
From Classical to Quantum Coding

by

Z. Babar, D. Chandra, SX. Ng, L. Hanzo

School of Electronics and Computer Science,

University of Southampton, UK

October 1, 2025

About the Authors

Zunaira Babar received B.Eng. degree from the National University of Science and Tech-

nology (NUST), Pakistan, in 2008, and the M.Sc. (Hons) and Ph.D. degrees from the University

of Southampton, UK, in 2011 and 2015, respectively. Currently, she is a sta! research scientist at

VIAVI Marconi Labs, UK. She published numerous journal papers on quantum communications.

Daryus Chandra received the B.Eng. and M.Eng. degrees from Universitas Gadjah Mada

(UGM), Indonesia, in 2013 and 2014, respectively, and the Ph.D. degree from the University of

Southampton, UK, in 2020. Currently, he is a research fellow at the University of Southampton.

He published widely on quantum communications.

Soon Xin Ng (S’99-M’03-SM’08) received the B.Eng. degree (First class) in electronic

engineering and the Ph.D. degree in telecommunications from the University of Southampton,

Southampton, U.K., in 1999 and 2002, respectively. He is currently a Professor of Next Gener-

ation Communications at the University of Southampton. He has published widely in classical

and quantum communications. He is a Senior Member of the IEEE, a Chartered Engineer, a

Fellow of the Higher Education Academy in the UK and a Fellow of IET.

Lajos Hanzo (FIEEE’04, Fellow of the Royal Academy of Engineering (FREng), of the

IET and of EURASIP) received Honorary Doctorates from the Technical University of Budapest

(2009) and Edinburgh University (2015). He is a Foreign Member of the Hungarian Science-

Academy, Fellow of the Royal Academy of Engineering (FREng), of the IET, of EURASIP and

holds the IEEE Eric Sumner Technical Field Award.

i

ii

Other Wiley/IEEE Press

Books by the Authors

1

R. Steele, L. Hanzo (Ed): Mobile Radio Communications: Second and Third Generation

Cellular and WATM Systems, John Wiley and IEEE Press, 2nd edition, 1999, ISBN 07

273-1406-8, 1064 pages

L. Hanzo, T.H. Liew, B.L. Yeap: Turbo Coding, Turbo Equalisation and Space-Time

Coding, John Wiley and IEEE Press, 2002, 751 pages

L. Hanzo, C.H. Wong, M.S. Yee: Adaptive Wireless Transceivers: Turbo-Coded, Turbo-

Equalised and Space-Time Coded TDMA, CDMA and OFDM Systems, John Wiley and

IEEE Press, 2002, 737 pages

L. Hanzo, L-L. Yang, E-L. Kuan, K. Yen: Single- and Multi-Carrier CDMA: Multi-

User Detection, Space-Time Spreading, Synchronisation, Networking and Standards, John

Wiley and IEEE Press, June 2003, 1060 pages

L. Hanzo, M. Münster, T. Keller, B-J. Choi, OFDM and MC-CDMA for Broadband Multi-

User Communications, WLANs and Broadcasting, John-Wiley and IEEE Press, 2003, 978

pages

L. Hanzo, S-X. Ng, T. Keller and W.T. Webb, Quadrature Amplitude Modulation: From

Basics to Adaptive Trellis-Coded, Turbo-Equalised and Space-Time Coded OFDM, CDMA

and MC-CDMA Systems, John Wiley and IEEE Press, 2004, 1105 pages

L. Hanzo, T. Keller: An OFDM and MC-CDMA Primer, John Wiley and IEEE Press,

2006, 430 pages

L. Hanzo, F.C.A. Somerville, J.P. Woodard: Voice and Audio Compression for Wireless

Communications, John Wiley and IEEE Press, 2007, 858 pages

L. Hanzo, P.J. Cherriman, J. Streit: Video Compression and Communications:

H.261, H.263, H.264, MPEG4 and HSDPA-Style Adaptive Turbo-Transceivers John Wiley

and IEEE Press, 2007, 680 pages

L. Hanzo, J.S. Blogh, S. Ni: 3G, HSDPA, HSUPA and FDD Versus TDD Networking:

Smart Antennas and Adaptive Modulation John Wiley and IEEE Press, 2008, 564 pages

1For detailed contents and sample chapters please refer to http://www-mobile.ecs.soton.ac.uk

iii

iv

L. Hanzo, O. Alamri, M. El-Hajjar, N. Wu: Near-Capacity Multi-Functional MIMO Sys-

tems: Sphere-Packing, Iterative Detection and Cooperation, IEEE Press - John Wiley,

2009

L. Hanzo, J. Akhtman, M. Jiang, L. Wang: MIMO-OFDM for LTE, WIFI and WIMAX:

Coherent versus Non-Coherent and Cooperative Turbo-Transceivers, John Wiley and

IEEE Press, 2010, 608 pages

L. Hanzo, R.G. Maunder, J. Wang, L-L. Yang: Near-Capacity Variable-Length Coding,

John Wiley and IEEE Press, 2010, 608 pages, 2011, 494 pages

Acknowledgements
We are indebted to our many colleagues who have enhanced our understanding of the subject.

These colleagues and valued friends, too numerous to be mentioned individually, have influenced

our views concerning the subject of the book. We thank them for the enlightenment gained from

our collaborations on various projects, papers, and books. We are particularly grateful to our

academic colleagues Professors Sheng Chen, Mohammed El-Hajjar, Rob Maunder and Lie-Liang

Yang as well as to Dr Caho Xu. Finally, we would also like to express our appreciation to our

former colleagues Drs. Dimitrios Alanis and Panagiotis Botsinis.

Zunaira Babar, Daryus Chandra, Soon-Xin Ng and Lajos Hanzo

School of Electronics and Computer Science

University of Southampton, UK

v

vi ACKNOWLEDGMENTS

Foreword

Many thanks for your interest in this book, valued Colleague!

Naturally, our intention with the book is multifold, but primarily to pave the way for the

classical coding community to enter the field of quantum coding.

Quantum error correction codes are expected to play a pivotal role in terms of mitigating

the deleterious e!ects of quantum decoherence, which limits the performance of both quantum

computers and quantum-secured communications systems. Indeed, error correction codes are

ubiquitous even in less susceptible classical communications and storage systems. Explicitly,

all digital wireless systems conceived over the past five decades heavily relied on the potent

signal-decontamination capability of classical error correction codes. They are also capable of

estimating the system’s operating status by monitoring the prevalent error rate and exploit

this for the near-instantaneous reconfiguration of the system. Similar benefits may be antici-

pated also for quantum systems upon harnessing quantum codes, because quantum systems are

significantly more susceptible to corruption by the surrounding electromagnetic environment.

A complex-valued qubit may be exposed to a bit-flip, a phase-flip or to a simultaneous bit-

and phase-flip. Hence the first ever 1/9-rate quantum code was conceived by Peter Shor by

simply exploiting the fact that a 1/3-rate repetition code can separately be applied for guarding

against bit- and phase-flips. Calderbank, Steane and Shor later defined the specific conditions

under which this appealingly simple principle may be extended to the employment of more

sophisticated near-capacity classical codes for conceiving powerful quantum codes. Hence in

this self-contained monograph we portray this evolutionary process from the first principles all

the way to the design of adaptive-rate near-hashing-bound codes.

Part I provides a gentle introduction to the rudimentary principles, paving the way for

readers familiar with classical coding to quantum coding, including the associated quantum and

classical coding basics. Part II is dedicated to the family of near-term quantum codes, which

do not require a high number of qubits and hence are suitable for near-term intermediate scale

(NISC) quantum computers, for example. Finally, Part III elaborates on the design of a suite

of sophisticated long-term quantum coding solutions, when having a relatively high number of

qubits becomes realistic, as quantum technology matures. A range of adaptive-rate quantum

codes are also conceived for practical scenarios of time-variant depolarizing probability.

Wishing you intellectual stimulation, valued Colleague!

vii

viii ACKNOWLEDGMENTS

Contents

Acknowledgments v

I From Classical to Quantum Codes xiii

List of Acronyms xv

1 Introduction 1

1.1 Motivation . 1

1.2 Historical Overview . 5

1.2.1 Quantum Stabilizer Codes . 5

1.2.2 Quantum Topological Error Correction Codes 8

1.2.3 Quantum Convolutional Codes . 11

1.2.4 Quantum Low Density Parity Check Codes 13

1.2.5 Quantum Turbo Codes . 15

1.2.6 Entanglement-Assisted Quantum Codes 15

1.2.7 Protecting Quantum Gates . 15

1.3 Outline of the Book . 19

2 Preliminaries on Quantum Information 27

2.1 Introduction . 27

2.2 A Brief Review of Quantum Information . 27

2.3 Quantum Information Processing . 31

2.3.1 Unitary Transformation . 31

2.3.1.1 Pauli Gates . 32

2.3.1.2 Hadamard Gate . 33

2.3.1.3 Phase Gate . 34

2.3.1.4 Controlled-NOT Gate . 34

2.3.1.5 To!oli Gate . 35

2.3.2 Quantum Measurement . 36

2.4 Quantum Decoherence . 37

ix

x CONTENTS

2.4.1 Symmetric Quantum Depolarizing Chanel 42

2.4.2 Asymmetric Quantum Depolarizing Chanel 42

2.4.3 Independent Binary-Symmetric Chanel 43

2.5 No-Cloning Theorem . 44

2.6 Quantum Entanglement . 45

2.7 Quantum Channels . 46

2.8 Summary and Conclusions . 49

3 From Classical to Quantum Coding 51

3.1 Introduction . 51

3.2 A Brief Review of Classical Syndrome-based Decoding 52

3.3 A Brief Review of Quantum Stabilizer Codes . 57

3.4 Protecting A Single Qubit: Design Examples . 61

3.4.1 Classical and Quantum 1/3-rate Repetition Codes 61

3.4.2 Shor’s 9-Qubit Code . 67

3.4.3 Steane’s 7-Qubit Code . 69

3.4.4 Laflamme’s 5-Qubit Code - The Perfect Code 72

3.5 Summary and Conclusions . 74

4 Revisiting Classical Syndrome Decoding 77

4.1 Introduction . 77

4.2 Look-Up Table-Based Syndrome Decoding . 80

4.3 Trellis-Based Syndrome Decoding . 81

4.3.1 Linear Block Codes . 82

4.3.2 Convolutional Codes . 85

4.4 Block Syndrome Decoding . 91

4.4.1 General Formalism . 91

4.4.2 Block Syndrome Decoder for TTCM . 92

4.4.2.1 System Model . 93

4.4.2.2 Syndrome-Based MAP Decoder 94

4.4.2.3 Error Estimation . 95

4.4.2.4 Syndrome-Based Blocking . 95

4.5 Results and Discussions . 97

4.5.1 Performance of BSD-TTCM over AWGN Channel 97

4.5.2 Performance of BSD-TTCM over Uncorrelated Rayleigh Fading Channel . 98

4.5.3 E!ect of Frame Length on the Performance of BSD-TTCM 102

4.6 Summary and Conclusions . 103

Bibliography 105

Subject Index 107

CONTENTS xi

5 Near-Capacity Codes for Entanglement-Aided Classical Communication 107

5.1 Introduction . 107

5.2 Review of the Superdense Coding Protocol . 109

5.2.1 2-Qubit Superdense Coding . 109

5.2.2 N -Qubit Superdense Coding . 111

5.3 Entanglement-Assisted Classical Capacity . 112

5.4 Bit-Based Code Structure . 114

5.5 Near-Capacity Design . 116

5.5.1 EXIT Charts . 116

5.5.2 Near-Capacity IRCC-URC-SD Design . 117

5.6 Results and Discussions I . 120

5.6.1 Performance of IRCC-URC-2SD . 121

5.6.2 Performance of IRCC-URC-3SD . 124

5.7 Symbol-Based Code Structure . 128

5.8 Results and Discussions II . 128

5.9 Summary and Conclusions . 134

II Near-Term Quantum Codes 137

6 Quantum Coding Bounds 139

6.1 Introduction . 139

6.2 On Classical to Quantum Coding Bounds . 140

6.2.1 Singleton Bound . 140

6.2.2 Hamming Bound . 141

6.2.3 Gilbert-Varshamov Bound . 141

6.3 Quantum Coding Bounds in the Asymptotical Limit 142

6.4 Quantum Coding Bounds on Finite-Length Codes 146

6.5 The Bounds on Entanglement-Assisted Quantum Stabilizer Codes 150

6.6 Summary and Conclusions . 154

7 Quantum Topological Error Correction Codes 157

7.1 Introduction . 157

7.2 Classical Topological Error Correction Codes: Design Examples 158

7.3 Quantum Topological Error Correction Codes: Design Examples 167

7.4 Performance of Quantum Topological Error Correction Codes 174

7.4.1 QBER Versus Depolarizing Probability 177

7.4.2 QBER Versus Distance from Hashing Bound 178

7.4.3 Fidelity . 181

7.5 Summary and Conclusions . 184

xii CONTENTS

Part I

From Classical to Quantum
Codes

List of Acronyms

xv

xvi

BCH Bose-Chaudhuri-Hocquenghem

BER Bit Error Rate

CNOT Controlled-NOT

CSS Calderbank-Shor-Steane

DFS Decoherence-Free Subspace

EA Entanglement-Assisted

EXIT EXtrinsic Information Transfer

GV Gilbert-Varshamov

LDPC Low-Density Parity-Check

LUT Look-Up Table

MDS Maximum Separable Distance

MRRW McEliece-Rodemich-Rumsey-Welch

PCM Parity-Check Matrix

QBCH Quantum Bose-Chaudhuri-Hocquenghem

QBER QuBit Error Ratio

QCC Quantum Convolutional Code

QECC Quantum Error Correction Code

QEDC Quantum Error Detection Code

QIrCC Quantum Irregular Convolutional Code

QLDPC Quantum Low-Density Parity-Check

QPC Quantum Polar Code

QRM Quantum Reed-Muller

QRS Quantum Reed-Solomon

QSBC Quantum Short-Block Code

QSC Quantum Stabilizer Code

QTC Quantum Turbo Code

QTECC Quantum Topological Error Correction Code

QURC Quantum Unity-Rate Code

RS Reed-Solomon

SBC Short-Block Code

SPC Single Parity-Check

TECC Topological Error Correction Code

Chapter 1
Introduction

1.1 Motivation

In 1935, Erwin Schrödinger, an Austrian physicist, proposed a thought experiment to illustrate

the interpretation of uncertainty in quantum mechanics. This thought experiment later acquired

the fond connotation of the “Schrödinger’s Cat” experiment [?,?]. In this treatise, we will refer

to another thought experiment, namely the “Black Box Experiment”. Let us assume that we

have a black box with a coin spinning in it. It does not have to be a fair coin. Inside the box,

we then start spinning the coin. We do not have any prior knowledge about the coin, namely

whether the coin is fair or biased and we do not know whether it landed on the face or the tail

side when it finally stopped spinning. At this moment, we may say that the coin inside the box

is within a superposition of two states and has a certain probability for each of the two states.

Let us continue the experiment by using several boxes. We may proceed by using two, three,

or even an arbitrarily number of N → N boxes for this experiment. Similarly, we spin all the N

coins simultaneously and close the boxes. This situation may be viewed as having 2N states,

suggesting that we can increase the computational power exponentially in line with 2N if we can

exploit the above-mentioned superposition. Let us now continue the experiment to the following

step. Up to this moment, all of the boxes are completely sealed and we have secured the 2N

states of the coins simultaneously. Now, we decide to open all of the boxes at once and observe

all the coins. After observing the state of each coin in each box, we are now in the position

to observe a single specific state from the full set of 2n possible states. This illustrates that

after lifting the lid of the boxes the quantum states suddenly collapse into a single deterministic

classical state due to the action of “observation”, which is also often termed in parlance as a

“measurement”. This property is exploited by quantum computers, which will create a powerful

computational tool that is potentially capable of breaking conventional cryptography.

Consequently, while anN -bit classical register can store only a singleN -bit value, anN -qubit

quantum register can store all the 2N states concurrently. This allows the parallel evaluation

1

2 1. Introduction

Figure 1.1: Quantum Parallelism: Given a function f(x), which has a regular global struc-
ture such that f(x) : {0, 1}2 ↑ {0, 1}2, a classical system requires four evalua-
tions to compute f(x) for all possible x → {00, 01, 10, 11}. By contrast, a 2-qubit
quantum register can be in a superposition of all the four possible states con-
currently. This may be written as |ω↓ = ε0 |00↓ + ε1 |01↓ + ε2 |10↓ + ε3 |11↓,
where the operation | ↓ distinguishes the quantum states. Therefore quan-
tum computing requires only a single classical evaluation/observation to yield
the outcome, which is also in a superposition of all the four possibilities, i.e.
ε0 |f(00)↓ + ε1 |f(01)↓ + ε2 |f(10)↓ + ε3 |f(11)↓. However, it is not possible to
read all the four states, because the quantum register collapses to one of the four
superimposed states upon measurement. Nevertheless, we may manipulate the
resultant superposition of the four possible states before observing the quantum
register for the sake of determining a desired property of the function, as in [?,?,?,?].

of certain functions with regular global structure at a complexity cost that is equivalent to a

single classical evaluation [?,?], as illustrated in Figure 1.1. Therefore, as exemplified by Shor’s

factorization algorithm [?] and Grover’s search algorithm [?], quantum-based computation is

capable of solving certain complex problems at a substantially lower complexity than classical

computing.

In 1965, Gordon E. Moore released the general rule of thumb projecting the number of

transistors on a single integrated circuit chip based in the semiconductor industry. This notable

rule of thumb was later termed as “Moore’s Law”, which dictates that the number of the

transistors on an integrated circuit chip will be doubled every 18 months or two years [?]. This

law has maintained its validity over the past few decades, as illustrated in Fig. 1.2, but it was

hypothesized that the trend is expected to slow down [?]. As the transistor’s size is reduced,

we encounter new physical phenomena as we enter the nano-scale world, which can only be

described using the postulates of quantum mechanics [?]. We encounter both pros and cons as

we embark on this journey into the unknown. Firstly, the ability to create the above-mentioned

simultaneous states at any instant lends itself to high-power parallel computing by exploiting

the quantum-domain superposition. Secondly, the collapse of quantum superposition into a

classical state upon observation potentially allows us to conceive unbreachable communication

schemes and detect eavesdropping, which is the main advantage of quantum communications.

