas, a linear capacity increase is achieved upon increasing the transmit power. However, under realistic conditions the theoretical MIMO-OFDM performance erodes and hence to circumvent this degradation, our monograph is dedicated to the design of practical coherent, non-coherent and cooperative MIMO-OFDM turbo-transceivers...

ii

Contents

Al	About the Authors x											
O	ther Wiley and IEEE Press Books on Related Topics xviii Eknowledgments xxi											
Ac												
Pr	reface xxi											
Li	st of S	Symbol	ls		XXV							
1	Intr	oductio	on to OFDM and MIMO-OFDM		1							
	1.1	OFDM	M History		. 1							
		1.1.1	Multiple-Input Multiple-Output Assisted OFDM		. 2							
			1.1.1.1 The Benefits of MIMOs		. 2							
			1.1.1.2 MIMO OFDM		. 5							
			1.1.1.3 SDMA-based MIMO OFDM Systems		. 5							
	1.2	OFDM	M Schematic		. 7							
	1.3	Chann	nel Estimation for Multicarrier Systems		. 12							
	1.4	Chann	nel Estimation for MIMO-OFDM		. 14							
	1.5	Signal	1 Detection in MIMO-OFDM Systems		. 15							
	1.6	Iterativ	ve Signal Processing for SDM-OFDM		. 19							
	1.7	System	m Model		. 20							
		1.7.1	Channel Statistics		. 20							
		1.7.2	Realistic Channel Properties		. 23							
		1.7.3	Baseline Scenario Characteristics		. 24							
		1.7.4	MC Transceiver		. 25							
	1.8	SDM-	-OFDM System Model		. 26							
		1.8.1	MIMO Channel Model		. 26							
		1.8.2	Channel Capacity		. 27							
		1.8.3	SDM-OFDM Transceiver Structure		. 28							
	1.9	Novel	Aspects and Outline of the Book		. 30							

	1.10	Chapte	er Summar	у		32
2	OFI	OM Star	ndards			33
	2.1	Wi-Fi				33
		2.1.1	IEEE 802	2.11 Standar	rds	33
	2.2	3GPP	Long-Tern	n Evolution		35
	2.3	WiMA	X Evolutio	on		36
		2.3.1	Historic I	Background		38
			2.3.1.1	IEEE 802.	16 Standard Family	38
			2.3.1.2	Early 802.	16 Standards	38
				2.3.1.2.1	802.16d-2004 - Fixed WiMAX	40
				2.3.1.2.2	802.16e-2005 - Mobile WiMAX	40
				2.3.1.2.3	Other 802.16 Standards	41
			2.3.1.3	WiMAX F	orum	42
			2.3.1.4	WiMAX a	nd WiBro	42
		2.3.2	Technica	l Aspects of	WiMAX	43
			2.3.2.1	WiMAX-I	: 802.16-2004 and 802.16e-2005	44
				2.3.2.1.1	OFDMA System Configuration	44
				2.3.2.1.2	Frame Structure	45
				2.3.2.1.3	Subcarrier Mapping	45
				2.3.2.1.4	Channel Coding	46
				2.3.2.1.5	MIMO Support	46
				2.3.2.1.6	Other Aspects	46
			2.3.2.2	WiMAX-I	I: 802.16m	48
				2.3.2.2.1	System Requirements	48
				2.3.2.2.2	System Description	50
		2.3.3	The Futu	re of WiMA	Х	54
	2.4	Chapte	er Summar	у		55
Ι	Col	herent	ly Detec	ted SDM	A-OFDM Systems	57
						-
3	Cha	nnel Co	ding Assis	sted STBC-	OFDM Systems	59
	3.1	Introdu	iction			59
	3.2	Space-	Time Bloc	k Codes .	·····	59
		3.2.1	Alamout	's G ₂ Space	-Time Block Code	59
		3.2.2	Encoding	, Algorithm	·····	61
			3.2.2.1	Transmissi	on Matrix	61
			3.2.2.2	Encoding A	Algorithm of the Space-Time Block Code G_2	62
			3.2.2.3	Other Space	ce-11me Block Codes	62
		3.2.3	Decoding	g Algorithm		63
			3.2.3.1	Maximum	Likelihood Decoding	63

			3.2.3.2	Maximum-A-Posteriori Decoding	64
		3.2.4	System (Overview	65
		3.2.5	Simulatio	on Results	66
			3.2.5.1	Performance over Uncorrelated Rayleigh Fading Channels	66
			3.2.5.2	Performance over Correlated Rayleigh Fading Channel	70
		3.2.6	Conclusi	ons	70
	3.3	Channe	el Coded S	space-Time Block Codes	71
		3.3.1	Space-Ti	me Block Codes with LDPC Channel Codes	72
			3.3.1.1	System Overview	72
			3.3.1.2	Simulation Results	73
				3.3.1.2.1 Performance over Uncorrelated Rayleigh Fading Channels	73
				3.3.1.2.2 Performance over Correlated Rayleigh Fading Channels	78
			3.3.1.3	Complexity Issues	79
			3.3.1.4	Conclusions	83
		3.3.2	LDPC-A	ided and TC-Aided Space-Time Block Codes	84
			3.3.2.1	System Overview	85
			3.3.2.2	Complexity Issues	86
			3.3.2.3	Simulation Results	87
			3.3.2.4	Conclusions	88
	3.4	Channe	el Coding	Aided Space-Time Block Coded OFDM	90
		3.4.1	Coded M	odulation Assisted Space-Time Block Codes	90
			3.4.1.1	Coded Modulation Principles	90
			3.4.1.2	Inter-Symbol Interference and OFDM Basics	90
			3.4.1.3	System Overview	91
				3.4.1.3.1 Complexity Issues	92
				3.4.1.3.2 Channel Model	92
				3.4.1.3.3 Assumptions	94
			3.4.1.4	Simulation Results	94
			3.4.1.5	Conclusions	96
		3.4.2	CM-Aide	ed and LDPC-Aided Space-Time Block Coded OFDM Schemes	97
			3.4.2.1	System Overview	97
			3.4.2.2	Simulation Results	98
			3.4.2.3	Conclusions	99
	3.5	Chapte	r Summar	y	99
4	Code	ed Mod	ulation A	ssisted Multi-User SDMA-OFDM Using Frequency-Domain Spreading	103
	4.1	Introdu	ction		103
	4.2	System	Model .		104
		4.2.1	SDMA N	IIMO Channel Model	104
		4.2.2	CM-assis	sted SDMA-OFDM Using Frequency Domain Spreading	105
			4.2.2.1	Minimum Mean-Square Error Multi-User Detector	105

v

			4.2.2.2	Subcarrier	-based Walsh-Hadamard Transform Spreading	106
	4.3	Simula	ation Resu	lts		107
		4.3.1	MMSE-S	SDMA-OFE	OM Using WHTS	107
		4.3.2	CM- and	WHTS-ass	isted MMSE-SDMA-OFDM	108
			4.3.2.1	Performan	ce Over the SWATM Channel	108
				4.3.2.1.1	Two Receiver Antenna Elements	108
				4.3.2.1.2	Four Receiver Antenna Elements	110
			4.3.2.2	Performan	ce Over the COST207 HT Channel	112
				4.3.2.2.1	Two Receiver Antenna Elements	112
				4.3.2.2.2	Four Receiver Antenna Elements	120
				4.3.2.2.3	Performance Comparisons	123
			4.3.2.3	Effects of	the WHT Block Size	124
			4.3.2.4	Effects of	the Doppler Frequency	127
	4.4	Chapte	er Summai	ry		128
5	Աշհ	rid Mu	lti Ucor D	ataction for	SDMA OFDM Suctome	121
3	11y 0	Introdu	uction		SDMA-OFDM Systems	131
	5.2	Geneti	cal Algori	thm Assisted	d Multi-User Detection	131
	5.2	5 2 1	System (Dverview		132
		5.2.1	MMSF-0	GA-concate	nated Multi-User Detector	132
		5.2.2	5221	Ontimizati	ion Metric for the GA MUD	133
			5222	Concatena	ted MMSE-GA Multi-User Detection	134
		523	Simulati	on Results		134
		524	Complex	vity Analysis		135
		525	Conclusi	ions	,	138
	53	Enhan	ced GA-b	ased Multi-I	Iser Detection	138
	0.0	531	Improve	d Mutation S	Scheme	139
		0.011	5.3.1.1	Conventio	nal Uniform Mutation	139
			5312	Biased O-	function Based Mutation	140
			0101112	5.3.1.2.1	Theoretical Foundations	140
				5.3.1.2.2	Simplified BOM	142
			5.3.1.3	Simulation	Results	143
				5.3.1.3.1	BOM Versus UM	144
				5.3.1.3.2	BOM Versus CNUM	145
		5.3.2	Iterative	MUD Fram	ework	145
			5.3.2.1	MMSE-in	itialized Iterative GA MUD	147
			5.3.2.2	Simulatior	n Results	148
				5.3.2.2.1	Performance in Underloaded and Fully-loaded Scenarios	148
				5.3.2.2.1.1	BQM-IGA Performance	149
				5.3.2.2.1.2	Effects of the Number of IGA MUD Iterations	150
				5.3.2.2.1.3	Effects of the User Load	150
					· · · · · · · · · · · · · · · · · · ·	