The field of theoretical quantum computing was established five decades after the Schrödinger

Cat experiment by the renowned physisist Richard Feynman who suggested how to simulate

quantum phenomena using quantum computers [?]. Since then, diverse quantum-domain algo-

rithms were invented and indeed have shown that the laws of quantum mechanics will help us to

speed up computations in some applications [?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?,?]. In parallel to

1.1. Motivation 3

Figure 1.2: The number of transistors on an integrated circuit is doubled every two years since
1971, as predicted by Gordon E. Moore in 1985 [?].

the quantum computing developments, attractive quantum-based solutions capable of providing

absolute security have also been conceived [?,?,?,?,?,?,?,?,?,?].

Despite the above-mentioned advances, the physical implementation of quantum computers

is still far from perfection. Substantial e!orts have been invested in building a scalable and

reliable quantum computer relying on di!erent solutions. For instance, by using spin electron

based techniques [?,?], photonic chips [?,?,?], superconducting qubits [?,?,?], and recently also

by using silicon [?,?] as well as microwave trapped-ions techniques have been conceived [?,?]. In

order to arrive at the best architecture for quantum computers, the physical implementations of

quantum computation have to satisfy the so-called “DiVincenzo’s Criteria” [?] described below:

(a) A scalable physical system with well-characterized qubits. The elementary unit

of information in classical computers is represented by binary digits or bits. Each bit can

only hold a logical value of “0” or “1” at any instant, but not both. By contrast, the

elementary unit of information in quantum computers is represented by a quantum bit or

qubit. In quantum mechanics, the state of “0” and “1” are commonly represented using

the Dirac notation, i.e. |0↓ for state “0” and |1↓ for state “1” [?]. Each qubit can hold a

value of |0↓ or |1↓ or the superposition of both states. The physical realization of a qubit

should reliably distinguish the state |0↓ and |1↓ as well as the superposition of both states.

For instance, we can have a two-level quantum system using the up/down spin states of

4 1. Introduction

a particle, or the ground and excited states of an atom, or the vertical and horizontal

polarization of a single photon.

(b) The ability to initialize the state of the qubits to a simple fiducial state. One of

the essential requirements in classical computing is to know the initial state of a register

before starting the computations. Similar requirements are also applicable in the quantum

domain. For instance, to initialize the process of quantum search and quantum factor-

ing algorithms, the quantum registers have to supply a certain number of fresh auxiliary

qubits in the state of |0↓. Similarly, operations such as quantum teleportation, quan-

tum superdense coding, and quantum key distribution (QKD) also require the quantum

registers to provide a continuous supply of fresh qubits in a certain superposition state.

(c) Su!ciently long decoherence times, much longer than the gates’ operation

time. In quantum computers, the qubits will be involved in a series of quantum-domain

operations to carry out a certain quantum computation or quantum communication tasks.

Ideally, a quantum computing algorithm and similarly a quantum communication scheme

should be designed by ensuring that the computational process or transmission finishes

before the qubits are corrupted by the decoherence phenomenon caused by their undesired

coupling with the surrounding environment. However, a long decoherence time does not

necessarily mean that the qubits are more reliable. We primarily care about the number of

operations that can be completed before the qubits decohere. Hence, we should take into

account the gate operation time. The maximal number of reliable operations in quantum

computers is defined by the ratio of the qubits’ decoherence time to the per-gate operation

duration. A quantum solution having a higher maximal number of reliable operations may

be more preferable, because as we scale-up the quantum computers, the number of gate

operations will increase.

(d) A universal set of quantum gates. The power of quantum computers in speeding

up some computations hinges on the availability of a universal set of quantum gates.

More specifically, a universal set of quantum gates primarily entails the family of gates

that can be simulated by classical probabilistic computers in polynomial time, namely

the so-called Cli!ord group defined in [?]. Additionally, there are also non-Cli!ord gates,

which impose higher simulation complexity. Hence, in order to develop fully functioning

quantum computers achieving a beneficial quantum speed-up, a set of quantum gates

outside the Cli!ord group also have to be realized.

(e) A qubit-specific measurement capability. Eventually, the results from a series of

quantum operations carrying out certain computational tasks have to be read out. For

this reason, quantum computers require so-called measurement operators, which have to

be reliable and capable of operating in various measurement bases.

As for quantum communications, there are two additional criteria, as described below:

(a) The ability to convert stationary qubits to ’flying’ qubits and vice versa. Nu-

merous applications of quantum computers require the transmission of qubits to a di!erent

location. Hence, the capability of converting the stationary qubits to flying qubits is es-

sential.

1.2. Historical Overview 5

(b) The capability of reliably transmitting flying qubits between specific locations.

To guarantee that the state of the qubits remains intact after their displacement to a

di!erent location, their protection against quantum decoherence is required, since we

cannot completely isolate the interaction of the qubits with the surrounding environment,

even if high-grade electromagnetic shielding and near-absolute-zero temperature are used.

Quantum computers face the same problem as their classical counterparts, namely deco-

herence. The aforementioned criteria for developing scalable and reliable quantum computers

may not be accomplishable if the deleterious e!ects of quantum decoherence cannot be miti-

gated. Therefore, it is a challenge to ensure the reliability of quantum computers in the face

of ubiquitous quantum decoherence. Quantum error-correction codes (QECC) constitute one of

the most popular techniques for tackling the deleterious e!ects of quantum decoherence. The

employment of QECCs may enable quantum computers to achieve high-reliability reproducible

operations, in-line with the DiVincenzo’s Criteria [?]. Therefore, it might be surmised that one

of the key ingredients of realizing reliable quantum computers is the employment of QECCs.

1.2 Historical Overview

1.2.1 Quantum Stabilizer Codes

The concept of protecting the quantum information from decoherence is similar to that of its

classical counterpart by attaching redundancy to the information [?], which is then invoked later

for error-correction. The quest for finding good QECCs was inspired by Shor, who conceived

a 9-qubit code, which is judiciously often referred to as Shor’s code [?]. Shor’s code encodes a

single information qubit, which is also referred to as the “logical qubit”, into nine encoded qubits

or “physical qubits”. Shor’s 9-qubit code is capable of protecting the nine physical qubits from

any type of single-qubit error. Following the discovery of Shor’s code, another QECC scheme,

namely Steane’s code, was proposed in [?]. The latter is capable of protecting the physical qubits

from any single-qubit error by encoding a single logical qubit into seven physical qubits, instead

of nine qubits. The question concerning the minimum number of physical qubits required to

protect them from any type of single-qubit error was answered by Laflamme et al., who proposed

the 5-qubit quantum code having a quantum coding rate of 1/5 [?]. This 5-qubit may also be

referred to as Laflamme’s “perfect code” since the code construction achieves the quantum

Hamming bound and the quantum Singleton bound of binary codes. This is the upper bound

of the achievable quantum coding rate, when aiming for correcting a single qubit [?, ?]. To

elaborate briefly, each of the 5 complex-valued qubits may have a bit-flip, a phase-flip as well as

a joint bit-flip and phase-flip error. The bit-flip and phase-flip errors are shown in the stylised

illustration of Figure 1.3.

Hence in Laflamme’s code we have 3 · 5 = 15 legitimate error events plus the error-free sce-

nario. Hence we have to attach 4 redundant qubits to the original logical qubit for distinguising

the above-mentioned 16 possible error-scenarios. In exchange for this undesirably low code-rate

we have a powerful error correction capability, since an arbitrary error can be eliminated in a

6 1. Introduction

Bit Flip

Phase Flip

Figure 1.3: Quantum decoherence characterized by bit-flips and phase-flips. The vertical po-
larization represents the state |1↓, while the horizontal polarization represents the
state |0↓.

set of five qubits, ie. when the error rate imposed by decoherence is as high as 20 %. Su”ce to

say in closing that it is perfectly feasible to create high-rate codes, which would however correct

a lower error rate, as it will transpire throughout the rest of this monograph.

The field of QECCs entered its golden age following the invention of quantum stabilizer codes

(QSCs) [?,?]. The QSC paradigm allows us to transform the classical error correction codes into

their quantum counterparts. The QSCs must be constructed for circumventing the problem of

estimating both the number and the position of quantum-domain errors imposed by quantum

decoherence without observing the actual quantum states, since observing the quantum states

would collapse the qubits into classical bits. This extremely beneficial error estimation technique

was achieved by introducing the syndrome-measurement based approach [?, ?]. In classical er-

ror correction codes, the syndrome-measurement based approach has been widely exploited as a

popular error detection and correction procedure. Therefore, the formulation of QSCs expanded

the search space of good QECCs to a broader horizon. This new paradigm of incorporating the

classical to quantum isomorphisms, led to the transformation of classical codes to their quan-

tum domain dual pairs, such as quantum Bose-Chaudhuri-Hocquenghem (QBCH) codes [?,?],

quantum Reed-Solomon (QRS) codes [?], quantum Reed-Muller (QRM) codes [?], quantum con-

volutional codes (QCCs) [?,?], quantum low-density parity-check (QLDPC) codes [?], quantum

turbo codes (QTCs) [?], and quantum polar codes (QPCs) [?]. A timeline that portrays the

milestones of QSCs, at a glance is depicted in Fig. 1.4. Although the QSC formulation creates

an important class of QECCs, we note that there are also other classes of QECCs beside the

QSCs, such as the class of decoherence-free subspace (DFS) codes [?,?,?]. DFS codes can be

viewed as a family of passive QECCs, while the QSCs constitute a specific example of the active

ones. To elaborate a little further, DFS codes constitute a highly degenerate class of QECCs,

which rely on the fact that the error patterns may preserve the state of physical qubits and

therefore they do not necessarily require a recovery procedure. Due to their strong reliance on

the degeneracy property exhibited by the set of QECCs that do not have a classical counterpart,

the class of DFS codes bears no resemblance to any classical error correction codes. Therefore,

in this treatise, we focus our discussions purely on QSCs, which exhibit strong analogies with

classical error correction codes.

1.2.1. Quantum Stabilizer Codes 7

1995

2012

Shor Code, non dual-containing CSS [?]. The pioneering work on QECC, which introduced 9-qubit code in order to

protect a single qubit.
1995

Steane Code, dual-containing CSS [?]. A 7-qubit code was proposed to protect a single qubit.

1996

Laflamme Code, non-CSS [?]. The “perfect” 5-qubit code protecting a single qubit.

1996

Quantum Hamming Codes, non-CSS [?]. Similar to classical Hamming codes, this specific family of QECC

achieves the quantum Hamming bound.

1996

The general formulation of QSCs was proposed, which is the general concept of syndrome-based QECC [?].

1997

Quantum GF(4) Codes, non-CSS [?]. A wide range of non-CSS QSCs was derived from classical error correction

codes based on the GF(4).

1998

Quantum BCH Codes, dual-containing CSS [?]. Inspired by classical BCH codes.

1999

Quantum Reed-Solomon Codes, dual-containing CSS [?]. Inspired by classical Reed-Solomon codes.

1999

Quantum Reed-Muller Codes [?], non-CSS. Inspired by classical Reed-Muller codes.

1999

The notion of entanglement-assisted QSC was proposed for circumventing the symplectic criterion when trans-

forming the classical codes into their quantum counterparts [?,?].

2002

Quantum Convolutional Codes, non-CSS [?] and EA [?]. QSCs inspired by classical trellis-based error correc-

tion codes.

2003

Quantum LDPC Codes, CSS [?, ?], non-CSS [?, ?] and EA [?]. The quantum version of error correction codes

based on Tanner or bipartite graph. A comprehensive survey of various QLDPC codes can be found in [?].

2004

Quantum Turbo Codes, non-CSS [?] and EA [?,?]. A QSC scheme utilizing the serial concatenation of quantum

convolutional codes. For further insights on the class of QTC, we refer to [?].

2009

Quantum Polar Codes, CSS [?] and EA [?]. Inspired by the construction of classical polar codes.

2012

Figure 1.4: Timeline of important milestones in the QECC field, specifically in the develop-
ment of QSCs. The code construction is highlighted with bold fonts, while the
associated code type is printed in italics.

Even though intensive research e!orts have been invested in exploring the field of QSCs, one

of the mysteries remains unresolved. Since the development of the first QSC, one of the open

problems has been how to determine the realistically achievable size of the codebook |C| = 2k,

given the number of physical qubits n, the minimum distance of d, and the quantum coding

rate of rQ = k/n, where k denotes the number of logical qubits. The minimum distance d of

the legitimate codewords is the parameter that defines the error correction capability of the

corresponding code. The complete formulation of the realistically achievable minimum distance

d, given the number of physical qubits n and the quantum coding rate rQ is unknown at the time

of writing, but several theoretical lower and upper bounds can be found in the literature [?,?,?].

8 1. Introduction

Naturally, finding code constructions associated with growing minimum distances upon reducing

the coding rate is desirable, since an increased minimum distance improves the reliability of

quantum computation [?, ?, ?, ?, ?]. The trade-o! between the quantum coding rate and the

minimum distance as well as the codeword length is widely recognized, but the achievable

minimum distance d of a quantum code given the quantum coding rate rQ and codeword length

n remains unresolved.

For example, for a given codeword length of n = 128 and quantum coding rate of rQ = 1/2,

the achievable minimum distance is loosely bounded by 11 < d < 22, while for n = 1024 and

rQ = 1/2, the achievable minimum distance is bounded by 78 < d < 157. Naturally, having

such a wide range of minimum distances is undesirable. For binary classical codes, this problem

has been circumvented by the closed-form approximation proposed by Akhtman et al. [?].

The challenge of creating the quantum counterpart of error correction codes lies in the fact

that the QSC constructions have to mitigate not only bit-flip errors but also phase-flip errors or

both bit-flip and phase-flip errors. Based on how we mitigate those di!erent types of errors, we

can simply categorize QSCs as belonging to the class of Calderbank-Shor-Steane (CSS) codes [?,

?,?] or to the complementary class of non-CSS codes [?]. The CSS codes handle qubit errors by

treating bit-flip errors and phase-flip errors as separate entities. By contrast, the class of non-CSS

codes treat both bit-flip errors and phase-flip errors simultaneously. Since the CSS codes treat

the bit-flip and phase-flip error correction procedures separately, in general, they exhibit a lower

coding rate than their non-CSS counterparts having the same coderate. Furthermore, if we also

consider the presence of quantum entanglement, we may conceive more powerful quantum code

constructions as discussed in [?, ?]. To elaborate, the family of entanglement-assisted quantum

stabilizer codes (EA-QSCs) is capable of operating at a higher quantum coding rate than the

unassisted QSC constructions at the same error correction capability, provided that error-free

maximally-entangled qubits have already been preshared [?, ?]. This presharing operation may

be carried out, when the circuits are not actively harnessed for carrying out urgent impending

operations.

1.2.2 Quantum Topological Error Correction Codes

We have established that one of the essential prerequisites of constructing quantum computers

is the employment of QECCs for ensuring that the computers operate reliably by mitigating the

deleterious e!ects of quantum decoherence [?, ?, ?]. However, the laws of quantum mechanics

prevent us from transplanting classical error correction codes directly into the quantum domain.

To circumvent the constraints imposed by the nature of quantum physics, the notion of quantum

stabilizer codes (QSCs) emerged [?, ?, ?]. The invention of QECCs and specifically the QSC

formalism did not immediately eradicate all of the obstacles of developing reliable quantum

computers. Employing the QSCs requires redundancy in the form of auxiliary quantum bits

(qubits) to encode the logical qubits onto physical qubits. The redundant qubits are then

exploited during the error correction. These operations rely on the quantum encoder and decoder

circuits constructed from quantum gates. Therefore, the circuit-based implementation of a QSC

itself has to be fault-tolerant to guarantee that the QSC circuit does not proliferate the existing

1.2.2. Quantum Topological Error Correction Codes 9

(a) 5 qubits (ibmqx2). (b) 5 qubits (ibmqx4).

(c) 16 qubits (ibmqx5).

Figure 1.5: The qubit arrangement of IBM’s superconducting quantum computers. The circles
represent the qubits, while the arrows represent the possible qubit interactions
within the computers [?].

errors.

The notion of QSC triggered numerous discoveries in the domain of QECCs, which are

inspired by classical error correction codes. Essentially, QSCs represent the quantum-domain

version of the classical syndrome decoding based error correction codes. Since the concept of

utilizing the syndrome values for error correction is widely exploited in the classical domain,

diverse classical error correction codes can be conveniently ‘quantumized’. Consequently, we can

find in the literature the quantum version of error correction codes based on algebraic formalisms

such as those of the Bose-Chaudhuri-Hocquenghem (BCH) codes [?] and of Reed-Solomon (RS)

codes [?], quantum codes based on a conventional trellis structure such as convolutional codes [?]

and turbo codes [?,?], quantum codes based on bipartite graphs, such as low-density parity-check

(LDPC) codes [?,?,?,?,?], as well as quantum codes based on channel polarization, such as polar

codes [?, ?].

Apart from exploiting the above isomorphism, there are also significant contributions on

directly developing code constructions solely based on the pure quantum topology and homology,

as exemplified by the family of so-called toric codes [?,?,?], surface codes [?,?], colour codes [?],

cubic codes [?], hyperbolic surface codes [?,?], hyperbolic color codes [?], hypergraph product

codes [?, ?, ?] and homological product codes [?]. Unfortunately, this concept has not been

widely explored in the classical domain. By contrast, in the quantum domain, having a code

construction relying on the physical configuration of qubits is highly desirable for the conception

of low-complexity high-reliability quantum computers.

For instance, this strategy has been deployed for developing IBM’s superconducting quantum

computers, as shown in Fig. 1.5. From this figure, we can see the qubit arrangement of the three

prototypes of IBM’s quantum computer - which can be viewed online - namely the ibmqx2,

ibmqx4, and ibmqx5 configurations [?]. The first two of the quantum computers are the 5-

qubit quantum computers, while the third one is a 16-qubit quantum computer. The circles in

10 1. Introduction

Fig. 1.5 represent the qubits, while the arrows represent all their two-qubit interactions. It can

be seen that the existing architectures impose a limitation, namely the two-qubit interactions

can be only performed between the neighbouring qubits. Even though this particular limitation

potentially imposes additional challenges, when it comes to QSCs deployment, the stabilizer

e!ect can still be achieved by the corresponding qubit arrangement by invoking the family of

QTECCs. A timeline that portrays the milestones in the evolution of QTECCs is portrayed at

a glance in Fig. 1.6.

1997

2019

Toric Codes, non dual-containing CSS [?, ?]. The first QTECC is proposed, which is the QSC based on topological

order, exploiting the nature of qubit arrangement on torus.
1997

Surface Codes, non dual-containing CSS [?]. The extension of toric codes by introducing boundaries on torus,

hence the qubits can be arranged on a planar or a surface.

1998

Colour Codes, dual-containing CSS [?]. A class of QTECCs whose stabilizer formalism is defined by three-

coloured surface tiles.

2006

Hyperbolic Surface Codes, non dual-containing CSS [?, ?]. A class of surface codes based on Cayley graphs ex-

hibiting higher coding rates, but it causes a slower growth of minimum distance as the number of physical qubits

increases.

2009

Hypergraph Product Codes, CSS [?, ?, ?]. A class of topologically inspired QSCs with faster growing minimum

distance compared to the predecessors.

2009

3D Surface Codes or Cubic Codes, CSS [?, ?]. A class of QTECC whose stabilizer operators are defined by

three-dimension square lattice.

2011
Rotated Surface Codes, non dual-containing CSS [?]. A modification of surface codes with a rotated lattice struc-

ture reducing the number of physical qubits required to obtain identical error correction capability.

2012

Hyperbolic Colour Codes, dual-containing CSS [?]. A class of colour codes with higher coding rates, but the

minimum distance grows slower upon increasing the codeword length.

2013

Homological Product Codes, CSS [?]. The fastest growing minimum distance of topologically inspired QSCs

known at the time of writing.

2014

4D Hyperbolic Codes, CSS [?]. A family of QTECC with constant quantum coding rate as we increase the

number of physical qubits.

2014

3D Colour Codes, dual-containing CSS [?]. A class of QTECC whose stabilizer operators are defined by three-

dimension three-coloured faces lattice.

2016

N-Dimensional Hypergraph Product Codes, CSS [?]. The generalization of hypergraph product codes for

more than two dimension.

2019

Figure 1.6: Timeline of important milestones in the area of QTECCs. The code construction
is highlighted with bold while the associated code type is marked in italics.

Again, Shor’s 9-qubit code protects 9 physical qubits from any type of single-qubit error,

namely bit-flip (X), phase-flip (Z), as well as from simultaneous bit and phase-flip (Y). Further-

more, as also alluded to above, not long after the discovery of the first QECCs, Steane invented

the 7-qubit code, which was followed by Laflamme’s perfect 5-qubit code [?, ?]. However, the

construction of these codes does not naturally exhibit inherent fault-tolerance. Briefly, a QSC

is said to be fault-tolerant if the circuit-based implementation of the QSC does not introduce

more errors than the error correction capability of the QSC, when the quantum gates required

1.2.3. Quantum Convolutional Codes 11

for implementing the QSC are imperfect. The quantum circuit based implementation of these

pioneering QSCs always involves a high number of qubit interactions within the codeword of

physical qubits. As a consequence, an error caused by an imperfect gate potentially propagates

to other qubits and instead of being eliminated, the deleterious e!ects of quantum decoherence

are further aggravated.

At the current development stage of quantum computers, a QSC exhibiting fault-tolerance

is more favourable, since the reliability of quantum gates is substantially lower than that of

classical logic gates. The employment of QSCs is expected to mitigate the deleterious e!ect of the

imperfect quantum gates. However, the QSC circuit itself is prone to decoherence. For the sake

of constructing a fault-tolerant QSC scheme, the notion of quantum topological error correction

codes (QTECCs) was proposed [?, ?]. The formulation of QTECCs o!ers substantial fault-

tolerance improvements because they exhibit an increased minimum distance upon increasing the

codeword length. Furthermore, they rely on localized of stabilizer measurements. Nonetheless,

one of the substantial drawbacks of QTECCs is their low quantum coding rate. More specifically,

the quantum coding rate of QTECCs tends to zero for an asymptotically long codeword.

Another class of codes which are considered to be fault-tolerant QSCs is constituted by

the family of QLDPC codes. The QLDPC codes inherit the property of fault-tolerance due

to having a sparse parity-check matrix, which guarantees the limited interaction of the qubits

within the same block of codewords. Even though QLDPC codes can achieve a good performance

at a relatively high quantum coding rate, the construction of QLDPC has a bounded minimum

distance [?,?] and they tend to perform best for long codeword. Even though intensive research

e!orts have been invested in exploring the QECC field, the fundamental trade-o! between the

quantum coding rate and the minimum distance remains unresolved. Having a high minimum

distance is important for guaranteeing a low error floor and robust fault-tolerance. However,

it is unfeasible to construct a QSC exhibiting high minimum distance without unduly reducing

the quantum coding rate or increasing the number of physical qubits. Indeed, this is only a

specific example of the quantum coding rate versus minimum distance trade-o!. Furthermore,

the quantum coding rate versus minimum distance trade-o! is not the only one involved in

designing the QSCs, as seen in Fig. 1.7. The discussion of these intricately interlinked aspects

will prevade the rest of the book.

1.2.3 Quantum Convolutional Codes

The inception of QCCs dates back to 1998. Inspired by the higher coding e”ciencies of Classical

Convolutional Codes (CCCs) as compared to the comparable block codes and the low latency

associated with the online encoding and decoding of CCCs [?], Chau conceived the first QCC

in [?]. He also generalized the classical Viterbi decoding algorithm for the class of quantum codes

in [?], but he overlooked some crucial encoding and decoding aspects. Later, Ollivier et al. [?,?]

revisited the class of stabilizer-based convolutional codes. Similar to the classical Viterbi decod-

ing philosophy, they also conceived a Look-Up Table (LUT) based quantum Viterbi algorithm

for the maximum likelihood decoding of QCCs, whose complexity increases linearly with the

number of encoded qubits. Ollivier et al. also derived the corresponding online encoding and

12 1. Introduction

- Waterfall Region
- Error Floor Region
- Distance to Hashing Bound - Minimum Distance

- Quantum Coding Rate
- Codelength

- Fault-Tolerant Aspect

- E�cient Encoder
- Fast and Optimal Decoder

Encoder-Decoder Implementation

Performance Metrics

- Entanglement-Assisted Codes
- Non-CSS Type
- CSS Type

Quantum Code Types

Constructions Attributes

Design Considerations
and Trade-o↵s

Figure 1.7: The conflicting design factors related to QECC code design.

Author(s) Coding E!ciency Decoding Complexity

Ollivier and Tillich [?, ?] Low Moderate

Almeida and Palazzo [?] Moderate Moderate

Forney et al. [?, ?] High Low

Table 1.1: Comparison of the Quantum Convolutional Code (QCC) structures.

decoding circuits having complexity which increased linearly with the number of encoded qubits.

Unfortunately, their proposed rate-1/5 single-error correcting QCC did not provide any perfor-

mance or decoding complexity gain over the rate-1/5 single-error correcting block code of [?].

Pursuing this line of research, Almeida et al. [?] constructed a rate-1/4 single-error correcting

Shor-type concatenated QCC from a CCC(2, 1, 2) and invoked the classical syndrome-based

trellis decoding for the quantum domain. Hence, the proposed QCC had a higher coding rate

than the QCC of [?, ?]. However, this coding e”ciency was achieved at the cost of a relatively

high encoding complexity associated with the concatenated trellis structure. It must be pointed

out here that the pair of independent trellises used for decoding the bit-flips and phase-flips

impose a lower complexity than a large joint trellis would. Finally, Forney et al. [?,?] designed

rate-(n ↔ 2)/n QCCs comparable to their classical counterparts, thus providing higher cod-

ing e”ciencies than the comparable block codes. Forney et al. [?, ?] achieved this by invoking

arbitrary classical self-orthogonal rate-1/n F4-linear and F2-linear convolutional codes for con-

structing unrestricted and CSS-type QCCs, respectively. Forney et al. [?, ?] also conceived a

simple decoding algorithm for single-error correcting codes. Both the coding e”ciency and the

decoding complexity of the aforementioned QCC structures are compared in Table 1.1. Further-

more, in the spirit of finding new constructions for QCCs, Grassl et al. [?,?] constructed QCCs

using the classical self-orthogonal product codes, while Aly et al. explored various algebraic con-

structions in [?] and [?]. Particularly, the QCCs of [?] were derived from classical BCH codes,

while the QCCs of [?] were constructed from the classical Reed-Solomon and Reed-Muller codes.

Recently, Pelchat and Poulin made a major contribution to the decoding of QCCs by proposing

1.2.4. Quantum Low Density Parity Check Codes 13

Year Author(s) Contribution

1998 Chau [?] The first QCCs were developed. Unfortunately, some important encod-
ing/decoding aspects were ignored.

1999 Chau [?] Classical Viterbi decoding algorithm was generalized to the quantum do-
main. However, similar to [?], some crucial encoding/decoding aspects
were overlooked.

2003 Ollivier and
Tillich [?, ?]

Stabilizer-based convolutional codes and their maximum likelihood decod-
ing using the Viterbi algorithm were revisited to overcome the deficiencies
of [?,?]. Failed to provide better performance or decoding complexity than
the comparable block codes.

2004 Almeida and
Palazzo [?]

Shor-type concatenated QCC was conceived and classical syndrome trellis
was invoked for decoding. A high coding e!ciency was achieved at the
cost of a relatively high encoding complexity.

2005 Forney et al. [?,
?]

Unrestricted and CSS-type QCCs were derived from arbitrary classical
self-orthogonal F4 and F2 CCCs, respectively, yielding a higher coding
e!ciency as well as a lower decoding complexity than the comparable
block codes.

2005 Grassl and
Rotteler [?, ?]

Conceived a new construction for QCCs from the classical self-orthogonal
product codes.

2007 Aly et al. [?] Algebraic QCCs dervied from BCH codes.

2008 Aly et al. [?] Algebraic QCCs constructed from Reed-Solomon and Reed-Muller Codes.

2013 Pelchat and
Poulin [?]

Degenerate Viterbi decoding was conceived, which runs the MAP algo-
rithm over the equivalent classes of degenerate errors, thereby improving
the performance.

Table 1.2: Major contributions to the development of Quantum Convolutional Codes (QCCs).

degenerate Viterbi decoding [?], which runs the Maximum A Posteriori (MAP) algorithm [?]

over the equivalent classes of degenerate errors, thereby improving the attainable performance.

The major contributions to the development of QCCs are summarized in Table 1.2.

1.2.4 Quantum Low Density Parity Check Codes

Although convolutional codes provide a somewhat better performance than the comparable block

codes, yet they are not powerful enough to yield a capacity approaching performance, when used

on their own. Consequently, the desire to operate close to the achievable capacity at an a!ordable

decoding complexity further motivated researchers to design beneficial quantum counterparts of

the classical LDPC codes [?], which achieve information rates close to the Shannonian capacity

limit with the aid of iterative decoding schemes. Furthermore, the sparseness of the LDPC

matrix is of particular interest in the quantum domain, because it requires only a small number

of interactions per qubit during the error correction procedure, thus facilitating fault-tolerant

decoding. Moreover, this sparse nature also makes QLDPC codes highly degenerate.

Postol [?] conceived the first example of a non-dual-containing CSS-based QLDPC code

from a finite geometry based classical LDPC in 2001. Later, Mackay et al. [?] proposed various

code structures (e.g. bicycle codes and unicycle codes) for constructing QLDPC codes from

14 1. Introduction

Code Short Minimum Delay Decoding

Construction Cycles Distance Complexity

Bicycle codes [?] Yes Upper Bounded Standard Standard

Cayley-graph based
codes [?, ?, ?]

Yes Increases with the
code length

Standard Increases with the
code length

LDGM-based codes [?,
?]

Yes Upper Bounded Standard High

Non-binary quasi-
cyclic codes [?, ?]

No Upper Bounded Standard High

Spatially-coupled
quasi-cyclic codes [?]

No Upper Bounded High High

Table 1.3: Comparison of the Quantum Low Density Parity Check (QLDPC) code structures.

the family of classical dual-containing LDPC codes. Additionally, Mackay et al. also proposed

the class of Cayley graph-based dual-containing codes in [?], which were further investigated by

Couvreur et al. in [?,?].

Aly et al. contributed to these developments by constructing dual-containing QLDPC codes

from finite geometries in [?], while Djordjevic exploited the Balanced Incomplete Block Designs

(BIBDs) in [?], albeit neither of these provided any gain over Mackay’s bicycle codes. Lou et

al. [?, ?] invoked the non-dual-containing CSS structure by using both the generator and the

PCM of classical Low Density Generator Matrix (LDGM) based codes. Hagiwara et al. [?] con-

ceived Quasi-Cyclic (QC) QLDPC codes, whereby the constituent PCMs of non-dual-containing

CSS-type QLDPCs were constructed from a pair of QC-LDPC codes found using algebraic com-

binatorics. Hagiwara’s design of [?] was extended to non-binary QLDPC codes in [?,?], which

operate closer to the Hashing limit than MacKay’s bicycle codes. The concept of QC-QLDPC

codes was further extended to the class of spatially-coupled QC codes in [?]. While all the afore-

mentioned QLDPC constructions were CSS-based, Camara et al. [?] were the first authors to

conceive non-CSS QLDPC codes. Later, Tan et al. [?] proposed several systematic constructions

for non-CSS QLDPC codes, four of which were based on classical binary QC-LDPC codes, while

one was derived from classical binary LDPC-convolutional codes. Since most of the above-listed

QLDPC constructions exhibit an upper bounded minimum distance, topological QLDPCs1 were

derived from Kitaev’s construction in [?, ?, ?]. Amidst these activities, which focused on the

construction of QLDPC codes, Poulin et al. were the first scientists to address the decoding

issues of QLDPC codes [?], which were further improved in [?]. The major contributions made

in the context of QLDPC codes are summarized in Table 1.4, while the most promising QLDPC

construction methods are compared in Table 1.32.

1Topological code structures are beyond the scope of this book.
2All QLDPC codes must have short cycles in the quaternary formalism, which will be discussed in

Chapter ??. The second column only indicates ‘short cycles’ in the binary formalism.

1.2.5. Quantum Turbo Codes 15

1.2.5 Quantum Turbo Codes

Pursuing further the direction of iterative code structures, Poulin et al. conceived QTCs in [?,?],

based on the interleaved serial concatenation of QCCs. Unlike QLDPC codes, QTCs o!er a com-

plete freedom in choosing the code parameters, such as the frame length, coding rate, constraint

length and interleaver type. Moreover, their decoding is not impaired by the presence of length-

4 cycles associated with the symplectic criterion. Furthermore, in contrast to QLDPC codes,

the iterative decoding invoked for QTCs takes into account the inherent degeneracy associated

with quantum codes. However, it was found in [?, ?, ?] that the constituent QCCs cannot be

simultaneously both recursive and noncatastrophic. Since the recursive nature of the inner code

is essential for ensuring an unbounded minimum distance, whereas the noncatastrophic nature

is a necessary condition to be satisfied for achieving decoding convergence to a vanishingly low

error rate, the QTCs designed in [?, ?] had a bounded minimum distance. The QBER perfor-

mance curves of the QTCs conceived in [?,?] also failed to match the classical turbo codes. This

issue was dealt with in [?], where the quantum turbo decoding algorithm of [?] was improved

by iteratively exchanging the extrinsic rather than the a posteriori information. The major

contributions made in the domain of QTCs are summarized in Table 1.4.

1.2.6 Entanglement-Assisted Quantum Codes

Some of the well-known classical codes cannot be imported into the quantum domain by invok-

ing the aforementioned stabilizer-based code constructions because the stabilizer codes have to

satisfy the stringent symplectic product criterion. This limitation was overcome in [?,?,?,?] with

the notion of EA quantum codes, which exploit pre-shared entanglement between the transmitter

and receiver. Later, this concept was extended to numerous other code structures, e.g. EA-

QLDPC code [?], EA-QCC [?], EA-QTC [?,?] and EA-polar codes [?]. In [?,?], it was also found

that EA-QCCs may be simultaneously both recursive as well as non-catastrophic. Therefore,

the issue of bounded minimum distance of QTCs was resolved with the notion of entanglement.

Furthermore, EA-QLDPC codes are free from length-4 cycles in the binary formalism, which in

turn results in an impressive performance similar to that of the corresponding classical LDPC

codes. Hence, the concept of the entanglement-assisted regime resulted in a major breakthrough

in terms of constructing quantum codes, whose behaviour is similar to that of the corresponding

classical codes. The major milestones achieved in the history of entanglement-assisted quantum

error correction codes are chronologically arranged in Figure 1.8.

1.2.7 Protecting Quantum Gates

Although the field of QECCs benefitted from a rapid pace of development, because under certain

conditions we can transform various classes of powerful classical error correction codes into their

quantum counterparts, several challenges remain, hindering the immediate employment of these

powerful QSCs in quantum computers. Firstly, the reliability of the state-of-the-art quantum

gates is still significantly lower compared to classical gates. For example, the reliability of a

two-qubit quantum gate is between 90.00% ↔ 99.90% across the various technology platforms,

16 1. Introduction

Year Author(s) Code Type Contribution

2001 Postol [?] Non-dual The first example of QLDPC code constructed from a finite geom-
etry based classical code. A generalized formalism for constructing
QLDPC codes from the corresponding classical codes was not devel-
oped.

2004 Mackay et
al. [?]

Dual Various code structures, e.g. bicycle codes and unicycle codes,
were conceived for constructing QLDPC codes from classical dual-
containing LDPC codes. Performance impairment due to the pres-
ence of unavoidable length-4 cycles was first pointed out in this work.
Minimum distance of the resulting codes was upper bounded by the
row weight.