				5.3.2.2.2 Performance in Overloaded Scenarios	. 152
				5.3.2.2.2.1 Overloaded BQM-IGA	. 152
				5.3.2.2.2 BQM Versus CNUM	. 153
				5.3.2.2.3 Performance Under Imperfect Channel Estimation	. 153
		5.3.3	Complex	xity Analysis	. 154
		5.3.4	Conclusi	ions	. 156
	5.4	Chapte	er Summai	ry	. 158
6	DS-S	Spreadi	ng and Sl	ow Subcarrier-Hopping Aided Multi-User SDMA-OFDM Systems	161
	6.1	Conve	ntional SE	OMA-OFDM Systems	. 161
	6.2	Introdu	uction to H	Hybrid SDMA-OFDM	. 161
	6.3	Subba	nd-Hoppir	ng Versus Subcarrier-Hopping	. 163
	6.4	System	n Architec	ture	. 164
		6.4.1	System (Overview	. 164
			6.4.1.1	Transmitter Structure	. 165
			6.4.1.2	Receiver Structure	. 167
		6.4.2	Subcarri	er-Hopping Strategy Design	. 167
			6.4.2.1	Random SSCH	. 169
			6.4.2.2	Uniform SSCH	. 169
				6.4.2.2.1 Design of the USSCH Pattern	. 169
				6.4.2.2.2 Discussions	. 172
			6.4.2.3	Random and Uniform SFH	. 172
			6.4.2.4	Offline Pattern Pre-computation	. 172
		6.4.3	DSS Des	spreading and SSCH Demapping	. 173
		6.4.4	Multi-Us	ser Detection	. 175
	6.5	Simula	ation Resu	lts	. 176
		6.5.1	MMSE A	Aided Versus MMSE-IGA Aided DSS/SSCH SDMA-OFDM	. 178
		6.5.2	SDMA-0	OFDM Using SFH and Hybrid DSS/SSCH Techniques	. 178
			6.5.2.1	Moderately Overloaded Scenarios	. 179
			6.5.2.2	Highly Overloaded Scenarios	. 180
		6.5.3	Performa	ance Enhancements by Increasing Receiver Diversity	. 182
		6.5.4	Performa	ance Under Imperfect Channel Estimation	. 182
	6.6	Compl	lexity Issu	es	. 184
	6.7	Conclu	usions		. 184
	6.8	Chapte	er Summai	ry	. 184
7	Cha	nnel Es	timation f	for OFDM and MC-CDMA	187
	7.1	Pilot-A	Assisted Cl	hannel Estimation	. 187
	7.2	Decisi	on Directe	ed Channel Estimation	. 188
	7.3	A Post	eriori FD-	CTF Estimation	. 189
		7.3.1	Least Sq	uares CTF Estimator	. 189

		7.3.2	MMSE C	CTF Estimator	190		
		7.3.3	A Priori	Predicted Value Aided CTF Estimator	191		
	7.4	A Poste	eriori CIR	Estimation	191		
		7.4.1	MMSE S	S-CIR Estimator	191		
		7.4.2	Reduced	Complexity SS-CIR Estimator	193		
		7.4.3	Complex	ity Study	195		
		7.4.4	MMSE F	S-CIR Estimator	195		
		7.4.5	Performa	nce Ananlysis	196		
			7.4.5.1	Reduced Complexity MMSE SS-CIR Estimator Performance	198		
			7.4.5.2	Fractionally-Spaced CIR Estimator Performance	198		
	7.5	Parame	etric FS-C	IR Estimation	200		
		7.5.1	Projectio	n Approximation Subspace Tracking	200		
		7.5.2	Deflation	PAST	203		
		7.5.3	PASTD -	Aided FS-CIR Estimation	204		
	7.6	Time-I	Domain A	Priori CIR Tap Prediction	206		
		7.6.1	MMSE F	Predictor	206		
		7.6.2	Robust P	redictor	209		
		7.6.3	MMSE V	Versus Robust Predictor Performance Comparison	210		
		7.6.4	Adaptive	RLS Predictor	210		
		7.6.5	Robust V	Versus Adaptive Predictor Performance Comparison	212		
	7.7	7.7 PASTD Aided DDCE					
	7.8	Channe	el Estimati	on for MIMO-OFDM	216		
		7.8.1	Soft Reci	ursive MIMO-CTF Estimation	216		
			7.8.1.1	LMS MIMO-CTF Estimator	216		
			7.8.1.2	RLS MIMO-CTF Estimator	217		
			7.8.1.3	Soft-Feedback Aided RLS MIMO-CTF Estimator	217		
			7.8.1.4	Modified-RLS MIMO-CTF Estimator	218		
			7.8.1.5	MIMO-CTF Estimator Performance Analysis	219		
		7.8.2	PASTD -	Aided DDCE for MIMO-OFDM	221		
			7.8.2.1	PASTD -Aided MIMO-DDCE Performance Analysis	223		
8	Iters	ative Joi	int Chann	el Estimation and MUD for SDMA-OFDM Systems	227		
U	8.1	Introdu	iction		227		
	8.2	System	n Overviev	v	228		
	8.3	GA-as	sisted Itera	ative Joint Channel Estimation and MUD	228		
		8.3.1	Pilot-aide	ed Initial Channel Estimation	231		
		8.3.2	Generati	ng Initial Symbol Estimates	232		
		8.3.3	GA-aideo	d Joint Optimization Providing Soft Outputs	234		
			8.3.3.1	Extended GA Individual Structure	234		
			8.3.3.2	Initialization	234		
			8.3.3.3	Joint Genetic Optimization	235		
				*			

			8.3.3.3.1 Cross-over Operator	235					
			8.3.3.3.2 Mutation Operator	236					
			8.3.3.3.3 Comments on the Joint Optimization Process	236					
			8.3.3.4 Generating the GA's Soft Outputs	236					
	8.4	Simula	tion Results	238					
		8.4.1	Effects of the Maximum Mutation Step Size	238					
		8.4.2	Effects of the Doppler Frequency	241					
		8.4.3	Effects of the Number of GA-JCEMUD Iterations	242					
		8.4.4	Effects of the Pilot Overhead	242					
		8.4.5	Joint Optimization Versus Separate Optimization	242					
		8.4.6	Comparison of GA-JCEMUDs Having Soft and Hard Outputs	244					
		8.4.7	MIMO Robustness	244					
	8.5	Conclu	isions	245					
	8.6	Chapte	er Summary	245					
II	Co	heren	t versus Non-Coherent and Cooperative OFDM Systems	249					
Li	st of S	ymbols	s in Part II	251					
9	Redu	uced-Co	omplexity Sphere Detection for Uncoded SDMA-OFDM Systems	253					
	9.1	Introdu	action	253					
		9.1.1	System Model	253					
		9.1.2	Maximum Likelihood Detection	254					
		9.1.3	Chapter Contributions and Outline	255					
	9.2	Princip	ble of Sphere Detection	256					
		9.2.1	Transformation of the Maximum-Likelihood Metric	256					
		9.2.2	Depth-First Tree Search	256					
		9.2.3	Breadth-First Tree Search	259					
		9.2.4	Generalized Sphere Detection for Rank-Deficient Systems	260					
			9.2.4.1 Generalized Sphere Detection	260					
			9.2.4.2 Generalized Sphere Detection Using a Modified Grammian Matrix	261					
		9.2.5	Simulation Results	261					
	9.3	Comple	exity-Reduction Schemes for SD	264					
		9.3.1	Complexity-Reduction Schemes for Depth-First SD	264					
			9.3.1.1 Initial-Search-Radius Selection Optimization	264					
			9.3.1.2 Optimal Detection Ordering	265					
			9.3.1.3 Search Algorithm Optimization	266					
			9.3.1.3.1 Sorted SD (SSD)	266					
			9.3.1.3.2 Sorted SD Using Updated-Bounds	267					
			9.3.1.3.3 Sorted SD Using Termination-Threshold	267					
		9.3.2	9.3.2 Complexity-Reduction Schemes for K-Best SD						