2005 Lou et al.
[?, ?]

Non-dual The generator and PCM of classical LDGM codes were exploited
for constructing CSS codes. An increased decoding complexity was
imposed and the codes had an upper bounded minimum distance.

2007 Mackay [?] Dual Cayley graph-based QLDPC codes were proposed, which had nu-
merous length-4 cycles.

2007 Camara et
al. [?]

Non-CSS QLDPC codes derived from classical self-orthogonal quaternary
LDPC codes were conceived, which failed to outperform MacKay’s
bicycle codes.

2007 Hagiwara
et al. [?]

Non-dual Quasi-cyclic QLDPC codes were constructed using a pair of quasi-
cyclic LDPC codes, which were found using algebraic combinatorics.
The resultant codes had at least a girth of 6, but they failed to
outperform MacKay’s constructions given in [?].

2008 Aly et al.
[?]

Dual QLDPC codes were constructed from finite geometries, which failed
to outperform Mackay’s bicycle codes.

2008 Djordjevic
[?]

Dual BIBDs were exploited to design QLDPC codes, which failed to out-
perform Mackay’s bicycle codes.

2010 Tan et al.
[?]

Non-CSS Several systematic constructions for non-CSS QLDPC codes were
proposed, four of which were based on classical binary quasi-
cyclic LDPC codes, while one was derived from classical binary
LDPC-convolutional codes. These code designs failed to outperform
Mackay’s bicycle codes.

2011 Couvreur
et al. [?, ?]

Dual Cayley graph-based QLDPC codes of [?] were further investigated.
The lower bound on the minimum distance of the resulting QLDPC
was logarithmic in the code length, but this was achieved at the cost
of an increased decoding complexity.

2011 Kasai [?,?] Non-dual Quasi-cyclic QLDPC codes of [?] were extended to non-binary con-
structions, which outperformed Mackay’s bicycle codes at the cost
of an increased decoding complexity. Performance was still not at
par with the classical LDPC codes and minimum distance was upper
bounded.

2011 Hagiwara
et al. [?]

Non-dual Spatially-coupled QC-QLDPC codes were developed, which outper-
formed the ‘non-coupled’ design of [?] at the cost of a small coding
rate loss. Performance was similar to that of [?, ?], but larger block
lengths were required.

2008 Poulin et
al. [?]

Heuristic methods were developed to alleviate the performance
degradation caused by unavoidable length-4 cycles and symmetric
degeneracy error.

2012 Wang et
al. [?]

Feedback mechanism was introduced in the context of the heuristic
methods of [?] to further improve the performance.

2008 Poulin et
al. [?, ?]

Non-CSS QTCs were conceived based on the interleaved serial concatenation
of QCCs. QTCs are free from the decoding issue associated with
the length-4 cycles and they o!er a wider range of code parameters.
Degenerate iterative decoding algorithm was also proposed. Unfor-
tunately, QTCs have an upper bounded minimum distance.

2014 Wilde et
al. [?]

The iterative decoding algorithm of [?,?] failed to yield performance
similar to the classical turbo codes. The decoding algorithm was
improved by iteratively exchanging the extrinsic rather than the a
posteriori information.

Table 1.4: Major contributions to the development of iterative quantum codes.The code types
‘dual-containing CSS’ and ‘non-dual-containing CSS’ are abbreviated as ‘dual’ and
‘non-dual’, respectively.

1.2.7. Protecting Quantum Gates 17

2000 ↔

↔

↔ First EA-QECC constructed [?]

↔

↔

2005 ↔

↔ EA stabilizer formalism [?, ?, ?]

↔

↔

↔ EA quantum LDPC codes [?]

2010 ↔ EA quantum convolutional codes [?]

↔ EA quantum turbo codes [?, ?]

↔ EA polar codes [?]

Figure 1.8: Major milestones achieved in the history of entanglement-assisted quantum error
correction codes.

such as spin electronics, photonics, superconducting, trapped-ion, and silicon solutions [?,?,?,?,

?,?,?,?,?]. Similar to the classical domain, invoking an error correction code within a quantum

computer requires additional components. However, adding components for error correction also

implies that we unavoidably introduce an additional source of decoherence into the quantum

computers, since the encoder and decoder of QSCs are also composed of quantum gates.

Secondly, the powerful QSCs such as QTCs, QPCs, and QLDPC codes require long code-

words in order to operate close to the quantum Hashing bound. In other words, they require a

very high number of physical quantum bits (qubits) to correct numerous errors. Additionally,

the qubits have a relatively short coherence time [?], and hence, the error correction procedure

has to be completed before the ensemble of the qubits starts decohering. Consequently, utilizing

QSCs having a high number of qubits for correcting many errors has the potential threat of

encountering an avalanche of more erroneous qubits before the error correction procedure is

even completed. Thirdly, the state-of-the-art architecture of quantum computers imposes an

additional challenge, where the interactions among the qubits are ideally limited to the nearest

neighbour qubits, which can be arranged by introducing a lattice-based topological architec-

ture. However, the aforementioned challenges impose limitations on creating a fault-tolerant

error correction architecture.

The quest for creating fault-tolerant gates was inspired, when the notion of transversal

configuration was introduced for quantum gates [?, ?]. Briefly, the concept of transversal gates

relies on a parallel set of identical quantum gates invoked for carrying out the operation of a

single quantum gate as illustrated in Fig. 1.9. At the right of the figure we can see a controlled

NOT (CNOT) gate. This gate does not a!ect the target qubit, if the control bit is 0, otherwise

18 1. Introduction

target

qubit
control

qubit

|�1〉

|�2〉

...

...

...

...

qubits
target

control
qubits

|�2〉

|�1〉

Transversal CNOT gates

≡

Figure 1.9: Under a certain formulation, a set of less-reliable identical quantum gates in
transversal configuration can be used for conceiving a more reliable quantum gate.

it flips the target qubit. By contrast, the subfigure at the left is a stylized portrayal of this

CNOT gate, where the multiple control and target qubits represent protected operands.

The fact that transversal quantum Cli!ord gates are suitable for combination with the

stabilizer formalism creates an opportunity for employing a wide range of QSCs for protecting

transversal quantum gates. However, the challenges we have described earlier suggest that the

less populous family of QTECCs is the most suitable candidate for protecting the transversal

quantum gates. Again, the motivation behind combining the QTECCs with the transversal

configuration of quantum gates is that their benefits conveniently complement each other. More

explicitly, the QTECCs provide localized stabilizer measurements, which consequently has the

benefit of a constant number of qubit interactions, as we increase the number of physical qubits

harnessed. Thus, the benefits provided by the topologically inspired stabilizer formalism will not

be a!ected by the transversal implementation of quantum gates. Hence, the localized action of

stabilizer operators amongst the adjacent qubits - which o!ers fault-tolerance - is still preserved

even after the desired quantum operation has been carried out by the transversal quantum gates.

But again, the amalgamation of the QSCs and the transversal quantum gates can only

be implemented for quantum Cli!ord gates, rather than for the entire wider family of universal

quantum gates. To achieve the universality of quantum computation, a set of fault-tolerant non-

Cli!ord quantum gates are also required. Fortunately, this wider set may also be created by

using QSCs by harnessing a method referred to as magic state distillation [?], which is however

beyond the scope of this work. However, protecting Cli!ord gates is of significant importance,

since the development of large-scale quantum computers relies heavily on improving their fidelity.

The threshold theorem defined in [?] was introduced for demonstrating that a quantum

computation task subject to a vanishingly low qubit error ratio (QBER) can be carried out

with the aid of QECCs even when relying on realistic error-prone quantum gates, provided that

the error rate imposed by the quantum gates is below a certain threshold. Since the error-

1.3. Outline of the Book 19

prone quantum gates may also provide error-prone stabilizer measurements, typically repeated

stabilizer measurements are required for reliably concluding the error correction procedure. The

number of stabilizer measurements required for making a high-fidelity observation tends to grow

as we increase the number of physical qubits utilized for QECCs. This specific problem has led to

the emergence of the so-called ’single-shot’ QSCs [?,?,?,?]. Assuming that the syndrome values

acquired from the syndrome measurements are not reliable, we can still achieve a vanishingly low

QBER for a specific quantum computation task, given that we only perform a single stabilizer

measurement for each stabilizer operator. However, beneficial QSC constructions have to exhibit

a commensurately increased minimum distance as a function of the number of physical qubits.

Unfortunately, the quantum coding rate of the two-dimensional QTECCs tends to zero as the

codeword length increased [?,?,?]. We have to mention that reliably observing the values from

the stabilizer measurements is also of current research interest, which is highly relevant for the

study of single-shot QSCs [?,?,?,?]. Therefore, we can ask a judicious question: “Can we still

utilize the two-dimensional QTECCs for fault-tolerant quantum computation, when relying only

on a single stabilizer measurement for each of the stabilizer operators?” Arguably, the answer is

yes, although certain conditions should be fulfilled before we can guarantee that the QSCs can

o!er substantial reliability improvements.

1.3 Outline of the Book

Part I of the book is constituted by Chapters 1 – 5 and it is dedicated to paving the

way from classical to quantum coding. This part is organized as follows.

(a) Chapter 2: Preliminaries on Quantum Information

In Chapter2, we will provide a rudimentary introduction to quantum information pro-

cessing. We commence with the definition of the fundamental unit of quantum informa-

tion constituted by the quantum bit (qubit) in Section 2.2. This is followed by a brief

introduction to quantum information processing, including the reversible unitary transfor-

mations and the irreversible quantum measurement operation in Section 2.3. The various

quantum decoherence models used are elaborated on in Section 2.4. In Section 2.5, we

present the no-cloning theorem, while in Section 2.6, we highlight the concept of quantum

entanglement.

(b) Chapter 3: From Classical to Quantum Coding

We continue in this chapter by presenting the duality of classical and quantum error correc-

tion codes with the aid of QSC constructions. Our objective is to highlight the similarities

between the classical and quantum domain as well as to demonstrate how to transplant the

well-known syndrome-based classical decoding concept into the quantum error correction

codes. We commence with a brief review of classical syndrome-based decoding in Sec-

tion 3.2. In Section 3.3, we present the similarities between the classical syndrome-based

decoding and the quantum stabilizer codes (QSCs). Finally, in Section 3.4, we provide

detailed examples of the QSC constructions protecting a single qubit, namely a 1/3-rate

quantum repetition code, Shor’s 9-qubit code, Steane’s 7-qubit code, and the Laflamme’s

perfect 5-qubit code.

20 1. Introduction

(c) Chapter 4: Revisiting Classical Syndrome Decoding

In this chapter we discuss the popular classical syndrome decoding techniques designed

for classical channels. We commence our discussion with the conceptually simplest LUT-

based syndrome decoding in Section 4.2, while Section 4.3 details the construction of the

syndrome-based error trellis constructed for linear block codes and convolutional codes.

Finally, in Section 4.4, we detail a Block Syndrome Decoding (BSD) technique designed

for reducing the decoding complexity. In particular, we conceive a syndrome-based block

decoder for classical Turbo Trellis Coded Modulation (TTCM) schemes.

(d) Chapter 5: Near-Capacity Code Designs for Entanglement-Assisted Classical

Communication

In this chapter we invoke EXtrinsic Information Transfer (EXIT) chart aided near-capacity

classical code designs conceived for reliable transmission of classical bits over quantum

communication channels. More specifically, we focus our attention on the entanglement-

assisted transmission of classical information over quantum channels3, which is achieved

with the aid of the SuperDense (SD) coding protocol. We commence by reviewing the

SD protocol in Section 5.2, which is in essence the ‘Bit ↑ Qubit Mapper’. We next

characterize the associated capacity in Section 5.3. In Section 5.4, we conceive a bit-

based scheme, which exploits classical channel coding by serially concatenating a classical

Irregular Convolutional Code (IRCC) and a classical Unity Rate Code (URC) with a

quantum-based SD encoder, hence refer to it as an IRCC-URC-SD system. We present

our EXIT-chart aided near-capacity design criterion in Section 5.5, where the IRCC is

optimized for achieving a near-capacity performance. Our bit-based code structure of

Section 5.4 incurs a capacity loss due to the symbol-to-bit conversion. To overcome this

capacity loss, we propose a symbol-based code design in Section 5.7, which employs a

single-component Convolutional Code (CC) and a symbol interleaver in contrast to the

IRCC and bit interleaver of Section 5.7.

Part II of the book is represented by Chapters 6 – 9 and it is focused on relatively

low-complexity quantum codes requiring a limited number of Qubits. Hence these codes may

be viewed as near-term coding solutions. This part of the book is organized as follows.

(a) Chapter 6: Quantum Coding Bounds

In this chapter we investigate the trade-o! between the quantum coding rate versus the

minimum distance of QSCs. We commence with the survey of the existing quantum cod-

ing bounds in the literature. This is followed by our proposal of a simple and invertible

closed-form approximation for determining the realistically achievable minimum distance,

given the quantum coding rate of both idealized infinite-length and practical finite-length

codewords. Specifically, in Section 6.2, we survey the existing quantum coding bounds

and derive some bounds by exploiting the classical-to-quantum isomorphism. These dis-

cussions are followed by our proposed closed-form approximation for the idealized asymp-

totical limit of having an infinite-length codeword in Section 6.3. Since the asymptotical

3A quantum channel can be used for modeling imperfections in quantum hardware, namely, faults
resulting from quantum decoherence and quantum gates. Furthermore, a quantum channel can also
model quantum-state flips imposed by the transmission medium, including free-space wireless channels
and optical fiber links, when qubits are transmitted across these media.

1.3. Outline of the Book 21

limit has a little relevance for practical implementations, we also proposed an approxi-

mate formula for finite-length codewords. In order to unify our quantum coding bound

formulation for both the entanglement-assisted QSCs and the unassisted QSCs dispensing

with entanglement, we derive a closed-form approximation for arbitrarily entangled QSCs

in Section 6.5.

(b) Chapter 7: Quantum Topological Error Correction Codes

In this chapter we continue our discussions by the detailed construction of classical topo-

logical error correction codes (TECCs) and their quantum-domain dual pairs, namely of

the family of quantum topological error correction codes (QTECCs). We carry out a

detailed parametric study and derive the QBER upper bound expression. Explicitly, in

Section 7.2, we commence with design examples of classical TECCs to pave the way for

delving into the quantum domain, while in Section 7.3 we detail the corresponding QSC

design examples of QTECCs. We continue by characterizing the performance of QTECCs

in the context of the popular quantum depolarizing channel in terms of their QBER, their

distance from Hashing bound, and their fidelity in Section 7.4.

(c) Chapter ??: Protecting Quantum Gates Using Quantum Topological Error

Correction Codes

We then concentrate our attention on the general framework of protecting quantum gates

using QSCs. Here, we consider the amalgamation of the transversal configuration of

quantum Cli!ord gates and the QTECCs. This combination has been opted for because

it retains the desirable properties of resulting in fault-tolerant QECCs, as a joint benefit

of stabilizer preservation and localized stabilizer measurements. First, we proceed with

the formulation of our framework in Section ??. This is followed by the design examples

of QSC-protected Hadamard and CNOT gates in Section ??, where we invoke a simple

quantum repetition code. In order to evaluate the performance of our proposed framework,

in Section ??, we present the decoherence model utilized in our simulations. Then in

Section ??, we quantify the performance of QTECC-protected transversal Hadamard gates

and CNOT gates both in terms of their QBER and fidelity along with the derivation of

the upper and lower bound of the attainable analytical QBER performance in the face of

quantum depolarizing channel.

(d) Chapter ??: Universal Decoding of Quantum BCH and Polar Codes via Clas-

sical Guesswork

In this chapter a universal decoding scheme is conceived for quantum stabilizer codes

(QSCs) by appropriately adapting the ‘guessing random additive noise decoding’ (GRAND)

philosophy of classical domain codes. In the spirit of universality, we demonstrate that the

generalized quantum decoder conceived is eminently suitable for di!erent QSC decoding

paradigms, namely for both stabilizer-measurement-based as well as the inverse-encoder-

based decoding of diverse codes. We then harness the resultant decoder for both quantum

Bose-Chaudhuri-Hocquenghem (BCH) codes and quantum polar codes and quantify both

their quantum block error rate (QBLER), and QBLER per logical qubits as well as their

decoding complexity. Furthermore, we provide a parametric study of the associated de-

sign trade-o!s and o!er design guideline for the implementation of GRAND-based QSC

decoders.

22 1. Introduction

Finally, Part III of the book – namely Chapters 10 to 14 – delves into the design

of more advanced quantum coding solutions of the future, when a high number of qubits

becomes available. This part is outlined as follows.

(a) Chapter ??: Revisiting the Classical to Quantum Coding Evolution

As our discussions deepen, in this chapter we revisit the classical to quantum isomorphism

in more detail. In Section ??, we review the family of classical linear block codes. We

next discuss the class of QSCs in Section ??, which are derived from the classical linear

block codes of Section ??. In particular, we highlight the underlying quantum to classical

isomorphism, which forms the basis for morphing arbitrary classical codes into the quan-

tum domain. We then extend our discussions to the construction of QCCs from the CCCs

in Section ??, while Section ?? presents EA-QSCs, which facilitate the design of quantum

codes from arbitrary classical codes without imposing any stringent requirements.

(b) Chapter ??: Near-Hashing-Bound Concatenated Quantum Codes

Pursuing further the design of QECCs, in this chapter we will construct near-Hashing-

bound QECCs. We will commence our discourse by laying out the design objectives

in Section ??. Section ?? then details the circuit based representation of QCCs, which

facilitates the degenerate iterative decoding of concatenated quantum codes. We next

present our system model and the associated degenerate iterative decoding in Section ??.

Finally, in Section ??, we extend the application of classical nonbinary EXIT charts to

the circuit-based syndrome decoder of QTCs for approaching the Hashing bound4. For

the sake of further facilitating the Hashing bound approaching code design, we propose

the general structure of Quantum IRregular Convolutional Code (QIRCC) in Section ??,

which constitutes the outer component of a concatenated quantum code.

(c) Chapter ??: Near-Hashing-Bound Quantum Turbo Short-Block Codes

In this chapter we set out to conceive the concept of near-hashing bound quantum turbo

short-block codes relying on di!erent-rate quantum encoders for combatting diverse quan-

tum depolarizing probabilities. More explicitly, this multiple-rate scheme was conceived

by concatenating quantum short-block codes (QSBCs) as the outer codes with a quan-

tum unity-rate code (QURC) as the inner code, which we refer to as the QSBC-QURC

construction. In contrast to two-dimensional QTECCs, whose quantum coding rate tends

to zero for long codewords, the resultant QSBC-QURC scheme exhibits a relatively high

quantum coding rate. Explicitly in Section ??, we present the general formulation of QS-

BCs in terms of their code construction, quantum encoder, and stabilizer measurement.

This is followed by Section ??, where we propose a novel family of serially-concatenated

QTCs by utilizing QSBCs as the outer codes and a QURC as the inner code, which we refer

to as the QSBC-QURC scheme. We analyze the convergence behaviour of our iterative-

decoding-aided QSBC-QURC scheme using extrinsic information transfer (EXIT) charts

and evaluate its QBER and goodput in Section ??.

(d) Chapter ??: EXIT-Chart Aided Design of Irregular Multiple-Rate Quantum

Turbo Block Codes

4The Hashing bound sets the lower limit on the achievable capacity.

1.3. Outline of the Book 23

This chaper is dedicated to the EXIT-chart aided design of so-called irregular quantum

turbo short-block codes, which rely on multiple-rate quantum short-block codes (MR-

QSBCs) as the outer codes and a quantum unity-rate code (QURC) as the inner code. The

proposed design is denoted as MR-QSBC-QURC.More specifically, the proposed design

exhibits multiple quantum coding rates despite relying only on a single quantum encoder.

The benefit of having multiple rates is that this scheme is capable of activating that

specific code-rate/throughput combination, which meets the specific fidelity requirement.

Moreover, the flexibility o!ered by the single-encoder MR-QSBCs enables us to leverage

extrinsic information transfer (EXIT)-chart based heuristic optimization for determining

the optimal weighting of each specific code-rate to be used in the MR-QSBCs scheme. Our

simulation results show that the MR-QSBC-QURC scheme conceived performs relatively

close to the ultimate limit of the quantum hashing bound. Specifically, when considering

the target quantum coding rates of rQ = {0.3, 0.4, 0.5, 0.6, 0.7}, the MR-QSBC-QURC

operates at a distance of D = {0.042, 0.029, 0.030, 0.024, 0.017} from the quantum hashing

bound, respectively, at a quantum bit error ratio (QBER) of 10→3.

(e) Chapter ??: Quantum Low Density Parity Check Codes

Pursuing further the design of iterative code structures, we focus our e!orts on QLDPC

codes, which may be constructed from the classical binary as well as quaternary codes.

In this context, Section ?? reviews the various QLDPC construction methods, while the

QLDPC decoding methods and the associated challenges are discussed in Section ??. In

Section ??, we propose a formalism for constructing high-rate row-circulant QC-QLDPC

codes from arbitrary row-circulant classical LDPC matrices. In Section ??, we conceive

a modified non-binary decoding algorithm for homogeneous CSS-type QLDPC codes,

for the sake of alleviating the problems imposed by unavoidable length-4 cycles. Finally,

Section ?? details the reweighted BP algorithm, which is known to alleviate the structural

flaw of short cycles in classical LDPC codes.

(f) Finally, in Chapter 15 we summarize our findings along with a range of promising future

research directions.

24 1. Introduction

1.3. Outline of the Book 25

xx

26 1. Introduction

Chapter 2
Preliminaries on Quantum

Information

2.1 Introduction

Following the easy-reading historic introduction to the family of quantum error correction codes

in Chapter 1, in this chapter, we will highlight the concepts of quantum information processing

required for paving the way from classical to quantum information theory. The rest of this

chapter is organized as follows. We commence with an introduction to quantum information

in Section 2.2, followed by a brief tour of quantum information processing in Section 2.3. The

quantum channel models used on this treatise are elaborated on in Section 2.4. In Section 2.5,

we present the no-cloning theorem, followed by quantum entanglement in Section 2.6. Finally,

we conclude in Section 2.8.

2.2 A Brief Review of Quantum Information

We live in a world where information is transmitted and computed in binary form. Therefore,

the fundamental unit of information in the classical domain is the binary digit or referred to as

a bit, which can be defined as follows:

c = {0, 1}. (2.1)

Consequently, in the classical domain, each of the classical bits can only carry the value of

0 or 1, not both. By contrast, in the quantum domain, the fundamental unit of information

is represented by a quantum bit or qubit. The state of a qubit can be described as a linear

combination of 0 and 1, which can be described in form of their superposition. However, this

27

28 2. Preliminaries on Quantum Information

superposition of the two states will collapse to the corresponding classical state 0 or 1 upon

observation or measurement. More specifically, the quantum state of a single qubit |ω↓ can be

formally expressed as

|ω↓ = ε0|0↓+ ε1|1↓, ε0,ε1 → C, (2.2)

where the probability of obtaining the classical state 0 and 1 upon measurement is given by |ε0|
2

and |ε1|
2, respectively. Since the values of ε0 and ε1 are associated with probability values, the

unitary constraint of |ε0|
2 + |ε1|

2 = 1 is satisfied. A single-qubit system can also be viewed as

a two-dimensional Hilbert space, where the computational basis vectors |0↓ and |1↓ are defined

as follows:

|0↓ =




1

0



 , |1↓ =




0

1



 . (2.3)

Consequently, the quantum state of a single qubit given in Eq. (2.2), can also be represented by

a two-dimension complex vector as follows:

|ω↓ = ε0|0↓+ ε1|1↓ = ε0




1

0



+ ε1




0

1



 =




ε0

ε1



 , ε0,ε1 → C. (2.4)

The representation of the basis vector of ‘0’ using the notation |0↓ and the basis vector ‘1’

using the notation |1↓ is referred to as the ket notation. The terminology ket comes from the

bra-ket notation [?], where the bra notation refers to ↗ω|, while the ket notation is used for |ω↓.

The relationship between |ω↓ and the ↗ω| is defined as follows:

↗ω| = |ω↓
†
, (2.5)

where the notation |ω↓
† indicates the conjugate transpose of |ω↓. Explicitly, based on the vector

representation of Eq. (2.4) and the definition of Eq. (2.5), we have

↗ω| =

(
ε
↑
0 ε

↑
1

)
, (2.6)

where ε
↑ denotes the complex conjugate of ε. Therefore, the following equality holds:

↗ω|ω↓ ↘ ↗ω| · |ω↓ = 1. (2.7)

Since the coe”cients ε0 and ε1 are complex numbers, without loss of generality, the state

of a qubit can be more explicitly written as follows:

|ω↓ = e
iω

(
cos

ϑ

2
|0↓+ e

iε sin
ϑ

2
|1↓

)
. (2.8)

Furthermore, since the coe!cient of eiω has no observable e!ect, i.e. e
iω
|ω↓ and |ω↓ provide us

with identical output probabilities upon measurements, the state of the qubit in Eq. (2.8) can

2.2. A Brief Review of Quantum Information 29

y

✓

|0〉
z

x

'

| 〉

|1〉

Figure 2.1: The Bloch sphere is the 3D representation of two-dimension complex vector space,
which is parametrized by the variables ϑ and ϖ. A pure quantum state is repre-
sented by a point on the surface of a unit-radius. The computational basis of |0↓
corresponds to the north pole of the sphere, while the basis of |1↓ corresponds to
the south pole.

be simplified to the following:

|ω↓ = cos
ϑ

2
|0↓+ e

iε sin
ϑ

2
|1↓. (2.9)

Therefore, the quantum state of a qubit can be represented as a point on the surface of a

unit-radius sphere, which is referred to as the Bloch sphere [?]. The point can be anywhere on

the sphere and can be charcterized by two phase variables ϑ and ϖ. More explicitly, the 3D

representation of a quantum state using the Bloch sphere is depicted in Fig. 2.1.

In general, a pair of vectors can be used as the basis vectors as long as both of them are

orthonormal, i.e. both normalized and mutually orthogonal. For example, apart from the

computational basis of |0↓ and |1↓ in the field of QECCs, the following Hadamard basis is also

widely used:

|+↓ =
1
≃
2




1

1



 , |↔↓ =
1
≃
2




1

↔1



 . (2.10)

More explicitly, the Hadamard basis can be viewed as the equal-weight superposition of the

computational basis |0↓ and |1↓ according to the following definition:

|+↓ =
|0↓+ |1↓

≃
2

, |↔↓ =
|0↓ ↔ |1↓

≃
2

, (2.11)

and vice versa, the computational basis |0↓ and |1↓ can be expressed as an equal-weight super-

30 2. Preliminaries on Quantum Information

position of the vectors from the Hadamard basis:

|0↓ =
|+↓+ |↔↓

≃
2

, |1↓ =
|+↓ ↔ |↔↓

≃
2

. (2.12)

In order to extend the concept of quantum information to multi-qubit systems, we have

to introduce the Kronecker tensor product or simply tensor product. Explicitly, for a pair of

matrices P and Q having (a⇐ b) elements and (x⇐ y) elements, respectively, the resultant

tensor product is a matrix having (ax⇐ by) elements formulated by

P⇒Q =





p11Q · · · p1(b→1)Q p1bQ

p21Q · · · p2(b→1)Q p2bQ

...
. . .

...
...

p(a→1)1Q · · · p(a→1)(b→1)Q p(a→1)bQ

pa1Q · · · pa(b→1)Q pabQ





. (2.13)

For instance, a two-qubit system is represented by the tensor product between a pair of two-

element vectors given in Eq. (2.4). More explicitly, let us consider two qubits having the state

of |ω1↓ = ε0|0↓ + ε1|1↓ and |ω2↓ = ϱ0|0↓ + ϱ1|1↓. The superimposed state can be described as

follows:

|ω↓ = |ω1↓ ⇒ |ω2↓ =




ε0

ε1



⇒




ϱ0

ϱ1



 =





ε0ϱ0

ε0ϱ1

ε1ϱ0

ε1ϱ1





↘ ε0ϱ0|00↓+ ε0ϱ1|01↓+ ε1ϱ0|10↓+ ε1ϱ1|11↓, (2.14)

where ε0,ε1,ϱ0,ϱ1 → C. It can be observed that a two-qubit state is a superposition of all four

possible states that can be generated by two classical bits i.e. 00, 01, 10 and 11. Additionally,

the unitary constraint of |ε0ϱ0|
2+ |ε0ϱ1|

2+ |ε1ϱ0|
2+ |ε1ϱ1|

2 = 1 still holds. The tensor product

of a pair of two-element vectors yields a vector consisting of 22 elements. Hence, the N -qubit

system produces all of the 2N possible states that can be generated by an N -bit sequence. If

i is the decimal representation of an N -bit sequence, the N -qubit superposition state can be

expressed by the Dirac notation as follows:

|ω↓ =
2
N→1∑

i=0

εi|i↓ where εi → C and
2
N→1∑

i=0

|εi|
2 = 1. (2.15)

As an instance of a very special case, where we have N qubits all having |+↓ state, provides us

with the equal-weight superposition of 2N possible states generated by all possible combination

2.3. Quantum Information Processing 31

of N -bit sequences as follows:

|+↓
↓N

↘ |+↓1 ⇒ |+↓2 ⇒ · · ·⇒ |+↓N =
1

≃
2N

2
N→1∑

i=0

|i↓, (2.16)

where the superscript ⇒N of |+↓ represents the N -fold tensor product. It can be observed

that the probability of obtaining each of the 2N quantum states upon their observation in the

computational basis is equal to 1

2N
. This particular state is often used as the initialized quantum

state for various quantum computing algorithms, such as Shor’s quantum factoring algorithm [?,

?] and Grover’s quantum search algorithm [?, ?] as well as for quantum error correction codes.

2.3 Quantum Information Processing

So far we have described the quantum state of a qubit. Similar to the classical domain, the

qubit can be manipulated to carry out a specific quantum computation or communication task.

The evolution of quantum states can be classified into two categories: reversible and irreversible

evolution. A reversible evolution is constituted by a unitary transformation, while an irreversible

evolution is due to the measurement or observation of our quantum states, which involves an

interaction with the so-called observer.

2.3.1 Unitary Transformation

For quantum computation and communication, the desired unitary transformations are carried

out by components termed as quantum gates. In classical computers, the circuits rely on logical

gates such as AND, OR, and XOR gates. Similar to the classical computer, a quantum computer

relies on quantum gates, which can be mathematically represented by unitary transformation

satisfying the following properties:

(a) Quantum gates, which are denoted by U , act linearly on the superposition of quantum

states, which is defined as

U(ε0|0↓+ ε1|1↓) = ε0U(|0↓) + ε1U(|1↓). (2.17)

(b) The quantum gate U is characterized by a unitary matrix for ensuring that the final

probability of all possible quantum states after the transformation is equal to 1. The

unitary nature of quantum gates is described as

UU
† = I, (2.18)

where U
† is the Hermitian conjugate of U and I is an identity matrix.

Some of the basic quantum gates used in quantum computation and communication will be

discussed in the following subsections.

32 2. Preliminaries on Quantum Information

2.3.1.1 Pauli Gates

First, we would like to introduce the quantum gates acting on a single qubit. Pauli gates or

Pauli operators are the most common single-qubit quantum gates used for manipulating the

quantum state of a single-qubit. Pauli gates are defined by Pauli matrices as follows:

I =




1 0

0 1



 , X =




0 1

1 0



 , Y =




0 ↔i

i 0



 , Z =




1 0

0 ↔1



 . (2.19)

Let us assume that we have a single-qubit having a quantum state of |ω↓ = ε0|0↓ + ε1|1↓.

The Pauli matrix X transforms the quantum state of a single qubit into |ω
↔
↓ as follows:

|ω
↔
↓ = X|ω↓ =




0 1

1 0








ε0

ε1



 =




ε1

ε0





↘ ε1|0↓+ ε0|1↓. (2.20)

The transformation due to the Pauli matrix Z is given by

|ω
↔
↓ = Z|ω↓ =




1 0

0 ↔1








ε0

ε1



 =




ε0

↔ε1





↘ ε0|0↓ ↔ ε1|1↓, (2.21)

while the Pauli matrix Y transforms a single qubit |ω↓ as follows:

|ω
↔
↓ = Y|ω↓ =




0 ↔i

i 0








ε0

ε1



 =




iε1

↔iε0





↘ iε1|0↓ ↔ iε0|1↓. (2.22)

Normally, we use unitary transformations for activating the desired quantum-domain evolu-

tion of the quantum states of qubits. However, due to the interaction with the environment, or

due to the imperfection of quantum gates themselves, some undesired unitary transformations

may also take place. In this case, each of the Pauli matrices may also be used for reflecting the

discrete set of errors that may occur in a single-qubit system, such as a bit-flip error (X), a

phase-flip error (Z), as well as both bit-flip and phase-flip error (iXZ = Y). Finally, the Pauli

matrix I represents the identity operator. More details concerning this issue will be presented

in Subsection 2.4.

2.3.1. Unitary Transformation 33

2.3.1.2 Hadamard Gate

The Hadamard gate maps a pure state of |0↓ and |1↓ into an equiprobable superposition of both

states. The transformations mapping the pure states by Hadamard gates are described below:

H|0↓ =
1
≃
2
(|0↓+ |1↓) ↘ |+↓, (2.23)

H|1↓ =
1
≃
2
(|0↓ ↔ |1↓) ↘ |↔↓. (2.24)

The Hadamard gates may be represented using a 2⇐ 2 matrix as

H =
1
≃
2




1 1

↔1 1



 . (2.25)

The Hadamard gates can be used for transforming the computational basis of |0↓ and |1↓

into the Hadamard basis of |+↓ and |↔↓, which will be shown later to be very useful for handling

di!erent types of quantum errors imposed by quantum decoherence. The interesting property

of this transformation is that a Pauli matrix X in the computational basis {|0↓, |1↓} behaves

similarly to a Pauli matrix Z in the Hadamard basis {|+↓, |↔↓}. More explicitly, let us assume

that we have a single qubit having a quantum state of |ω↓ = ε0|0↓+ ε1|1↓. This specific qubit

can also be rewritten in the Hadamard basis as |ω↓ = ϱ0|0↓+ ϱ1|1↓, where we have ϱ0 = ϑ0+ϑ1↗
2

and ϱ1 = ϑ0→ϑ1↗
2

. The action of the Pauli matrix X in the computational basis |0↓ and |1↓ can

be described as follows:

|ω
↔
↓ = X|ω↓ = ε1|0↓+ ε0|1↓. (2.26)

Now, the action of the Pauli matrix Z in the Hadamard basis is as follows:

|ω
↔
↓ = Z|ω↓ = ϱ1|+↓+ ϱ0|↔↓. (2.27)

It can be observed from Eq. (2.26) and (2.27) that the e!ect of swapping the complex-valued

coe”cient between the basis vector in computational basis |0↓ and |1↓ is due to the Pauli matrix

X, but in Hadamard basis this e!ect is the result of the Pauli matrix Z. Similarly, let us observe

the e!ect of the Pauli matrix Z on the quantum state of a single qubit in the computational

basis, which can be expressed as follows:

|ω
↔
↓ = Z|ω↓ = ε0|0↓ ↔ ε1|1↓. (2.28)

By contrast, the e!ect of the Pauli matrix X on a single-qubit quantum state in the Hadamard

basis can be written as

|ω
↔
↓ = X|ω↓ = ϱ0|0↓ ↔ ϱ1|1↓. (2.29)

From Eq. (2.28) and (2.29), we can observe that the Pauli matrix Z flips the sign of the complex-

valued coe”cient of the basis vector |1↓. However, the sign of the complex-valued coe”cient of

the basis vector |↔↓ is changed by the operation of the Pauli matrix X in Hadamard basis. This

specific property will be beneficially exploited in the construction of QSCs, specifically when we

34 2. Preliminaries on Quantum Information

are dealing with di!erent types of errors imposed by quantum decoherence, as it will be detailed

in Chapter 3.