CONTENTS

			9.3.2.1	Optimal	Detection Ordering	269		
			9.3.2.2	Search-F	adius-Aided K-Best SD	269		
			9.3.2.3	Complex	ity-Reduction Parameter δ for Low SNRs	270		
		9.3.3	Optimize	ed Hierarc	hy Reduced Search Algorithm	271		
			9.3.3.1	Hierarch	ical Search Structure	271		
			9.3.3.2	Optimization for the D	tion Strategies for the OHRSA Versus Complexity-Reduction Techniques epth-First SD	273		
			9.	.3.3.2.1	Best-First Detection Strategy	273		
			9.	.3.3.2.2	Sorting Criterion	273		
			9.	.3.3.2.3	Local Termination-Threshold	274		
			9.	.3.3.2.4	Performance Evaluation	274		
	9.4	Compa	rison of th	ne Depth-I	First, K-Best and OHRSA Detectors	275		
		9.4.1	Full-Ran	k Systems		275		
		9.4.2	Rank-De	eficient Sys	stems	275		
	9.5	Chapte	r Conclusi	ions		276		
10	Redu	iced-Co	omplexity	Iterative	Sphere Detection for Channel Coded SDMA-OFDM Systems	279		
	10.1	Introdu	iction			279		
		10.1.1	Iterative	Detection	and Decoding Fundamentals	279		
			10.1.1.1	System I	Aodel	279		
			10.1.1.2	MAP Bit	Detection	280		
		10.1.2	Chapter (Contributi	ons and Outline	281		
	10.2	Channe	el Coded I	terative Co	enter-Shifting SD	282		
		10.2.1	Generatio	on of the C	Candidate List	282		
			10.2.1.1	List Gen	eration and Extrinsic LLR Calculation	282		
			10.2.1.2	Computa	tional Complexity of List SDs	283		
			10.2.1.3	Simulati	on Results and 2D-EXIT Chart Analysis	284		
		10.2.2	Center-S	hifting Th	eory for SDs	286		
		10.2.3	Center-S	hifting K-	Best SD Aided Iterative Receiver Architetures	288		
			10.2.3.1	Direct-H	ard-Decision-Center-Update-Based Two-Stage Iterative Architecture	288		
			10	0.2.3.1.1	Receiver Architecture and EXIT-Chart-Aided Analysis	288		
			10	0.2.3.1.2	Simulation Results	291		
			10.2.3.2	Two-Sta	ge Iterative Architecture Using a Direct Soft Decision Center-Update	293		
			10	0.2.3.2.1	Soft-Symbol Calculation	293		
			10	0.2.3.2.2	Receiver Architecture and EXIT-Chart-Aided Analysis	294		
			10	0.2.3.2.3	Simulation Results	295		
			10.2.3.3	Two-Sta	ge Iterative Architecture Using an Iterative SIC-MMSE-Aided Center-Updat	e296		
			1	0.2.3.3.1	Soft Interference Cancellation Aided MMSE Algorithm [1] [2]	296		
			1	0.2.3.3.2	Receiver Architecture and EXIT-Chart Analysis	297		
			1	0.2.3.3.3	Simulation Results	298		
	10.3	Apriori-LLR-Threshold-Assisted Low-Complexity SD						

		10.3.1	Principle	of the Apriori-LLR-Threshold Aided Detector	300
		10.3.2	Features	of the ALT-Assisted K-Best SD Receiver	302
			10.3.2.1	BER Performance Gain	302
			10.3.2.2	Computational Complexity	303
			10.3.2.3	Choice of the LLR Threshold	304
			10.3.2.4	Non-Gaussian Distributed LLRs Caused by the ALT Scheme	304
		10.3.3	The ALT	Assisted Center-Shifting Hybrid Sphere Detection	306
			10.3.3.1	Comparison of the Center-Shifting and the ALT Schemes	306
			10.3.3.2	ALT-Assisted Center-Shifting Hybrid Sphere Detection	306
	10.4	Unity-l	Rate-Code	Aided Three-Stage Iterative Receiver Employing SD	309
		10.4.1	Unity-Ra	te-Code-Aided Three-Stage Iterative Receiver	309
		10.4.2	Performa	nce of the Three-Stage Receiver Employing the Center-Shifting SD $\ldots \ldots \ldots$	312
		10.4.3	Irregular	Convolutional Codes for Three-Stage Iterative Receivers	313
	10.5	Chapte	er Conclusi	ions	315
11	Sphe	ere Pack	king Modu	ulated STBC-OFDM and its Sphere Detection	321
	11.1	Introdu	iction		321
		11.1.1	System N	Лodel	321
		11.1.2	Chapter (Contributions and Outline	323
	11.2	Orthog	onal Trans	smit Diversity Design with Sphere Packing Modulation	324
		11.2.1	Space-Ti	me Block Codes	324
			11.2.1.1	STBC Encoding	324
			11.2.1.2	Equivalent STBC Channel Matrix	324
			11.2.1.3	STBC Diversity Combining and Maximum-Likelihood Detection	325
			11.2.1.4	Other STBCs and Orthogonal Designs	327
		11.2.2	Orthogor	nal Design of STBC Using Sphere Packing Modulation	327
			11.2.2.1	Joint Orthogonal Space-Time Signal Design for Two Antennas Using Sphere Packing	g 327
			11.2.2.2	Sphere Packing Constellation Construction	329
		11.2.3	System N	Nodel for STBC-SP-Aided MU-MIMO Systems	330
	11.3	Sphere	Detection	Design for Sphere Packing Modulation	331
		11.3.1	Bit-Based	d MAP Detection for SP Modulated MU-MIMO Systems	332
		11.3.2	Sphere D	Detection Design for Sphere Packing Modulation	332
			11.3.2.1	Transformation of the ML Metric	332
			11.3.2.2	Channel Matrix Triangularization	333
			11.3.2.3	User-Based Tree Search	333
		11.3.3	Simulatio	on Results and Discussion	336
	11.4	Chapte	er Conclusi	ions	337
12	Mult	tiple-Sy	mbol Diff	erential Sphere Detection for Cooperative OFDM	339
	12.1	Introdu	iction		339
		12.1.1	Different	ial Phase Shift Keying and Detection	339

			12.1.1.1 Conventional Differential Signalling and Detection	339
			12.1.1.2 Effects of Time-Selective Channels on Differential Detection	341
			12.1.1.3 Effects of Frequency-Selective Channels on Differential Detection	342
		12.1.2	Chapter Contributions and Outline	343
	12.2	Princip	le of Single-Path Multiple-Symbol Differential Sphere Detection	344
		12.2.1	Maximum-Likelihood Metric for Multiple-Symbol Differential Detection	344
		12.2.2	Metric Transformation	345
		12.2.3	Complexity Reduction Using Sphere Detection	346
		12.2.4	Simulation Results	346
			12.2.4.1 Time-Differential Encoded OFDM System	346
			12.2.4.2 Frequency-Differential Encoded OFDM System	347
	12.3	Multi-I	Path MSDSD Design for Cooperative Communication	348
		12.3.1	System Model	348
		12.3.2	Differentially Encoded Cooperative Communication Using CDD	351
			12.3.2.1 Signal Combining at the Destination for Differential Amplify-and-Forward Relaying 3	351
			12.3.2.2 Signal Combining at Destination for Differential Decode-and-Forward Relaying	352
			12.3.2.3 Simulation Results	352
		12.3.3	Multi-Path MSDSD Design for Cooperative Communication	356
			12.3.3.1 Derivation of the Metric for Optimum Detection	356
			12.3.3.1.1 Equivalent System Model for DDF-Aided Cooperative Systems	357
			12.3.3.1.2 Equivalent System Model for the DAF-Aided Cooperative System	358
			12.3.3.1.3 Optimum Detection Metric	358
			12.3.3.2 Transformation of the ML Metric	362
			12.3.3.3 Channel-Noise Autocorrelation Matrix Triangularization	363
			12.3.3.4 Multi-Dimensional Tree Search Aided MSDSD Algorithm	363
		12.3.4	Simulation Results	364
			12.3.4.1 Performance of the MSDSD-Aided DAF-User-Cooperation System	364
			12.3.4.2 Performance of the MSDSD-Aided DDF-User-Cooperation System	367
	12.4	Chapte	r Conclusions	369
13	Doco	ureo 11	location for the Differentially Modulated Cooperative Unlink	272
15	13.1	Introdu		272
	13.1	13.1.1	Chapter Contributions and Outline	272
		13.1.2	System Model	374
	13.2	Perform	nance Analysis of the Cooperation-Aided Unlink	374
	13.2	13.2.1	Theoretical Analysis of Differential Amplify and Forward Systems	375
		13.2.1	13.2.1.1 Performance Analysis	375
			13.2.1.2 Simulation Results and Discussion	370
		1322	Theoretical Analysis of Differential-Decode-and-Forward Systems	380
		10.2.2	13.2.2.1 Performance Analysis	380
			13.2.2.2. Simulation Results and Discussion	382

		15.2.1	Minimun	1 Mean Square Error Detection	439
	15.2	Linear	Detection	Methods	437
	15.1	SDM/V	/-BLAST	OFDM Architecture	437
15	Mult	i-Strea	m Detecti	on for SDM-OFDM Systems	437
II	C	oherei	nt SDM-	OFDM Systems	435
	14.5	Chapte	r Conclusi	ons	431
		14.4.4	Simulatio	on Results and Discussion	430
			14.4.3.2	Reduced-Complexity Near-Capacity Design at Destination Base Station	428
			14.4.3.1	Reduced-Complexity Near-Capacity Design at Relay Mobile Station	425
		14.4.3	Approach	ning the Cooperative System's Capacity	425
		14.4.2	Irregular	Distributed Differential Coding for the Cooperative Cellular Uplink	423
			14.4.1.2	Imperfect-SR-Link Based DCMC Capacity	421
			14.4.1.1	Perfect SR-Link-Based DCMC Capacity	418
		14.4.1	Relay-Ai	ded Cooperative Network Capacity	418
	14.4	Approa	aching the	Capacity of the Differentially Modulated Cooperative Cellular Uplink	418
		14.3.3	Maximur	n Achievable Rate Versus the Capacity: An EXIT Chart Perspective	416
		14.3.2	Soft-Out	put Generation	415
		14.3.1	Soft-Inpu	tt Processing	412
	14.3	Soft-In	put Soft-C	Output MSDSD	412
	14.2	Channe	el Capacity	v of Non-coherent Detectors	410
		14.1.2	Chapter (Contributions and Outline	409
			14.1.1.2	Channel Model	408
			14.1.1.1	System Model	407
		14.1.1	System A	rchitecture and Channel Model	407
	14.1	Introdu	iction		407
14	The	Near-C	apacity D	ifferentially Modulated Cooperative Cellular Uplink	407
	13.3	Cnapte	1 Conclusi	UIIS	405
	125	13.4.2 Chapta	Joint CPS	and COS Scheme for the Cellular Uplink Using APC	401
		15.4.1	Comparis	son Between the DAF- and DDF-Aided Cooperative Cellular Uplink	. 399 401
	13.4	Joint C	PS and Cl	US for the Differential Cooperative Cellular Uplink Using APC	397
	124	Isint C	15.5.2.1	Simulation Results and Discussion	394
		15.5.2		Simulation Posulta and Discussion	204
		13 2 2	15.5.1.3	Simulation Results and Discussion	302
			13.3.1.2	Cooperating-User-Selection Scheme for DAF-aided Systems	200
			13.3.1.1	Adaptive Power Control for DAF-aided Systems	385
		13.3.1	Cooperat	Ing-User-Selection for DAF Systems with Adaptive Power Control	385
	13.3	Cooper	ating-Use	r-Selection for the Uplink	384
	122	Comme	ating Ilas	n Calastian for the Unlink	201

			15.2.1.2	Performance Analysis of the Linear SDM Detector	441
	15.3	Non-Li	inear SDM	I Detection Methods	442
		15.3.1	Maximur	n Likelihood Detection	443
			15.3.1.1	Generation of Soft-Bit Information	444
			15.3.1.2	Performance Analysis of the ML SDM Detector	444
		15.3.2	SIC Dete	ction	445
			15.3.2.1	Performance Analysis of the SIC SDM Detector	447
		15.3.3	Genetic A	Algorithm-Aided MMSE Detection	448
			15.3.3.1	Performance Analysis of the GA-MMSE SDM Detecor	449
	15.4	Perform	nance Enh	ancement Using Space-Frequency Interleaving	449
		15.4.1	Space-Fr	equency-Interleaved OFDM	450
			15.4.1.1	Performance Analysis of the SFI-SDM-OFDM	450
	15.5	Perform	nance Cor	nparison and Discussion	451
	15.6	Conclu	isions		452
17		•		D CDM OFDM M-14' Street D. A. A.	455
10			e Log-MA	AP SDM-OF DM Multi-Stream Detection	455
	10.1			rided ML SDM Detection	455
		10.1.1	UHKSA-	anded ML SDM Detection	450
			10.1.1.1	Search Strategy	458
		1612	10.1.1.2 Dituring (Generalization of the OHRSA-ML SDM Detector	401
		10.1.2	16 1 2 1	Constalization of the DW OHDSA ML SDM Detector	405
		1613		aided Log MAP SDM Detection	407
		16.1.4	Soft Inn	alued Log-MAP SDM Detection	470
		16.1.5	Soft Out	a Son-Output Max-Log-MAP SDM Detection	470
		10.1.5	16 1 5 1	SOBHIE Algorithm Complexity Anglusis	470
			16 1 5 2	SOPHIE Algorithm Parformance Analysis	401
			10.1.3.2		402
17	Itera	tive Ch	annel Est	imation and Multi-Stream Detection for SDM-OFDM	487
	17.1	Iterativ	e Signal P	rocessing	487
	17.2	Turbo	Forward E	rror Correction Coding	488
	17.3	Iterativ	e Detectio	n – Decoding	489
	17.4	Iterativ	e Channel	Estimation – Detection – Decoding	491
		17.4.1	Mitigatio	n of Error Propagation	492
		17.4.2	MIMO-P	ASTD-DDCE Aided SDM-OFDM Performance Analysis	494
			17.4.2.1	Number of Channel Estimation – Detection Iterations	494
			17.4.2.2	Pilot Overhead	495
			17.4.2.3	Performance of a Symmetric MIMO System	495
			17.4.2.4	Performance of a Rank-Defficient MIMO System	496

	18.1	Summary of the Results	499		
		18.1.1 OFDM History, Standards and System Components	499		
		18.1.2 Channel Coded STBC-OFDM Systems	499		
		$18.1.3 \ \ Coded \ Modulation \ Assisted \ Multi-User \ SDMA-OFDM \ Using \ Frequency-Domain \ Spreading \ .$	500		
		18.1.4 Hybrid Multi-User Detection for SDMA-OFDM Systems	501		
		18.1.5 DS-Spreading and Slow Subcarrier-Hopping Aided Multi-User SDMA-OFDM Systems	502		
		18.1.6 Channel Estimation for OFDM and MC-CDMA	504		
		18.1.7 Joint Channel Estimation and MUD for SDMA-OFDM	505		
		18.1.8 Sphere Detection for Uncoded SDMA-OFDM	507		
		18.1.8.1 Exploitation of the LLRs Delivered by the Channel Decoder	507		
		18.1.8.2 EXIT-Chart-Aided Adaptive SD Mechanism	509		
		18.1.9 Transmit Diversity Schemes Employing SDs	511		
		18.1.9.1 Generalized Multi-Layer Tree Search Mechanism	511		
		18.1.9.2 Spatial Diversity Schemes Using SDs	511		
		18.1.10 SD-Aided MIMO System Designs	512		
		18.1.10.1 Resource-Optimized Hybrid Cooperative System Design	512		
		18.1.10.2 Near-Capacity Cooperative and Non-cooperative System Designs	514		
		18.1.11 Multi-Stream Detection in SDM-OFDM Systems	516		
		18.1.12 Iterative Channel Estimation and Multi-Stream Detection in SDM-OFDM Systems	517		
		18.1.13 Approximate Log-MAP SDM-OFDM Multi-Stream Detection	517		
	18.2	Suggestions for Future Research	518		
		18.2.1 Optimization of the GA MUD Configuration	518		
		18.2.2 Enhanced FD-CHTF Estimation	519		
		18.2.3 Radial Basis Function Assisted OFDM	519		
		18.2.4 Non-Coherent Multiple-Symbol Detection in Cooperative OFDM Systems	520		
		18.2.5 Semi-Analytical Wireless System Model	521		
Α	App	endix to Chapter 5	527		
	A.1	A Brief Introduction to Genetic Algorithms	527		
	A.2	Normalization of the Mutation-Induced Transition Probability	531		
Gl	ossary	y	533		
Bibliography			540		
Subject Index					
Author Index					