2.3.1.3 Phase Gate

A phase gate S or equivalently i-phase shift gate transforms the quantum state of a single qubit

by shifting the phase of state |1↓ by a factor of i, while the state of |0↓ remains intact. More

specifically, the phase gate S is defined by a 2⇐ 2 matrix as follows:

S =




1 0

0 i



 . (2.30)

The relationship between the phase gate S and Pauli gate Z is formulated below:

S =
≃

Z, (2.31)

S2 = Z. (2.32)

2.3.1.4 Controlled-NOT Gate

A controlled-NOT or CNOT gate acts similarly to the XOR logic gate of a classical computer.

To elaborate, the inputs of the CNOT gate are labelled as a control qubit |c↓ and a target qubit

|x↓. When the control qubit |c↓ is in the state of |1↓, the target qubit |x↓ undergoes the NOT

operation, or equivalently it is subjected to a Pauli matrix X imposing a bit-flip. Otherwise,

the state of the target qubit |x↓ is left unchanged. Therefore, the transformation performed by

a CNOT gate can be defined as

CNOT(|c, x↓) ↘ |c, (c⇑ x)↓. (2.33)

The CNOT gate can also be viewed as a controlled Pauli X gate and the corresponding matrix

describing the CNOT gate operation is defined as follows:

CNOT = CX =





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





=




I 0

0 X



 . (2.34)

The quantum circuit representation of a CNOT gate is protrayed in Fig. 2.2.

The CNOT gate together with the Pauli gates, the Hadamard gate, and the phase gate

create a special class of quantum gates called the Cli!ord group [?]. A special property of the

Cli!ord group is that they can be e”ciently simulated using classical computers. Consequently, a

2.3.1. Unitary Transformation 35

|c〉

|x〉

|c〉

|c⊕ x〉

Figure 2.2: The quantum circuit of the CNOT gate, where |c↓ is the control qubit and |x↓ is
the target qubit.

|c1〉

|c2〉

|x〉 |(c1 · c2)⊕ x〉

|c2〉

|c1〉

Figure 2.3: The quantum circuit for To!oli gate.

quantum circuit purely relying on quantum Cli!ord gates can be simulated e”ciently in classical

computer and hence, is not capable of o!ering any substantial quantum advantage in terms of

computational speed-up. By contrast, a more general class of quantum computers capable of

achieving computational advantages has to be capable of carrying out unitary transformations

including the so-called non-Cli!ord quantum gates.

2.3.1.5 To”oli Gate

A very popular example of non-Cli!ord quantum gates is constituted by To!oli gate [?], which

acts as a controlled-CNOT gate. However, the main di!erence that it has one target qubit |x↓

and two control qubits, |c1↓ and |c2↓. The target qubit |x↓ undergoes a bit flip (X) only when

both of the control qubits |c1↓ and |c2↓ are in the state of |1↓. Otherwise, the state of the target

qubit |x↓ remains intact. The To!oli gate processes the quantum state of three qubits, hence its

matrix representation reflects the unitary transformation of 23 Hilbert space vectors. Explicitly,

36 2. Preliminaries on Quantum Information

the unitary matrix of a To!oli gate is defined as

CCNOT = CCX =





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0





. (2.35)

The quantum circuit representation of a To!oli gate is portrayed in Fig. 2.3. Furthermore, the

generalized version of To!oli gates is required for executing Grover’s quantum search algorithm,

which has been proved to o!er a beneficial quantum computation advantage [?,?]. The gener-

alized version of To!oli gate, namely the (n↔ 1)-controlled-NOT gate [?], which is denoted by

C↓(n→1)NOT, transforms a vector of 2n dimensions in Hilbert space. This can be represented

by a (2n ⇐ 2n)-element unitary matrix as follows:

C↓(n→1)NOT =




I2

n→2 0

0 X



 , (2.36)

where I2
n→2 is an identity matrix of dimension (2n ↔ 2), X is the Pauli matrix, and the rest

of the elements of the matrix are equal to zero. According to the unitary transformation of

Eq. (2.36), the Pauli matrix X will be applied to the target qubit |x↓, if all the (n↔ 1) quantum

states of the control qubits sequence are equal to |1↓. This is a conceptually simple yet powerful

unitary transformation carried out by a quantum gate, but it cannot be simulated e”ciently

using classical computers.

2.3.2 Quantum Measurement

We have briefly described the reversible evolution of quantum information, which is mathe-

matically represented by unitary transformations and it is physically realized by quantum gates.

Here, we continue by briefly describing the irreversible evolution of quantum information, namely

quantum measurement. The final values of a specific quantum computation or quantum commu-

nication task have to be read out at the end. Hence, we need the so-called quantum measurement

operators. Quantum measurement is described by a collection of measurement operators {Mi},

where i denotes the measurement outcome that may occur after observations. If a quantum sys-

tem is in the state of |ω↓ before measurement, the probability of the result i may be expressed

2.4. Quantum Decoherence 37

as

p(i) = ↗ω|M
†
i
Mi|ω↓. (2.37)

Consequently, the resultant state after measurement is given by

|ω
↔
↓ =

Mi|ω↓√
↗ω|M

†
i
Mi|ω↓

=
Mi|ω↓√

p(i)
. (2.38)

The set of measurement operators have to satisfy the so-called completeness criteria, which are

defined as

∑

i

M
†
i
Mi = I, (2.39)

∑

i

p(i) =
∑

i

↗ω|M
†
i
Mi|ω↓ = 1. (2.40)

For example, for a pair of computational basis states |0↓ and |1↓, we have two measurement

operators M0 = |0↓↗0| and M1 = |1↓↗1|. For an arbitrary qubit having a quantum state of

|ω↓ = ε0|0↓+ ε1|1↓, the probability of obtaining each state is formulated by

p(0) = |ω↓M
†
0
M0↗ω| = |ε0|

2
, (2.41)

p(1) = |ω↓M
†
1
M1↗ω| = |ε1|

2
. (2.42)

Hence, the qubit state after measurement may be expressed as

|ω
↔
↓m=0 =

M0|ω↓

|ε0|
=

ε0|0↓
|ε0|

, (2.43)

|ω
↔
↓m=1 =

M1|ω↓

|ε1|
=

ε1|1↓
|ε1|

. (2.44)

Equations (2.43) and (2.44) explicitly reflect that a qubit will collapse into a classical bit after

measurement. The quantum measurement is an irreversible process, because once we obtain our

measurement results in form of classical states, it is impossible to learn the values of the complex

coe”cients of each of the basis vectors. Therefore, we cannot reconstruct the original quantum

state from a single measurement result. Having said that, the quantum state can nonetheless

be approximated with a specific level of certainty, as long as we can provide a reasonably large

number of qubits prepared in an identical quantum state using a method called as quantum

state tomography [?,?].

2.4 Quantum Decoherence

Quantum computers are composed of numerous quantum gates, which are prone to environmen-

tal impairments resulting in a short coherence time. Consequently, due to the deleterious e!ects

of quantum decoherence, the resultant quantum state at the output may not be the desired

outcome of the quantum computation. In this treatise, the terminology quantum channels will

38 2. Preliminaries on Quantum Information

be used for encapsulating all the aforementioned imperfections caused by the quantum decoher-

ence. A quantum channel inflicting a single qubit error can be represented by the Pauli group

P1, which defines the discrete set of possible unitary transformations imposed on a single qubit.

Explicitly, the Pauli group P1 is defined as

P1 = {eP : P → {I,X,Y,Z}, e → {±1,±i}}, (2.45)

which is closed under multiplication. The unitary matrices X and Z represent the bit-flip and

the phase-flip, respectively, while the matrix Y represents a simultaneous bit-flip and phase-flip.

Finally, the identity unitary matrix I denotes the absence of error. These Pauli matrices have

been defined in Eq. (2.19). Since the qubits whose quantum states only di!er in their global

phase can be deemed to be equivalent, the reduced Pauli group P1 denoted by P
↑
1 is often used

for the sake of simulating the quantum errors by exploiting the Pauli-to-binary isomorphism [?],

which is defined as

P
↑
1 = {I,X,Y,Z}. (2.46)

From a di!erent perspective, we can also investigate the quantum channel a!ecting on

quantum information by describing the error e!ects as a unitary transformation U(#ϑ.#ϖ),

which maps a point on the surface of the Bloch sphere into a di!erent coordinate. Explicitly,

using Eq. (2.9), we can define the quantum error imposed by the quantum channel as follows:

U(#ϑ,#ϖ)|ω↓ = cos

(
ϑ +#ϑ

2

)
|0↓+ e

(iε+!ε) sin

(
ϑ +#ϑ

2

)
|1↓, (2.47)

where (ϑ + #ϑ) and (ϖ + #ϖ) are the new variables defining the resultant quantum state.

By expanding the quantum state in Eq. (2.47), we can rewrite the unitary transformation of

U(#ϑ,#ϖ) as follows [?]:

U(#ϑ,#ϖ)|ω↓ = εII|ω↓+ εXX|ω↓+ εZZ|ω↓+ εYY|ω↓, (2.48)

where εI, εX, εZ, and εY are the resultant expansion coe”cients. Here, we want to highlight

that although the nature of quantum errors is continuous, the unitary transformation can be

expressed as a linear combination of Pauli matrices I, X, Z, and Y. Furthermore, noting that

apart from a phase-di!erence, the Pauli matrix Y is equivalent to the product of the Pauli

matrices X and Z, i.e we have iXZ = Y, the expression given in Eq. (2.48) can be further

simplified into the following:

U(#ϑ,#ϖ)|ω↓ = εII|ω↓+ εXX|ω↓+ εZZ|ω↓+ εXZXZ|ω↓, (2.49)

where now the quantum error can be described as a linear combination of the Pauli matrices I,

X, Z, and XZ. At the end of the quantum computation or communication task, the continuous

nature of quantum errors will be projected into one of the following possibilites: the absence of

error (I), a bit-flip error X, a phase-flip error Z, or both bit-flip and phase-flip errors XZ. This

concept is known as the discretization of quantum errors, which is a very useful tool when it

comes to designing the associated QECCs for mitigating these error e!ects.

2.4. Quantum Decoherence 39

Now, let us now consider the more general concept of quantum channels a!ecting an N -qubit

system. When considering the quantum state of an N -qubit system, the quantum channel may

be described by the Pauli group Pn, which is represented by an n-fold tensor product of P1 as

defined below:

Pn = {P1 ⇒ P2 · · ·⇒ Pn|Pj → P1}, (2.50)

where the index j represents the j-th qubit of a system having n physical qubits. An operator

P → Pn transforms the legitimate quantum state |ω↓ into an impaired quantum state |ω̂↓, as

formally described below:

|ω̂↓ = P |ω↓. (2.51)

The quantum channel inflicts an error P → Pn on an N -qubit string, where each qubit

may independently experience either a bit-flip error (X), a phase-flip error (Z), or both bit-flip

and phase-flip error (iXZ = Y). The e!ect of each Pauli matrix has been described earlier in

Subsection 2.3.1.1. Let us now proceed by applying the unitary transformations to the multi-

qubit state of Eq. (2.14), which can also be represented as a four-element complex vector as

follows:

|ω↓ =





ε00

ε01

ε10

ε11





. (2.52)

For instance, let us assume that the quantum channel inflicts a two-qubit unitary transformation

of (X⇒ I)1 upon a two-qubit state. The evolution of the quantum state can be described as

1For the sake of simplifying the notation, a set of Pauli matrices for defining a multi-qubit uni-
tary transformation usually does not include the ”→” operator. For example, a unitary transformation
(X→ Z→X→ I) acting upon a 4-qubit operand can simply be rewritten as XZXI. In the rest of Part 1,
the latter representation will be used for stabilizer operators, unless it is stated otherwise.

40 2. Preliminaries on Quantum Information

follows:

|ω
↔
↓ = (X⇒ I) |ω↓

=








0 1

1 0



⇒




1 0

0 1







 .





ε00

ε01

ε10

ε11





=





0




1 0

0 1








1 0

0 1



 0





.





ε00

ε01

ε10

ε11





=





0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0





.





ε00

ε01

ε10

ε11





=





ε10

ε11

ε00

ε01





↘ ε10|00↓+ ε11|01↓+ ε00|10↓+ ε01|11↓. (2.53)

The final state of Eq. (2.53) can also be obtained without expanding the tensor product of the

unitary transformation by flipping the state of the first qubit, since the unitary transformation

of XI represents a bit-flip error of the first qubit owing to the bit-flip (X), while the second

qubit does not experience any impairment owing to the e!ect of identity (I). More explicitly,

due to the unitary transformation XI, the state of |00↓ is changed to the state of |10↓. The same

transformation is also applied to the states of |01↓, |10↓, and |11↓, where they are transformed

to the states of |11↓, |00↓, |01↓, respectively. Hence, the magnitude associated with the state of

|00↓ is no longer ε00 - it becomes ε10. Therefore, the coe”cients associated with the states of

|01↓, |10↓, and |11↓ now are ε11, ε00, and ε01, respectively.

In this treatise, we focus our discussions on the family of QSCs, which can be derived from

their classical counterparts. Even though most of the well-known QSCs are derived on the basis

of the classical-to-quantum isomorphism, there is a certain property of the QSCs, which can

only be found in the quantum domain, i.e. it has no classical counterpart. This is the so-called

degeneracy property. More explicitly, a degeneracy property implies that a set of di!erent error

patterns of P → Pn may yield an identical corrupted state and consequently we only need a

single error recovery operator for reinstating the original quantum state. For example, let us

consider a two-qubit system having the following quantum state:

|ω↓ =
1
≃
2
(|00↓+ |11↓) , (2.54)

2.4. Quantum Decoherence 41

and let us consider two di!erent error patterns, which can be described as a pair of two-qubit

unitary transformations given by P1 = IZ and P2 = ZI. The resultant state after the error

pattern P1 is imposed on the two-qubit system can be described as follows:

|ω
↔
1↓ = IZ|ω↓

=





1 0 0 0

0 ↔1 0 0

0 0 1 0

0 0 0 ↔1





.





1↗
2

0

0

1↗
2





=





1↗
2

0

0

↔
1↗
2





↘
1
≃
2
(|00↓ ↔ |11↓) , (2.55)

while applying P2 to the state of |ω↓ will result in the following quantum state:

|ω
↔
2↓ = ZI|ω↓

=





1 0 0 0

0 1 0 0

0 0 ↔1 0

0 0 0 ↔1





.





1↗
2

0

0

1↗
2





=





1↗
2

0

0

↔
1↗
2





↘
1
≃
2
(|00↓ ↔ |11↓) . (2.56)

Since the error patterns P1 = IZ and P2 = ZI yield identical corrupted states |ω↔
1↓ = |ω

↔
2↓, they

undoubtly require an identical recovery procedure. Indeed, exploiting the degeneracy property

may potentially increase the error correction capability of QSCs. However, the question as

to whether there exist degenerate QSCs that are capable of operating beyond the quantum

Hamming bound - which is only applicable to non-degenerate QSCs - remains unresolved at the

time of writing. Having said that, some research on finding the bounds of degenerate quantum

codes can be found in [?,?,?].

The terminology of quantum channel incorporates numerous physical phenomena, including

the imperfect quantum gates or quantum memories. In either of these cases, the qubits undergo

a state change, which can be a linear combination of two types of quantum errors, as described

below:

Amplitude error or bit-flip which turns the state |0↓ into |1↓, or state |1↓ into |0↓. We also

encounter this type of errors in classical settings.

Phase error or phase-flip which has no impact on the state |0↓, but it turns the state |1↓

into ↔|1↓. This type of error distinguishes a quantum system from classical systems.

The quantum channel may inflict an individual bit-flip (X), a phase-flip (Z), as well as a

simultaneous bit-flip and phase-flip (Y) error with a probability of pX, pZ, and pY, respectively.

42 2. Preliminaries on Quantum Information

These deleterious e!ects may be inflicted upon each of the qubits within the N -qubit block.

For the sake of accommodating three di!erent types of errors, the following are the common

quantum channel models widely used for simulation.

2.4.1 Symmetric Quantum Depolarizing Chanel

The symmetric depolarizing channel is characterized by the depolarizing probability p. It creates

an N -tuple of Pauli matrices P → Pn for an N -qubit system, where the i-th qubit undergoes

either a bit-flip (X) error, a phase-flip (Z) error, or simultaneous bit-flip and phase-flip (Y) errors

with an equal probability of pe = p/3, where p denotes the overall depolarizing probability [?,?,?].

Hence the probability of error-free transmission is simply given by

pI = 1↔ 3pe = 1↔ p. (2.57)

In the realms of practical physical implementations, it has been observed that the probability

of bit-flip errors (pX) is not equal to the probability of phase-flip errors (pZ) [?,?,?,?,?]. More

specifically, popular materials invoked for producing quantum gates often exhibit an asymmetric

behaviour, where the phase-flip errors are several orders of magnitude more likely to occur than

the bit-flip errors.

2.4.2 Asymmetric Quantum Depolarizing Chanel

The more realistic quantum channel model which relies on this assumption is referred to as

an asymmetric quantum depolarizing channel [?]. In the asymmetric case, an extra parameter

referred to as the channel’s asymmetry ratio ε is introduced for portraying the ratio of the

phase-flip probability pZ and the bit-flip probability pX as follows:

ε =
pZ

pX
. (2.58)

In practice, the channel’s asymmetry ratio has popular values of ε = 102, 104, 106 [?, ?, ?, ?, ?].