About the Authors

Lajos Hanzo (http://www-mobile.ecs.soton.ac.uk) FREng, FIEEE, FIET, DSc received his degree in electronics in 1976 and his doctorate in 1983. During his career he has held various research and academic posts in Hungary, Germany and the UK. Since 1986 he has been with the School of Electronics and Computer Science, University of Southampton, UK, where he holds the chair in telecommunications. He has co-authored 19 books on mobile radio communications totalling in excess of 10 000, published 844 research entries at IEEE Xplore, acted as TPC Chair of IEEE conferences, presented keynote lectures and been awarded a number of distinctions. Currently he is directing an academic research team, working on a range of research projects in the field of wireless multimedia communications sponsored by industry, the Engineering and Physical

Sciences Research Council (EPSRC) UK, the European IST Programme and the Mobile Virtual Centre of Excellence (VCE), UK. He is an enthusiastic supporter of industrial and academic liaison and he offers a range of industrial courses. He is also an IEEE Distinguished Lecturer as well as a Governor of both the IEEE ComSoc and the VTS. He is the acting Editor-in-Chief of the IEEE Press. For further information on research in progress and associated publications please refer to http://www-mobile.ecs.soton.ac.uk

Dr Yosef (Jos) Akhtman received a B.Sc. degree in Physics and Mathematics from the Hebrew University of Jerusalem, Israel in June 2000 and the Ph.D. degree in Electronics Engineering from the University of Southampton in July 2007. He was awarded a full Ph.D. studentship in the University of Southampton as well as an Outstanding Contribution Award for his work as part of the Core 3 research programme of the Mobile Virtual Centre of Excellence in Mobile Communications (MobileVCE). He has also received a BAE Prize for Innovation in Autonomy for his contribution to the Southampton Autonomous Underwater Vehicle (SotonAUV) project. Between January 2007 and Dec. 2009 he conducted research as a senior research fellow in the 5* School Computer Science at Southampton University.

of Electronics and Computer Science at Southampton University.

Dr. Ming Jiang (S'04-M'09) received B.Eng. and M.Eng. degrees in Electronics Engineering in 1999 and 2002 from South China University of Technology (SCUT), China, and Ph.D. degree in Telecommunications in 2006 from University of Southampton, UK, respectively. From 2002 to 2005, he was involved in the Core 3 research project of Mobile Virtual Centre of Excellence (VCE), UK on air-interface algorithms for MIMO OFDM systems. Since April 2006, Dr. Jiang has been with Advanced Technology, Standards and Regulation (ATSR) of Samsung Electronics Research Institute (SERI), UK, working on the European FP6 WINNER project as well as internal projects on advanced wireless communication systems. His research interests fall in the general area of wireless communications, including multi-user detection, channel estimation, space-time

processing, heuristic and adaptive optimization, frequency-hopping, MIMO OFDM and OFDMA systems, etc. Dr. Jiang has co-authored one IEEE Press book chapter, 6 IEE/IEEE journal papers, and 8 IEE/IEEE conference papers. Recently he returned to his native country China and had been working for Nortel.

xviii

researcher.

Li Wang received his BEng degree with distinction in information engineering from Chengdu University of Technology (CDUT), Chengdu, P. R. China, in 2005 and his MSc degree (with distinction) in radio frequency communication systems from University of Southampton, Southampton, UK, in 2006. Between October 2006 and January 2010 he was a PhD student in the Communication Group, School of Electronics and Computer Science, University of Southampton, UK, and participated in the Delivery Efficiency Core Research Program of the Virtual Centre of Excellence in Mobile and Personal Communications (Mobile VCE). His research interests include space-time coding, channel coding, multi-user detection for future wireless networks. Upon the completion of his PhD in January 2010 he joined the Communications Group as a postdoctoral

Other Wiley and IEEE Press Books on Related Topics¹

- R. Steele, L. Hanzo (Ed): *Mobile Radio Communications: Second and Third Generation Cellular and WATM Systems*, John Wiley and IEEE Press, 2nd edition, 1999, ISBN 07 273-1406-8, 1064 pages
- L. Hanzo, T.H. Liew, B.L. Yeap: *Turbo Coding, Turbo Equalisation and Space-Time Coding*, John Wiley and IEEE Press, 2002, 751 pages
- L. Hanzo, C.H. Wong, M.S. Yee: Adaptive Wireless Transceivers: Turbo-Coded, Turbo-Equalised and Space-Time Coded TDMA, CDMA and OFDM Systems, John Wiley and IEEE Press, 2002, 737 pages
- L. Hanzo, L-L. Yang, E-L. Kuan, K. Yen: Single- and Multi-Carrier CDMA: Multi-User Detection, Space-Time Spreading, Synchronisation, Networking and Standards, John Wiley and IEEE Press, June 2003, 1060 pages
- L. Hanzo, M. Münster, T. Keller, B-J. Choi, *OFDM and MC-CDMA for Broadband Multi-User Communica*tions, WLANs and Broadcasting, John-Wiley and IEEE Press, 2003, 978 pages
- L. Hanzo, S-X. Ng, T. Keller and W.T. Webb, *Quadrature Amplitude Modulation: From Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA and MC-CDMA Systems*, John Wiley and IEEE Press, 2004, 1105 pages
- L. Hanzo, T. Keller: An OFDM and MC-CDMA Primer, John Wiley and IEEE Press, 2006, 430 pages
- L. Hanzo, F.C.A. Somerville, J.P. Woodard: *Voice and Audio Compression for Wireless Communications*, John Wiley and IEEE Press, 2007, 858 pages
- L. Hanzo, P.J. Cherriman, J. Streit: *Video Compression and Communications: H.261, H.263, H.264, MPEG4 and HSDPA-Style Adaptive Turbo-Transceivers* John Wiley and IEEE Press, 2007, 680 pages
- L. Hanzo, J.S. Blogh, S. Ni: 3G, HSDPA, HSUPA and FDD Versus TDD Networking: Smart Antennas and Adaptive Modulation John Wiley and IEEE Press, 2008, 564 pages
- L. Hanzo, O. Alamri, M. El-Hajjar, N. Wu: *Near-Capacity Multi-Functional MIMO Systems: Sphere-Packing, Iterative Detection and Cooperation,* IEEE Press John Wiley, 2009
- L. Hanzo, R.G. Maunder, J. Wang and L-L. Yang: *Near-Capacity Variable-Length Coding: Regular and EXIT-Chart Aided Irregular Designs*, IEEE Press John Wiley, 2010

¹For detailed contents and sample chapters please refer to http://www-mobile.ecs.soton.ac.uk

CONTENTS

Acknowledgements

We are indebted to our many colleagues who have enhanced our understanding of the subject. These colleagues and valued friends, too numerous to be mentioned individually, have influenced our views concerning the subject of the book. We thank them for the enlightenment gained from our collaborations on various projects, papers, and books. We are particularly grateful to our academic colleagues Prof. Sheng Chen, Dr. Soon-Xin Ng, Dr. Rob Maunder and Dr. Lie-Liang Yang. We would also like to express our appreciation to Osamah Alamri, Sohail Ahmed, Andreas Ahrens, Jos Akhtman, Jan Brecht, Jon Blogh, Nicholas Bonello, Marco Breiling, Marco del Buono, Sheng Chen, Peter Cherriman, Stanley Chia, Byoung Jo Choi, Joseph Cheung, Jin-Yi Chung, Peter Fortune, Thanh Nguyen Dang, Sheyam Lal Dhomeja, Lim Dongmin, Dirk Didascalou, Mohammed El-Hajjar, Stephan Ernst, Eddie Green, David Greenwood, Chen Hong, Hee Thong How, Bin Hu, Ming Jiang, Thomas Keller, Lingkun Kong, Choo Leng Koh, Ee Lin Kuan, W. H. Lam, Wei Liu, Kyungchun Lee, Xiang Liu, Fasih Muhammad Butt, Matthias Münster, Song Ni, C. C. Lee, M. A. Nofal, Xiao Lin, Chee Siong Lee, Tong-Hooi Liew, Noor Shamsiah Othman, Raja Ali Raja Riaz, Vincent Roger-Marchart, Redwan Salami, Prof. Raymond Steele, Shinya Sugiura, David Stewart, Clare Sommerville, Tim Stevens, Shuang Tan, Ronal Tee, Jeff Torrance, Spyros Vlahoyiannatos, Jin Wang, Li Wang, William Webb, Chun-Yi Wei, Hua Wei, Stefan Weiss, John Williams, Seung-Hwang Won, Jason Woodard, Choong Hin Wong, Henry Wong, James Wong, Andy Wolfgang, Nan Wu, Lei Xu, Chong Xu, Du Yang, Wang Yao, Bee-Leong Yeap, Mong-Suan Yee, Kai Yen, Andy Yuen, Jiayi Zhang, Rong Zhang, and many others with whom we enjoyed an association.