Again, since the probability of phase-flip errors (pZ) is several orders of magnitudes higher than

that of bit-flip errors (pX), the probability of both phase and bit-flip errors (pY) is assumed to

be close to pX, which can be written as

pY ⇓ pX. (2.59)

2.4.3. Independent Binary-Symmetric Chanel 43

Consequently, we can directly describe the parameters of the asymmetric depolarizing channel

model using the depolarizing probability (p) and the channel’s asymmetry ratio (ε) as follows:

pI = 1↔ p, (2.60)

pX =

(
1

ε+ 2

)
p, (2.61)

pY =

(
1

ε+ 2

)
p, (2.62)

pZ =

(
ε

ε+ 2

)
p. (2.63)

2.4.3 Independent Binary-Symmetric Chanel

By contrast, the independent binary-symmetric channel model assumes that each qubit may

experience bit-flip errors (X) and phase-flip errors (Z) independently. This model is equivalent

to the combination of two independent binary symmetric channels, where one channel inflicts

only bit-flip (X) errors and the other channel only inflict phase flip (Z) errors. Therefore, the

parameters describing the independent binary-symmetric channel model are

pI = 1↔ pX ↔ pY ↔ pZ, (2.64)

pX = p
x

e (1↔ p
z

e) , (2.65)

pY = p
x

ep
z

e , (2.66)

pZ = p
z

e (1↔ p
x

e) , (2.67)

where p
x

e denotes the crossover or flip probability in the channel X and p
z

e the crossover or flip

probability in the channel Z. For the sake of approximating the symmetric quantum depolarizing

channel, the crossover probability for each channel is assumed to be equal to 2p/3, which can

be written as

p
x

e = p
z

e =
2p
3
. (2.68)

Therefore, the final parameters defining the independent binary-symmetric channel in Eq. (2.67),

can be rewritten as follows:

pI = 1↔

(
4p
3

↔
4p2

9

)
, (2.69)

pX =
2p
3

↔
4p2

9
, (2.70)

pY =
4p2

9
, (2.71)

pZ =
2p
3

↔
4p2

9
. (2.72)

Additionally, the independent binary-symmetric channel model can be extended directly to its

the asymmetric version, which has pxe ⇔= p
z

e . It is important to note that most of our simulations

in this treatise rely on the independent binary-symmetric channel model, while most of the

44 2. Preliminaries on Quantum Information

analytical results are derived using the assumption of having a symmetric quantum depolarizing

channel.

2.5 No-Cloning Theorem

The concept of copying or cloning the information to protect it is widely used in classical

communication and information theory. Unfortunately, the same concept is no longer valid due

to the no-cloning theorem, as we enter into the quantum domain. Explicitly, the no-cloning

theorem states that no unitary transformation can copy an arbitrary superposition of quantum

states from one qubit to another qubit.

Proof. Let us assume that we have two orthogonal basis vector of |ω1↓ and |ω2↓. Let us

consider a single-qubit system having a quantum state of |ω1↓, which acts as the data qubit,

and another single-qubit system having a quantum state of |ωt↓, which acts as the target qubit

for copying the quantum state from data qubit. Thus, the initial value before activating the

copying mechanism is given by

|ω
↔
↓ = |ω1↓ ⇒ |ωt↓. (2.73)

Let us assume furthermore that there exists a unitary transformation U having a copying mech-

anism. Then ideally the final joint quantum state after copying is formulated as

U(|ω1↓ ⇒ |ωt↓) = |ω1↓ ⇒ |ω1↓. (2.74)

Upon assuming that this copying mechanism is applied to the second data qubit having a

quantum state of |ω2↓, the copying procedure yields

U(|ω2↓ ⇒ |ωt↓) = |ω2↓ ⇒ |ω2↓. (2.75)

Let us now proceed with the cloning of a superimposed quantum state, i.e. |ς↓ = ε1|ω1↓+ε2|ω2↓,

where ε1,ε2 → C. The copying mechanism can be formulated as

U(|ς↓ ⇒ |ωt↓) = |ς↓ ⇒ |ς↓. (2.76)

Expanding the left-hand side of Eq. (2.76) yields

U(|ς↓ ⇒ |ωt↓) = U [(ε1|ω1↓+ ε2|ω2↓)⇒ |ωt↓]

= U(ε1|ω1↓ ⇒ |ωt↓) + U(ε2|ω2↓ ⇒ |ωt↓)

= ε1|ω1↓ ⇒ |ω1↓+ ε2|ω2↓ ⇒ |ω2↓

↘ ε1|ω1,ω1↓+ ε2|ω2,ω2↓. (2.77)

2.6. Quantum Entanglement 45

Upon simplifying the right-hand side of Eq. (2.76), we obtain

|ς↓ ⇒ |ς↓ = (ε1|ω1↓+ ε2|ω2↓)(ε1|ω1↓+ ε2|ω2↓)

= ε
2

1|ω1↓|ω1↓+ ε1ε2|ω1↓|ω2↓+ ε1ε2|ω2↓|ω1↓+ ε
2

2|ω2↓|ω2↓

↘ ε
2

1|ω1,ω1↓+ ε1ε2|ω1,ω2↓+ ε1ε2|ω2,ω1↓+ ε
2

2|ω2,ω2↓. (2.78)

Equating Eq. (2.77) and Eq. (2.78) yields

ε1(ε1 ↔ 1)|ω1,ω1↓+ ε1ε2|ω1,ω2↓+ ε1ε2|ω2,ω1↓+ ε2(ε2 ↔ 1)|ω2,ω2↓ = 0. (2.79)

Equation (2.79) implies that the solution of the equation is given by ε1,ε2 = {0, 1}, which

results in the quantum state |ω1↓ or |ω2↓ itself. We arrive at the conclusion that a quantum-

domain copying operation is only capable of cloning the basis states |ω1↓ and |ω2↓, but fails to

clone the superposition of the two states |ς↓ = ε1|ω1↓+ ε2|ω2↓.

2.6 Quantum Entanglement

Quantum entanglement is a unique property that only exists in the quantum domain, but it

has no counterparts in classical systems. It may be described as a phenomenon where a pair

or a group of qubits is generated in such way that the quantum state of the constituent qubits

cannot be described indepedently. For instance, let us consider a two-qubit quantum system

having a quantum state of |ω↓. The quantum state of |ω↓ is said to be separable if it can be

expressed as a tensor product of two independent quantum states as follows:

|ω↓ = |ω1↓ ⇒ |ω2↓. (2.80)

Otherwise, the quantum state |ω↓ is said to be entangled. More explicitly, to provide a clearer

picture about quantum entanglement, let us consider an arbitrary two-qubit state as follows:

|ω↓ = ε00|00↓+ ε11|11↓, (2.81)

where ε00,ε11 ⇔= 0. Let us now consider a quantum state constituted by the superposition of

two individual qubits, which may be described as follows:

|ω↓ = (ε0|0↓+ ε1|1↓)⇒ (ϱ0|0↓+ ϱ1|1↓)

= ε0ϱ0|00↓+ ε0ϱ1|01↓+ ε1ϱ0|10↓+ ε1ϱ1|11↓. (2.82)

By equating Eq. (2.81) and Eq. (2.82), we arrive at

ε00|00↓+ ε11|11↓ = ε0ϱ0|00↓+ ε0ϱ1|01↓+ ε1ϱ0|10↓+ ε1ϱ1|11↓. (2.83)

Since the non-zero solution for ε00, ε11, ε0, ε1, ϱ0, and ϱ1 does not exist for Eq. (2.83), it is

impossibe to decompose the state of the qubits in Eq. (2.81) into two individual qubit states as

46 2. Preliminaries on Quantum Information

in Eq. (2.82).

To elaborate a little further, let us now consider a very specific quantum state defined as

follows:

|$+
↓ =

1
≃
2
(|00↓+ |11↓) . (2.84)

In this case, if we perform a quantum measurement on the first qubit in Eq. (2.84), we can

determine the value of the second qubit immediately with absolute certainty. If the measurement

result of the first qubit is 0, the result of measuring the second qubit will also be 0. Similarly, if

the measurement result of the first qubit is 1, the result of observing the second qubit will also

be 1. Consequently, this inherent correlation between the two qubits having a quantum state of

|$+
↓ is established even if they are separated in space. This interesting phenomenon was given

the fond connotation of “spooky action at a distance” by Einstein.

Quantum entanglement enables a pair or a group of qubits to interact over a distance si-

multaneously, even if they are at the opposite sides of the universe. However, this intriguing

fact does not mean that we can communicate faster than the speed of light. Although there

is a connection between the entangled qubits, we still do not know what information is going

to be transmitted, since we cannot observe the state of entangled qubits before their measure-

ment. Hence, this connection cannot be used for information transmission. This condition is

further elaborated on by the no communication theorem, which is a specific theorem of quan-

tum information theory. However, the ability of creating entanglement may be exploited for

beneficial applications such as for example QECCs [?,?], quantum key distribution [?], quantum

superdense coding [?], quantum teleportation [?], and quantum secure-direct communication [?].

2.7 Quantum Channels

Again, quantum decoherence is a major impediment in the way of realizing practical quantum

computation and communication systems. Decoherence may be viewed as the unwanted entan-

glement of the qubit with the environment, which perturbs its coherent quantum state. Let

us consider the decoherence process for the basis states |0↓ and |1↓, which can be encapsulated

as [?]:

|e0↓ |0↓ ↑ |a0↓ |0↓+ |a1↓ |1↓ ,

|e0↓ |1↓ ↑ |a2↓ |0↓+ |a3↓ |1↓ , (2.85)

where |e0↓ is the state of the environment before interaction, while |ai↓ denotes the ith post-

decoherence state of the environment (not necessarily orthogonal or normalized), which ensures

that the overall evolution of Eq. (2.85) is unitary. Consequently, a qubit in the state |ω↓ =

ε |0↓+ ϱ |1↓ decoheres as:

|e0↓ |ω↓ ↑ ε (|a0↓ |0↓+ |a1↓ |1↓) + ϱ (|a2↓ |0↓+ |a3↓ |1↓) . (2.86)

2.7. Quantum Channels 47

Eq. (2.86) can be rearranged as:

|e0↓ |ω↓ ↑
1
2
(|a0↓+ |a3↓) (ε |0↓+ ϱ |1↓) +

1
2
(|a0↓ ↔ |a3↓) (ε |0↓ ↔ ϱ |1↓)+

1
2
(|a1↓+ |a2↓) (ε |1↓+ ϱ |0↓) +

1
2
(|a1↓ ↔ |a2↓) (ε |1↓ ↔ ϱ |0↓) , (2.87)

which is equivalent to:

|e0↓ |ω↓ ↑
1
2
(|a0↓+ |a3↓) I |ω↓+

1
2
(|a0↓ ↔ |a3↓)Z |ω↓+

1
2
(|a1↓+ |a2↓)X |ω↓+

↔i

2
(|a1↓ ↔ |a2↓)Y |ω↓ . (2.88)

Hence, as we may observe in Eq. (2.87), the state ω is mapped onto a linear combination of

the original state (Pauli-I operation), phase flipped state (Pauli-Z operation), bit flipped state

(Pauli-X operation) and both phase and bit flipped state (Pauli-Y operation). In the process of

the quantum error correction, the superimposed state of Eq. (2.87) collapses to one of these four

possibilities upon measurement. Therefore, the overall decoherence process can be visualized as

inflicting bit errors or phase errors or possibly both errors on the qubit, which was also depicted

in Figure 1.3. Alternatively, we may intuitively argue that since any arbitrary unitary operator

can be expressed as a linear combination of the Pauli-I, Pauli-Z, Pauli-X and Pauli-Y operators,

decoherence can also be described in terms of these Pauli operators. Hence, quantum channel

models are defined on the basis of the set of Pauli operators.

A quantum channel can be used for modeling imperfections in quantum hardware, namely,

faults resulting from quantum decoherence and quantum gates. Furthermore, a quantum channel

can also model quantum-state flips imposed by the transmission medium, including free-space

wireless channels and optical fiber links, when qubits are transmitted across these media. Some

of the commonly used quantum channel models are discussed below [?]:

Bit-Flip Channel: Analogous to a classical binary symmetric channel, a bit-flip channel

characterized by the probability p maps the basis state |0↓ ↑ |1↓ and |1↓ ↑ |0↓ with a

probability of p. The associated set of operators are defined as:

E0 =
√

1↔ p I =
√

1↔ p




1 0

0 1



 , E1 =
≃
p X =

≃
p




0 1

1 0



 , (2.89)

where Ej is the jth operator, which maps a given channel input onto the corresponding

output.

Phase-Flip Channel: A phase-flip channel characterized by the probability p inflicts a

Pauli-Z error on the transmitted qubit with a probability of p, which can be encapsulated

as:

E0 =
√

1↔ p I =
√

1↔ p




1 0

0 1



 , E1 =
≃
p Z =

≃
p




1 0

0 ↔1



 . (2.90)

Bit-Phase-Flip Channel: A bit-phase-flip channel characterized by the probability p

48 2. Preliminaries on Quantum Information

inflicts a Pauli-Y error on the transmitted qubit with a probability of p, which can be

defined as:

E0 =
√

1↔ p I =
√

1↔ p




1 0

0 1



 , E1 =
≃
p Y =

≃
p




0 ↔i

i 0



 . (2.91)

Depolarizing Channel: A depolarizing channel characterized by the probability p in-

flicts a bit-error (Pauli-X) or a phase-error (Pauli-Z) or both bit and phase errors (Pauli-

Y) with a probability of p/3 each, which can be expressed as:

E0 =
√

1↔ p I =
√

1↔ p




1 0

0 1



 , E1 =

√
p

3
X =

√
p

3




0 1

1 0



 ,

E2 =

√
p

3
Z =

√
p

3




1 0

0 ↔1



 , E3 =

√
p

3
Y =

√
p

3




0 ↔i

i 0



 . (2.92)

The depolarizing channel of Eq. (2.92) may be referred to as a symmetric channel, since

the three types of errors occur with equal probabilities. By contrast, if the Pauli-X, Pauli-

Z and Pauli-Y errors occur with di!erent probabilities, the channel is termed as being

asymmetric [?,?].

Amplitude Damping Channel: Amplitude damping channel models the loss of energy

from a quantum system. An amplitude damping channel characterized by the damping

probability φ, or more specifically the probability of losing a photon, is modeled as:

E0 =




1 0

0
≃
1↔ φ



 , E1 =




0

≃
φ

0 0



 . (2.93)

According to Eq. (2.93), the operator E1 changes the state |1↓ to |0↓ depicting that energy

is lost to the environment, while the operator E0 reduces the amplitude of the state |1↓

because energy is dissipated, which makes it less likely to encounter the state |1↓.

Phase Damping Channel: Phase damping characterizes the loss of quantum informa-

tion without the loss of energy. It may include for example the scattering of photons, or

perturbation of electronic states caused by the stray electrical charges. Phase damping

channel can be described as follows:

E0 =




1 0

0
≃
1↔ ς



 , E1 =




0 0

0
≃
ς



 , (2.94)

where ς is the probability of scattering of a photon (without loss of energy). Similar to

the amplitude damping channel, a E0 reduces the amplitude of state |1↓. On the other

hand, the operator E1 destroys the state |0↓, while reduces the amplitude of state |1↓.

2.8. Summary and Conclusions 49

In this treatise, we will only consider the widely used symmetric depolarizing channel model of

Eq. (2.92) [?, ?, ?,?] and we we will focus our attention on the depolarizing channel model.

Gate Symbol Operation Matrix

Pauli-I I Identity operation.



1 0

0 1





Pauli-X X Bit flip.



0 1

1 0





Pauli-Z Z Phase flip.



1 0

0 ↑1





Pauli-Y Y Bit and phase flip.



0 ↑i

i 0





Hadamard H Maps a pure state |0↓ or |1↓ onto a
superposition of the basis states.

1↗
2



 1 1

↑1 1





Phase S Changes the phase of the basis state |1↓
by ω/2, while leaving |0↓ intact.



1 0

0 i





Contr.-NOT CNOT A 2-qubit gate, which flips the target
qubit when the control qubit is in the

state |1↓.





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





Table 2.1: Summary of the quantum unitary operators of Section 2.1.

Channel Definition

Bit-flip Inflicts a Pauli-X error with a probability of p.

Phase-flip Inflicts a Pauli-Z error with a probability of p.

Bit-phase-flip Inflicts a Pauli-Y error with a probability of p.

Depolarizing Inflicts a Pauli-X, Z or Y error with a probability of p/3 each.

Amplitude damping Models the energy dissipation from a quantum system with a damping
probability ε.

Phase damping Models the loss of quantum information without any energy dissipation,
which is characterized by the scattering probability ϑ.

Table 2.2: Summary of the quantum channel models of Section 2.7.

2.8 Summary and Conclusions

This chapter provides a brief introduction to fundamental quantum information processing. We

have highlighted the basic properties of the qubits along with the quantum evolutions acting on

single-qubit and multi-qubit systems. We have categorized the quantum evolution into reversible

evolution represented by the unitary transformations and the irreversible evolution constituted

50 2. Preliminaries on Quantum Information

by quantum measurements. We have also introduced several quantum gates widely utilized

in the development of this treatise. Additionally, we have presented various quantum channel

models used for simulating the quantum decoherence imposed on the quantum information.

Additionally, we have presented one of the fundamental limitations in the quantum domain,

namely the no-cloning theorem, which states that we cannot replicate the quantum state of

a qubit in an arbitrary superposition state. Finally, we have described one of the distinctive

features of quantum information, namely the ability to create quantum entanglement. The rest

of Part 1 will be developed based on the knowledge presented in this chapter.

Chapter 3
From Classical to Quantum

Coding

3.1 Introduction

In Chapter 2, we have discussed some of the basic quantum signal processing gates and stated

that quantum information su!ers from qubit errors. In the classical domain, the deleterious

e!ects of errors imposed by the channel can be mitigated using error correction codes by attach-

ing redundancy to the information part. However, the laws of quantum mechanics prevent us

from directly transplanting the classical error correction codes into the quantum domain owing

to the following obstacles:

(a) No-Cloning Theorem. In the classical domain, the simplest technique of protecting the

information bits is based on repetition coding, copying the same information bits several

times and then using majority decisions for finding the most likely transmitted codeword.

By contrast, in the quantum domain, this simple approach cannot be implemented, since

no unitary quantum transformation is capable of performing this specific task. Formally,

this is stated by the no-cloning theorem.

(b) The quantum bit collapses into the corresponding classical bit upon measure-

ment. In the classical domain, the error correction decoders are typically fed by the bits

received at the output of the demodulator. In the quantum domain, measuring the qubits

represented by the superposition of the classical states will collapse the superposition into

a single classical post-measurement state and consequently, we lose the original quantum

information.