We also acknowledge our valuable associations with the Virtual Centre of Excellence in Mobile Communications, in particular with its chief executive, Dr. Walter Tuttlebee, and other members of its Executive Committee, namely Dr. Keith Baughan, Prof. Hamid Aghvami, Prof. Mark Beach, Prof. John Dunlop, Prof. Barry Evans, Prof. Peter Grant, Dr. Dean Kitchener, Prof. Steve MacLaughlin, Prof. Joseph McGeehan, Dr. Tim Moulsley, Prof. Rahim Tafazolli, Prof. Mike Walker and many other valued colleagues. Our sincere thanks are also due to John Hand and Andrew Lawrence EPSRC, UK for supporting our research. We would also like to thank Dr. Joao Da Silva, Dr Jorge Pereira, Bartholome Arroyo, Bernard Barani, Demosthenes Ikonomou, and other valued colleagues from the Commission of the European Communities, Brussels, Belgium.

Similarly, our sincere thanks are due to Mark Hammond, Sarah Tilly and their colleagues at Wiley in Chichester, UK. Finally, our sincere gratitude is due to the numerous authors listed in the Author Index — as well as to those, whose work was not cited owing to space limitations — for their contributions to the state-of-the-art, without whom this book would not have materialised.

Lajos Hanzo, Jos Akhtman, Ming Jiang and Li Wang School of Electronics and Computer Science University of Southampton, UK

ACKNOWLEDGMENTS

Preface

The rationale and structure of this volume is centred around the following 'story-line'. The conception of *parallel transmission of data* over dispersive channels dates back to the seminal paper of Doelz *et al.* published in 1957, leading to the OFDM philosophy, which has found its way into virtually all recent wireless systems, such as the WiFi, WiMax, LTE and DVB as well as DAB broadcast standards. Although *MIMO techniques* are significantly 'younger' than OFDM, they *also reached a state of maturity* and hence the family of recent wireless standards includes the optional employment of MIMO techniques, which motivates the joint study of OFDM and MIMO techniques in this volume.

The research of MIMO arrangements was motivated by the observation that the MIMO capacity increases linearly with the number of transmit antennas, provided that the number of receive antennas is equal to the number of transmit antennas. With the further proviso that the total transmit power is increased proportionately to the number of transmit antennas, a linear capacity increase is achieved upon increasing the transmit power. This is beneficial, since according to the classic Shannon-Hartley law the achievable channel capacity increases only logarithmically with the transmit power. Hence MIMO-OFDM may be considered a 'green' transceiver solution.

Therefore this volume sets out to explore the recent research advances in MIMO-OFDM techniques as well as their limitations. The basic types of multiple antenna-aided OFDM systems are classified and their benefits are characterised. Spatial Division Multiple Access (SDMA), Spatial Division Multiplexing (SDM) and space-time coding MIMOs are addressed. We also argue that *under realistic propagation conditions*, when for example the signals associated with the MIMO elements become correlated owing to shadow fading, *the predicted performance gains may substantially erode*. Furthermore, owing to the limited dimensions of shirt-pocket-sized handsets, the employment of multiple antenna elements at the mobile station is impractical.

Hence in practical terms only the family of distributed MIMO elements, which relies on the cooperation of potentially single-element mobile stations is capable of eliminating the correlation of the signals impinging on the MIMO elements, as it will be discussed in the book. The topic of *cooperative wireless communications* cast in the context of distributed MIMOs has recently attracted substantial research interests, but nonetheless, it *has numerous open problems, before all the idealized simplifying assumptions currently invoked in the literatue are eliminated*.

On a more technical note, we aim for achieving a near-capacity MIMO-OFDM performance, which requires sophisticated designs, as detailed below:

- A high throughput may be achieved with the aid of a high number of MIMO elements, but this is attained at a *potentially high complexity, which exponentially increases as a function of both the number of MIMO elements as well as that of the number of bits per symbol*, when using a full-search based Maximum Likelihood (ML) multi-stream/multi-user detector.
- In order to approach the above-mentioned near-capacity performance, whilst circumventing the problem of an exponentially increasing complexity, we design radical multi-stream/multi-user detectors, which 'capture' the ML solution with a high probability at a fraction of the ML-complexity.
- This ambitious design goal is achieved with the aid of sophisticated *soft-decision-based Genetic Algorithm* (GA) *assisted MUDs or new sphere detectors, which are capable of operating in the high-importance rank-deficient scenarios,* when the number of transmit antennas may be as high as twice the number of receiver antennas.
- The achievable gain of space-time codes is further improved with the aid of *sphere-packing modulation, which allows us to design the space-time symbols of multiple transmit antennas jointly*, whilst previous designs made no effort to do so. Naturally, this joint design no longer facilitates low-complexity single-stream detection, but our sphere-decoders allow us to circumvent this increased detection complexity.
- Sophisticated *joint coding and modulation schemes* are used, which accommodate the parity bits of the channel codec without bandwidth extension, simply by extending the modulation alphabet.

- Estimating the MIMO channel for a high number of transmit and receive antennas becomes extremely challenging, since we have to estimate $N_t \cdot N_r$ channels, although in reality we are only interested in the data symbols, but not the channel. *This problem becomes even more grave in the context of the above-mentioned rank-deficient scenarios, since we have to estimate more channels, than the number of received streams.* Finally, the pilot overhead imposed by estimating $N_t \cdot N_r$ channels might become prohibitive, which erodes the attainable throughput gains.
- In order to tackle the above-mentioned challenging channel estimation problem, we designed *new iterative joint channel estimation and data detection techniques*. More explicitly, provided that a powerful MIMO MUD, such as the above-mentioned GA-aided or sphere-decoding based MUD is available for delivering a sufficiently reliable first data estimate, the power of decision-directed channel estimation may be invoked, which exploits that after a first tentative data decision in the absence of decision errors the receiver effectively knows the transmitted signal and hence may now exploit the presence of 100% pilot information for generating a more accurate channel estimate. Again, this design philosophy is detailed in the book in great depth in the context of joint iterative channel estimation and data detection.
- Although the number of studies/papers on cooperative communications increased exponentially over the past few years, most *investigations stipulate the simplifying assumption of having access to perfect channel informa-tion* despite the fact that as detailed under the previous bullet-point, this is an extremely challenging task even for co-located MIMO elements.
- Hence it is necessary to design new non-coherently detected cooperative systems, which can dispense with the requirement of channel estimation, despite the typical 3 dB performance loss of differential detection. It is demonstrated in the book that *the low-complexity non-coherent detector's potential performance penalty can in fact be recovered with the aid of jointly detecting a number of consecutive symbols with the aid of the so-called multiple-symbol differential detector*, although this is achieved at the cost of an increased complexity.
- *Hence the proposed sphere-detector may be invoked again, but now as a reduced-complexity multiple-symbol differential detector.*
- The above-mentioned cooperative systems require *specifically designed resource allocation*, including the choice of the relaying protocols, the selection of the cooperating partners and the power-control techniques.
- It is demonstrated that when the available relaying partners are roaming close to the source, decode-and-forward (DF) is the best cooperating protocol, which avoids potential error-precipitation. By contrast, in case the cooperating partners roam closer to the destination, then the amplify-and-forward (AF) protocol is preferred for the same reasons. *These complementary features suggest the emergence of a hybrid DF/AF protocol*, which is controlled with the aid of our novel resource-allocation techniques.
- The book is concluded by outlining a variety of promising future research directions.

Our intention with the book is:

- 1. First, to pay tribute to all researchers, colleagues and valued friends, who contributed to the field. Hence this book is dedicated to them, since without their quest for better MIMO-OFDM solutions this monograph could not have been conceived. They are too numerous to name here, hence they appear in the author index of the book. Our hope is that the conception of this monograph on the topic will provide an adequate portrayal of the community's research and will further fuel this innovation process.
- 2. We expect to stimulate further research by exposing open research problems and by collating a range of practical problems and design issues for the practitioners. The coherent further efforts of the wireless research community is expected to lead to the solution of the range of outstanding problems, ultimately providing us with flexible coherent- and non-coherent detection aided as well as cooperative MIMO-OFDM wireless transceivers exhibiting a performance close to information theoretical limits.

List of Symbols

$(\cdot)[n,k]$	The indices indicating the k^{th} subcarrier of the n^{th} OFDM symbol
$(\cdot)^T$	The transposition operation
(\cdot) H	Hermitian transpose
$(\cdot)^{*}$	Complex conjugate
3	The imaginary component of a complex number
R	The real component of a complex number
$\mathcal{T}\{.\}$	Imaginary part of a complex value
\mathcal{I}	Mutual information sort
π	The ratio of the circumference of a circle to the diameter
$\mathcal{R}\left\{\cdot\right\}$	Real part of a complex value
$exp(\cdot)$	The exponential operation
5.P()	
$\mathbf{A}^{(l)}$	The remaining user set for the l^{th} iteration of the subcarrier-to-user assignment process
A^{T}	Matrix/vector transpose
A^{H}	Matrix/vector hermitian adjoint, <i>i.e.</i> complex conjugate transpose
A^*	Matrix/vector/scalar complex conjugate
A^{-1}	Matrix inverse
A^+	Moore-Penrose pseudoinverse
tr(A)	Trace of matrix, <i>i.e.</i> the sum of its diagonal elements
α _p	The user load of an L-user and P-receiver conventional SDMA system
P	
B _T	The overall system throughput in bits per OFDM symbol
$(i_{ce}, i_{det}, i_{dec})$	Number of (channel estimation, detection, decoding) iterations
E_b	Energy per transmitted bit
E_s	Energy per transmitted M-QAM symbol
L_f	Number of data-frames per transmission burst
Ň _d	Number of data SDM-OFDM symbols per data-frame
N_p	Number of pilot SDM-OFDM symbols in burst preamble
T	OFDM symbol duration
T_s	OFDM FFT frame duration
f _D	Maximum Doppler frequency
Κ	Number of OFDM subcarriers
В	Signal bandwidth
β	RLS CIR tap prediction filter forgetting factor
\mathcal{C}	Uncostrained capacity
$f_{\rm c}$	Carrier frequency
η	PASTD aided CIR tap tracking filter forgetting factor
γ	OHRSA search resolution parameter
mt	Number of receive antennas
n _r	Number of transmit antennas
ν_{τ}	OFDM-symbol-normalized PDP tap drift rate
ρ	OHRSA search radius factor parameter

$ au_{ m rms}$	RMS delay spread
ε	Pilot overhead
ζ	MIMO-CTF RLS tracking filter forgetting factor
b_{l,m_B}	The $(m_B)^{th}$ bit of the l^{th} user's transmitted symbol
r	Size of the transmitted bit-wise signal vector t
$\hat{b}_{s}^{(l)}[n,k]$	The l^{th} user's detected soft bit
$\mathbf{\hat{b}}_{s}^{(l)}$	The detected soft bit block of the l^{th} user
$\mathbf{b}^{(l)}$	The information bit block of the l^{th} user
$\mathbf{b}_{s}^{(l)}$	The coded bit block of the l^{th} user
С	The complex space
$\mathbb{C}^{(x \times y)}$	The $(x \times y)$ -dimensional complex space
$\mathbf{CC}(n,k,K)$	Convolutional codes with the number of input bits k , the number of coded bits n and
	the constraint length K
Ι	Identity matrix
${\cal H}$	Hadamard matrix
\mathcal{L}	Log Likelihood Ratio value
\mathcal{M}	Set of <i>M</i> -PSK/ <i>M</i> -QAM constellation phasors
$c_{g_l}(t)$	The DSS signature sequence assigned to the l^{th} user and associated with the g^{th} DSS
	group
$\bar{\mathbf{c}}_{Gq}$	The $(1 \times L_q)$ -dimensional DSS code vector
$\mathbf{\check{c}}_{Gq}$	The $(G_q \times 1)$ -dimensional DSS code vector
cg	The spreading code sequence associated with the g^{th} DSS group
c	The user signature vector
$\mathbf{c}^{(l)}$	the l^{th} user's code sequence
\mathbf{c}_{g_1}	The DSS code vector for the l^{th} user in the g^{th} DSS group
61	
š	A priori signal vector estimate
ŝ	A posteriori signal vector estimate
Ŷ	Unconstrained a posteriori signal vector estimate
Н	Subcarrier-related MIMO CTF matrix
d	Transmitted bit-wise signal
S	Transmitted subcarrier-related SDM signal
t	Transmitted subcarrier-related bit-wise SDM signal
у	Received subcarrier-related SDM signal
W ~	Gaussian noise sample vector
s	Solt-information aided signal vector estimate
$\Delta_{p,(y,x)}^{(r)}[n,k]$	The random step size for the $(p, l)^{th}$ channel gene during step mutation associated with the x^{th} individual of the u^{th} generation
	the x mervicual of the y generation
ϵ	The pilot overhead
E_	The OEDM symbol normalized Dopplar frequency
	Covariance of two random variables
$Var\{\cdot\}$	Variance of a random variable
τα [] Ε {·}	Expectation of a random variable
$Ei\{\cdot\}$	Exponential integral
$JacLog(\cdot)$	Jacobian logorithm
κ	Channel estimation efficiency criteria
$\ \cdot\ _2$	Second order norm
$P\left\{\cdot\right\}$	Probability density function
$rms{\cdot}$	Root mean square value
f'_d	Normalized Doppler frequency
f_c	Carrier frequency
f_d	Maximum Doppler frequency
f_q	Carrier frequency associated with the q^{th} sub-band

$f_{(y,x)}$	The fitness value associated with the x^{th} individual of the y^{th} generation
$G \\ G_q \\ \Gamma_\tau(t)$	The number of DSS user groups in a DSS/SSCH system The total number of different DSS codes used by the users activating the q^{th} subcarrier The rectangular pulse within the duration of $[0, \tau)$
$ \begin{array}{c} H_p^{(l)} \\ H_{p,q}^{(l)} \end{array} $	The FD-CHTF associated with the l^{th} user and the p^{th} receiver antenna element The FD-CHTF associated with the specific link between the l^{th} user and the p^{th} receiver at the a^{th} subcarrier
$H_p^{(l)}[n,k]$	The true FD-CHTF associated with the channel link between the l^{th} user and the p^{th} receiver
$\hat{H}_{p}^{(l)}[n,k]$	The improved <i>a postepriori</i> FD-CHTF estimate associated with the channel link be- tween the l^{th} user and the p^{th} receiver The FD-CHTE matrix
$\mathbf{H}^{(l)}$	The FD-CHTF vector associated with the l^{th} user
$\mathbf{H}_{g,q}^{(l)}$	The $(P \times 1)$ -dimensional FD-CHTF vector associated with the transmission paths be- tween the l^{th} user's transmitter antenna and each element of the <i>P</i> -element receiver antenna array, corresponding to the g^{th} DSS group at the q^{th} subcarrier
\mathbf{H}_{p} $\mathbf{H}_{g,q}$	The p^{th} row of the FD-CHTF matrix H The $(P \times l_g)$ -dimensional FD-CHTF matrix associated with the g^{th} DSS group at the a^{th} subcarrier
$\mathbf{H}_{p,g,q}$	The p^{th} row of the FD-CHTF matrix $\mathbf{H}_{g,q}$ associated with the g^{th} DSS group at the q^{th} subcarrier
$\mathbf{H}_p[n,k]$	The initial FD-CHTF estimate matrix associated with all the channel links between each user and the p^{th} receiver
$\mathbf{\bar{H}}_{p,q}$	The L_q users' $(L_q \times L_q)$ -dimensional diagonal FD-CHTF matrix associated with the q^{th} subcarrier at the p^{th} receiver
$\mathbf{\bar{H}}_{p}[n,k]$	The diagonal FD-CHTF matrix associated with all the channel links between each user and the p^{th} receiver
$\mathbf{\tilde{H}}_{(y,x)}[n,k]$	The trial FD-CHTF matrix of the GA-JCEMUD The FD-CHTF chromosome of the GA-JCEMUD individual associated with the x^{th} individual of the y^{th} generation
$\tilde{H}_{p,(y,x)}^{(l)}[n,k]$	The $(p, l)^{th}$ channel gene of the GA-JCEMUD FD-CHTF chromosome associated with the x^{th} individual of the y^{th} generation
$\tilde{H}_p^{(l)}[0,k]$	The initial FD-CHTF estimate associated with the channel link between the l^{th} user and the p^{th} receiver at the k^{th} subcarrier in the first OFDM symbol duration
$\tilde{h}_p^{(l)}[n,k]$	The initial estimate of the CIR-related taps associated with the channel link between the l^{th} user and the p^{th} receiver
Ι	Identity matrix
<i>K</i> ₀	The range of CIR-related taps to be retained
$L L_{q} L_{l,m_{B}} \Lambda_{q}^{(l)}(t) l_{g} \lambda_{max}$	Number of simultaneous mobile users supported in a SDMA system The number of users that activate the q^{th} subcarrier The LLR associated with the $(m_B)^{th}$ bit position of the l^{th} user's transmitted symbol The subcarrier activation function The number of users in the g^{th} DSS group The maximum mutation step size of the step mutation
$M_{ extbf{wht}} \ \mathcal{M}^L_{l,m_B,b}$	The WHT block size The set consisting of 2^{mL} number of $(L \times 1)$ -dimensional trial vectors The specific subset associated with the l^{th} user, which is constituted by those specific trial vectors, whose l^{th} element's $(m_B)^{th}$ bit has a value of b

\mathcal{M}_{c}	The set containing the 2^m number of legitimate complex constellation points associated
Шр	The bit position of a constellation symbol
MSE	The average FD-CHTF estimation MSE
$\overline{\text{MSE}}[n]$	The average FD-CHTF estimation MSE associated with the n^{th} OFDM symbol
N_T	The total number of OFDM symbols transmitted
$n_p(t)$	The AWGN at the p^{th} receiver
n _{p,q}	The noise signal associated with the q^m subcarrier at the p^m receiver The $(C \to \chi^{-1})$ dimensional effective noise vector essection with the s^{th} subcarrier of
п _{р,q}	The $(G_q \times 1)$ -dimensional effective noise vector associated with the q subcarrier at the n^{th} receiver
n	Noise signal vector
$\omega_{_{ii}}$	The cross-correlation coefficient of the i^{th} DSS group's and the j^{th} DSS group's signa-
.,	ture sequence
$\Omega(\cdot)$	The GA's joint objective function for all antennas
$\Omega_{g,q}(\cdot)$	The GA's joint objective function for all antennas associated with the g^{tn} DSS group at the q^{th} subcarrier
$\Omega_{p,g,q}(\cdot)$	The GA's objective function associated with the g^{th} DSS group of the p^{th} antenna at the a^{th} subcarrier
$\Omega_p(\cdot)$	The GA's objective function associated with the p^{th} antenna
$\Omega_{y,T}$	The maximum GA objective score generated by evaluating the T individuals in the mating pool
Р	Number of receiver antenna elements employed by the BS in SDMA systems
P_T	Transmitted signal power
$\tilde{p}_{mt}^{(ij)}$	The normalized mutation-induced transition probability
$p_{mt}^{(ij)}$	The 1D transition probability of mutating from a 1D symbol s_{Ri} to another 1D symbol
(;;;)	s _{Rj}
$p_{mt}^{(n)}$	The original legitimate constellation symbol's probability of remaining unchanged
$p_{mt}^{(lf)}$	The mutation-induced transition probability, which quantifies the probability of the i^{th}
n	The mutation probability which denotes the probability of how likely it is that a gene
Pm	will mutate
$\Phi(\cdot)$	The cost function of the OHRSA MUD
$\Phi_i(\cdot)$	The cumulative sub-cost function of the OHRSA MUD at the i^{th} recursive step
$\varphi^{(l)}$	The l^{th} user's phase angle introduced by carrier modulation
$\phi(\cdot)$	The sub-cost function of the OHRSA MUD
Q(x)	The Q-function
\mathbf{Q}_L	The L-order full permutation set
Q_c	The number of available subcarriers in conventional or SSCH systems
Q_f	The number of available sub-bands in SFH systems
Q_g	The subcarrier vector generated for the k^{th} subcarrier group
$\mathfrak{q}^{(l)}$	The USSCH pattern set of the l^{th} user
R	Code rate
R _n Ē	The $(P \times P)$ -dimensional covariance matrix
\mathbf{K}_{Gq}	The $(G_q \times L_q)$ -dimensional cross-correlation matrix of the L_q users' DSS code sequences
$r_p(t)$	The received signal at the p^{th} receiver
r _{p,q}	The discrete signal received at the q^{th} subcarrier of the p^{th} receiver during an OFDM
x (1)	symbol duration The deepend eigend of the a^{th} DSS error at the a^{th} reading the second eigend of the a^{th} DSS error at the a^{th} reading the second eigendest of the second eigendest
$x_{p,g}(t)$	The despread signal of the g^{m} DSS group at the p^{m} receiver

$\hat{s}_i^{(l)}$	The <i>i</i> th constellation point of \mathcal{M}_c as well as a possible gene symbol for the <i>l</i> th user
$s_{g_l,q}^{\prime(l)}(t)$	The transmitted signal at the q^{th} subcarrier associated with the l^{th} user in the g^{th} DSS
$c^{(l)}$	group
$s^{(l)}$	The information signal of the t^{th} subcarries are sized with the t^{th} uses in the t^{th} DSS.
$s_{g_l,q}(t)$	The information signal at the q^{m} subcarrier associated with the t^{m} user in the g^{m} DSS group
S _{Ri}	The i^{th} 1D constellation symbol in the context of real axis
$\bar{\mathbf{s}}_q$	The L_q users' $(L_q \times 1)$ -dimensional information signal vector
š	The candidate trial vector
$\mathbf{\check{s}}_i$	The sub-vector of $\mathbf{\check{s}}$ at the i^{th} OHRSA recursive step
$\mathbf{\hat{s}}^{(l)}$	The <i>l</i> th user's estimated information symbol block of the FFT length
$\mathbf{\hat{S}}_{\mathbf{W}}^{(l)}$	The estimated <i>lth</i> user's WHT-despreading signal block
$\hat{\mathbf{s}}_{\mathbf{w},0}^{(r)}$	The estimated <i>l^{trt}</i> user's WHT-despread signal block
S _{GA}	The estimated transmitted symbol vector detected by the GA MUD The GA based estimated $(1, \times, 1)$ dimensional signal vector associated with the a^{th}
$\mathbf{S}_{\mathbf{GA}_{g,q}}$	The GA-based estimated $(l_g \times 1)$ -dimensional signal vector associated with the g
Ŝmmse .	The MMSE-based estimated $(l_{\alpha} \times 1)$ -dimensional signal vector associated with the
- MINISEg,q	g^{th} DSS group at the q^{th} subcarrier
$\tilde{\mathbf{s}}[n,k]$	The trial data vector of the GA-JCEMUD
$\mathbf{\tilde{s}}_{(y,x)}$	The x^{th} individual of the y^{th} generation
$\mathbf{\tilde{s}}_{(y,x)}[n,k]$	The symbol chromosome of the GA-JCEMUD individual associated with the x^{th} indi-
_	vidual of the y^{in} generation
s s ^(l)	The l^{th} user's information symbol block of the EET length
s ^(l)	The t^{th} user's WHT spread signal block
$\mathbf{S}_{\mathbf{W}}$	The t^{th} user's WIIT encoding signal block
S _{w,0}	The l^{-1} user's wH1-spreading signal block The $(l \times 1)$ -dimensional trial symbol vector for the GA's objective function associated
38	with the σ^{th} DSS group
$\tilde{s}^{(l)}(n,k)$	The l^{th} symbol gene of the GA-ICEMUD symbol chromosome associated with the x^{th}
y(y,x) [(y,x)	individual of the y^{th} generation
σ_l^2	Signal variance associated with the l^{th} user
σ_n^2	Noise variance
Т.	The EU dwall time
\mathbf{T}_{h} $\mathbf{TC}(n,k,K)$	Turbo convolutional codes with the number of input bits k, the number of coded bits n
	and the constraint length K
T_r	The reuse time interval of hopping patterns
T_c	The DSS chip duration
U	The K-order WHT matrix
\mathcal{U}_{whT_K} $\mathcal{U}_{\sigma_1}[\mathcal{C}]$	The c^{th} element of the g^{th} row in the $(G \times G)$ -dimensional WHT matrix, which is
811 3	associated with the l^{th} user
V	The upper-triangular matrix having positive real-valued elements on the main diagonal
V	CM code memory
W	System bandwidth
W_{sc}	Subcarrier bandwidth
W _{MMSE}	The MMSE-based weight matrix
vv _{MMSEg,q}	The MINSE-based $(P \times l_g)$ -dimensional weight matrix associated with the g^{in} DSS
	group at the q ^m subcarrier
X	GA population size
x_p	The received signal at the p^{th} receiver at a subcarrier

$\mathbf{\bar{x}}_{p,q}$	The despread signal associated with the q^{th} subcarrier at the p^{th} receiver
x	Received signal vector
\mathbf{x}_p	The received symbol block of the FFT length at the p^{th} receiver
$\mathbf{x}_{g,q}$	The $(P \times 1)$ -dimensional despread signal vector associated with the g^{th} DSS group at the q^{th} subcarrier
Ŷ	Number of GA generations