(c) QECCs have to handle not only bit-flip errors but also phase-flip errors, as

well as the simultaneous bit-flip and phase-flip errors. By contrast, in the classical

51

52 3. From Classical to Quantum Coding

domain, we deal with a single type of error, which is the bit-flip error. In the quantum

domain, the nature of quantum decoherence is continuous and it can be modelled as

a linear combination of bit-flip errors (X), phase-flip errors (Z), or both bit-flip and

phase-flip errors (iXZ = Y). However, thanks to the beneficial e!ect of the stabilizer

measurement, the continuous nature of quantum decoherence can be treated as a discrete

set of independent errors imposed on the physical qubits.

Albeit all of the aforementioned obstacles hinder the development of QECC schemes, the inven-

tion of QSC formulation succeeded in circumventing these problems.

In this chapter, we present the classical-to-quantum isomorphism of the QSCs, demonstrat-

ing the duality between the classical and quantum domain. We will also show how to transplant

the well-known syndrome-based decoding of classical codes into quantum codes. The rest of this

chapter is organized as follows. We commence with a brief review of classical syndrome-based de-

coding in Section 3.2. This is followed by Section 3.3, where we present the similarities between

classical syndrome-based decoding and the quantum stabilizer codes (QSCs). In Section 3.4,

we provide the examples for the QSC constructions protecting a single qubit using 1/3-rate

quantum repetition code, Shor’s code, Steane’s code and the perfect 5-qubit code. Finally, we

conclude this chapter in Section 3.5.

3.2 A Brief Review of Classical Syndrome-based De-

coding

As mentioned earlier, the problems revolving around the QECCs are e!ectively circumvented by

QSCs, which essentially constitute the syndrome-based decoding version of QECCs. Hence, for

the sake of shedding some light onto the parallelism between the classical and quantum regime,

we proceed with the classical syndrome-based decoding first.

In the classical domain a C(n, k) code maps k information bits into n coded bits, where

k < n. The objective of attaching (n ↔ k) redundant bits is to facilitate error detection or

even error correction. Let us refer to Fig. 3.1 and consider the classical C(7, 4) Hamming code,

which maps 4 information bits into 7 coded bits and hence becomes capable of correcting a

single error. In general, the mapping of the k information bits is performed by multiplying the

information row vector x consisting of k elements by the generator matrix G having (k ⇐ n)

elements. Explicitly, the mapping can be formulated as

y = x ↖G, (3.1)

where the resultant codeword y is a row vector having n elements, while the notation of ↖

represents the matrix multiplication over modulo-2. For instance, the generator matrix of the

3.2. A Brief Review of Classical Syndrome-based Decoding 53

G R DE

x y y by bx

H s

Figure 3.1: The basic model of classical error correction codes invoking syndrome-based de-
coding. The G denotes the generator matrix, which maps the k information bits
x to the n coded bits y. The channel E inflicts an error vector e → {0, 1}n to the
codeword y resulting the corrupted received bits y. The receiver calculates the
syndrome vector s based on the PCM H and received bits y to predict the number
and the position of errors contained in the received bits y. The error recovery R

generates the error recovery vector r, which is applied to the received bits y. It
collapses the received bits y to one of the legitimate codedword y yielding the pre-
dicted codeword ŷ. Finally, we can readily determine the predicted information
bits x̂ from the predicted codeword ŷ. Chandra et al. [?]

C(7, 4) Hamming code is defined by

GHamming =





1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1





. (3.2)

From Eq. (3.1) and (3.2) we can generate the code space mapping shown in Table 3.1, where xi

denotes all the possible combinations of the information bits and yi represents the associated

legitimate codeword bits.

The generator matrix G can be arranged into a systematic form as

G = (Ik|P) , (3.3)

where Ik is a (k ⇐ k) identity matrix and P is a matrix having k ⇐ (n↔ k) elements. The form

given in Eq. (3.3) generates a systematic codeword y consisting of the k-bit information word

x followed by (n↔ k) parity bits.

As an example, the encoder has to carry out the following operations for the 4-bit original

54 3. From Classical to Quantum Coding

Table 3.1: The code space mapping of the C(7, 4) classical Hamming code.

i xi yi

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 0 0 0 1 1 1 1

3 0 0 1 0 0 0 1 0 0 1 1

4 0 0 1 1 0 0 1 1 1 0 0

5 0 1 0 0 0 1 0 0 1 0 1

6 0 1 0 1 0 1 0 1 0 1 0

7 0 1 1 0 0 1 1 0 1 1 0

8 0 1 1 1 0 1 1 1 0 0 1

9 1 0 0 0 1 0 0 0 1 1 0

10 1 0 0 1 1 0 0 1 0 0 1

11 1 0 1 0 1 0 1 0 1 0 1

12 1 0 1 1 1 0 1 1 0 1 0

13 1 1 0 0 1 1 0 0 0 1 1

14 1 1 0 1 1 1 0 1 1 0 0

15 1 1 1 0 1 1 1 0 0 0 0

16 1 1 1 1 1 1 1 1 1 1 1

information segment for generating the 7-bit encoded codeword:

y = x ·G = [0001] ·





1 0 0 0 | 1 1 0

0 1 0 0 | 1 0 1

0 0 1 0 | 0 1 1

0 0 0 1 | 1 1 1





. (3.4)

Explicitly, we write down the element-wise product as a sum and then take the mod-2, as

detailed below:

0+0+0+0 (mod 2)=0

0+0+0+0 (mod 2)=0

0+0+0+0 (mod 2)=0

0+0+0+1 (mod 2)=1

0+0+0+1 (mod 2)=1

0+0+0+1 (mod 2)=1

0+0+0+1 (mod 2)=1

A generator matrix G is associated with an (n↔ k)⇐n-element parity-check matrix (PCM)

H, which is defined as

H =
(
PT

|In→k

)
. (3.5)

3.2. A Brief Review of Classical Syndrome-based Decoding 55

As an example, the generator matrix of the classical C(7, 4) Hamming code of Eq. (3.2) is

associated with the following PCM:

HHamming =





1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1




. (3.6)

The PCM of H is constructed for ensuring that a valid codeword y satisfies the following

requirement:

y ↖HT = 0. (3.7)

A received word y may be contaminated by an error vector e → {0, 1}n due to channel impair-

ments, which is denoted by E in Fig. 3.1. More explicitly, the resultant received words corrupted

by the additive noise E can be formulated as

y = y + e. (3.8)

The error syndrome s is a row vector having (n↔ k) elements obtained by the following calcu-

lation:

s = y ↖HT = (y + e) ↖HT

= y ↖HT + e ↖HT

= 0+ e ↖HT

= e ↖HT
. (3.9)

The syndrome vector s contains the information related to the error pattern imposed by the

channel. To elaborate, we have 2k legitimate codewords generated by all the possible combi-

nations of the k information bits, 2n possible received bit patterns of ŷ and 2(n→k) syndromes

s, each unambiguously identifying one of the 2(n→k) error patterns, including the error-free

scenario.

Hence, for the classical C(7, 4) Hamming code, the syndrome vector si can uniquely and

unambiguously detect and correct one of the seven single-bit error patterns, plus the error-free

scenario, as specified in Table 3.2.

For example, for the error pattern of eT = [0000001] the syndrom decoder carries out the

56 3. From Classical to Quantum Coding

following operations:

s = e ·HT = [0000001] ·





1 1 0

1 0 1

0 1 1

1 1 1

1 0 0

0 1 0

0 0 1





= [001]. (3.10)

The error recovery ri is determined based on the most likely error pattern. After obtaining

the syndrome vector, the recovery vector ri is applied to the received words to obtain the

predicted codeword ŷ = y+ r, as depicted in Fig. 3.1. The application of the recovery operator

to the received word always collapses it into one of the legitimate codewords y, hence the

predicted codeword ŷ can be finally demapped in order to obtain the predicted information bits

x̂ using Table 3.1, as illustrated in Fig. 3.1. For linear systematic codes, this process can be

simply performed by chopping the last (n↔ k) bits, namely the redundant bits.

Table 3.2: The look-up table to determine the most likely error pattern ei → E that corresponds
to the syndrome value si, which is created based on Eq. (3.6) and (3.9).

i si ei

1 0 0 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 1

3 0 1 0 0 0 0 0 0 1 0

4 0 1 1 0 0 1 0 0 0 0

5 1 0 0 0 0 0 0 1 0 0

6 1 0 1 0 1 0 0 0 0 0

7 1 1 0 1 0 0 0 0 0 0

8 1 1 1 0 0 0 1 0 0 0

For another detailed example let us consider k information bits of x = (1 1 0 1). The

information bits are encoded using the classical C(7, 4) Hamming code employing the generator

matrix of Eq. (3.1), yielding the coded bits of y = (1 1 0 1 1 0 0). Let us assume that the

channel corrupts the legitimate codeword y by imposing an error pattern of e = (1 0 0 0 0 0 0)

resulting in the received word of y = (0 1 0 1 1 0 0). Next, the received word is fed to the

syndrome calculation block, which contains the PCM of Eq. (3.6). Based on Eq. (3.9), the

received word y = (0 1 0 1 1 0 0) generates the syndrome vector of s = (1 1 0). Utilizing the

look-up table of Table 3.2, the error recovery vector becomes r = (1 0 0 0 0 0 0). Upon applying

the error recovery vector, the received word y is collapsed to one of the legitimate codewords

y in Table 3.1, which is ŷ = (1 1 0 1 1 0 0). Assuming that the predicted codeword ŷ is valid,

3.3. A Brief Review of Quantum Stabilizer Codes 57

the demapper decides to translate the predicted codeword ŷ = (1 1 0 1 1 0 0) to the predicted

information bits as x̂ = (1 1 0 1). Hence, the original information is successfully recovered. The

whole process of syndrome calculation, error recovery and demapping jointly form the decoding

process. It is important to note that in practice, the syndrome calculation, recovery operator

and demapper are amalgamated into a single decoder block.

Let us now assume that the channel imposes an error pattern beyond the error correction ca-

pability of the classical C(7, 4) Hamming code. For example, assume that we send the identical k

information bits of x = (1 1 0 1) while the channel inflicts an error pattern of e = (1 1 0 0 0 0 0).

As a result, we have the received codeword bits of y = (0 0 0 1 1 0 0). Based on the received

codeword, we have the syndrome vector of s = (0 1 1). Based on the syndrome vector, the

error recovery of r = (0 0 1 0 0 0 0) is chosen. Consequently, the error recovery vector collapses

the received word to the incorrect legitimate codeword, which is ŷ = (0 0 1 1 1 0 0), instead

of the correct codeword of y = (1 1 0 1 1 0 0). Since the demapper assumes that the error

recovery completes the task perfectly, the demapper decides that the predicted information bits

are x = (0 0 1 1). As a result of this erroneous decoding action we end up having three, rather

than two error. This example demonstrates that the classical C(7, 4) Hamming code is unable

to operate flawlessly beyond its error correction capability.

3.3 A Brief Review of Quantum Stabilizer Codes

The formulation of QSCs is capable of detecting both the number and the position of errors

without actually observing the state of physical qubits, which is vitally important, since oth-

erwise the quantum state will collapse to classical bits upon measurement. This was achieved

by amalgamating the classical syndrome-based decoding with the QECCs. Similar to classical

error correction codes, QSCs also rely on attaching redundant qubits to the information qubits

for invoking error correction. The basic model of QSCs is depicted in Fig. 3.2, which will be

contrasted to its classical pair in Fig. 3.1. To generate the codespace C, the redundancy is con-

stituted by (n↔ k) auxiliary qubits. Next, a unitary transformation V transforms the k qubits

in the state of |ω↓ and the (n↔k) auxiliary qubits into n qubits in the state of |ω↓. The unitary

transformation of V represents the action of the quantum encoder. Explicitly, the mapping of

the logical qubits constituting the state of |ω↓ → C2
k

to the physical qubits forming the state of

|ω↓ → C2
n

by the encoder V of Fig. 3.2 can be mathematically formulated as follows:

C = {|ω↓ = V(|ω↓ ⇒ |0↓↓(n→k))}. (3.11)

The QSCs rely on the stabilizer operators Si → S for identifying the type, the number and

also the position of the qubit errors. A stabilizer operator Si is an n-tuple Pauli operator, which

preserves the state of physical qubits as defined below:

Si|ω↓ = |ω↓. (3.12)

The quantum channel inflicts errors represented by n-tuple Pauli operators P → Pn, which

58 3. From Classical to Quantum Coding

|0〉

|0〉

|0〉

|0〉

|0〉

| 〉

... ...V†
M|0〉⊗(n−k)

| ′〉 = L| 〉

PV R

S

| 〉 | b 〉 | ′〉

Figure 3.2: The basic model of QSCs implementation over the quantum depolarizing channel.
The k logical qubits is mapped into n physical qubits with the aid of (n ↔ k)
redundant/auxiliarry qubits (ancillas) to provide protection from the quantum
decoherence. It is similar to the classical error correction model where (n ↔ k)
redundant bits are added to k information bits in order to provide error correc-
tion. The quantum encoder V serves the same purpose with G of classical error
correction codes in Fig. 3.1. The quantum encoder V transforms the state of k
logical qubits |ω↓ into the state of n physical qubits |ω↓ with the aid of (n↔k) an-
cillas. The quantum depolarizing channel imposes vector rerpesented by n-tupple
Pauli operator P → Pn. The syndrome operators Si → S generate eigenvalues of
±1, which are analogue to the value 0 and 1 of classical syndrome vector, which is
provided by the PCM H in Fig. 3.1. The error recovery R applies the correction
according to the syndrome values provided by the syndrome measurements. Fi-
nally, the quantum inverse encoder V

† transforms the predicted state of physical
qubits |ω↔↓ back to the predicted state of logical qubits |ω↔

↓, which bears the same
responsibility as the demapper D in classical syndrome-based decoding of Fig. 3.1.

Chandra et al. [?]

transforms the encoded physical qubits that were originally in the state of |ω↓ to the potentially

corrupted physical qubits in the state of |ω̂↓, as seen in Fig. 3.2. More explicitly, this process

can be described as follows:

|ω̂↓ = P |ω↓. (3.13)

The stabilizer operators act similarly to the syndrome calculations routinely used in classical

error correction codes. To elaborate a little further, a stabilizer operator will return an eigenvalue

of +1, when an error operator P commutes with the stabilizer operator, while we arrive at the

eigenvalue of ↔1, if it anti-commutes. The eigenvalues of +1 and ↔1 are analogous to the classic

syndrome bit of 0 and 1, respectively, which can be defined as follows:

Si|ω̂↓ =






|ω̂↓ , SiP = PSi

↔|ω̂↓ , SiP = ↔PSi.

(3.14)

Therefore, the stabilizer operators naturally have to inherit the commutative property. Con-

sequently, the product between the stabilizer operators Si yields another legitimate stabilizer

3.3. A Brief Review of Quantum Stabilizer Codes 59

operator. Furthermore, the commutativity property implies that

Si|ω↓ = Sj |ω↓ = SiSj |ω↓ = |ω↓, ↙Si,j → S, (3.15)

suggesting that the stabilizer group S is closed under multiplication.

Based on the syndrome measurement by the stabilizer operators Si, a recovery operator

constituted by the n-tupple Pauli operator of R → Pn seen in Fig. 3.2 is applied to the corrupted

physical qubit state |ω̂↓, yielding the predicted state of the original encoded logical qubit |ω↔↓,

which is formulated as

|ω↔↓ = R|ω̂↓. (3.16)

Finally, the inverse encoder V† of Fig. 3.2 performs the following transformation1:

V
†
|ω↔↓ = V

†
R|ω̂↓

= V
†
RP|ω↓

= V
†
RPV(|ω↓ ⇒ |0↓↓(n→k))

= (L|ω↓)⇒ (M|0↓↓(n→k)), (3.17)

where we have V
†
RPV ↘ L⇒M and L → Pk represents the error inflicted on the logical qubits

according to |ω
↔
↓ = L|ω↓, while M → Pn→k represents the residual errors that remained in the

(n ↔ k) auxiliary qubits after the error correction procedure. In the case of R = P, we arrive

at RP = I↓n, where I↓n denotes an n-fold tensor product Pauli-I matrix. Another possibility

is to arrive at RP = Si. In either of these cases, the state of the physical qubits is not altered,

since we have RP|ω↓ = |ω↓. Therefore, the decoding procedure of Fig. 3.2 successfully recovers

the original quantum state constituted by the logical qubits, yielding |ω
↔
↓ = |ω↓.

The stabilizer operators can be translated into the classical PCM H by mapping the Pauli

matrices I, X, Y and Z onto (F2)
2 as follows:

I ↑

(
0 | 0

)
,

X ↑

(
0 | 1

)
,

Y ↑

(
1 | 1

)
,

Z ↑

(
1 | 0

)
. (3.18)

This concept is also known as the Pauli-to-binary isomorphism. By exploiting the Pauli-to-

binary isomorphism, the stabilizer operators of any QSC can be represented as a pair of PCMs

Hz and Hz, where Hz is invoked for handling the phase-flip (Z) errors and Hx for handling the

bit-flip (X) errors. Explicitly, the classical PCM representation of the QSC stabilizer operators

may be written as follows:

H = (Hz|Hx) . (3.19)

1The inverse encoder V† is the Hermitian transpose of encoder V. It is referred to as the inverse,
since it satisfies the unitary requirement of V†V = I, as the inverse of the matrix does.

60 3. From Classical to Quantum Coding

The classical representation of the stabilizer operators gives the advantage of predicting and

evaluating the performances of QSCs by treating them similarly to classical error correction

codes. Additionally, it allows us to transform a pair of classical PCMs into the correponding

quantum counterpart. However, to ensure that the commutative property is preserved in the

quantum domain, a pair of classical PCMs have to satisfy the so-called symplectic criterion [?]

given by

Hz ·H
T

x +Hx ·HT

z = 0. (3.20)

A special class of QSCs, namely the family of Calderbank-Shore-Steane (CSS) codes, treats

the phase-flip (Z) and bit-flip (X) errors as two separate entities. More specifically, this can be

interpreted as having the PCMs of Hz and Hx in Eq. (3.19) formulated as Hz =




H↔

z

0



 and

Hx =




0

H↔
x



, respectively. Therefore, the binary PCM H can be expressed as follows:

H =




H↔

z 0

0 H↔
x



 . (3.21)

Consequently, the symplectic criterion given in Eq. (3.20) can be reduced to the following crite-

rion:

H↔
z ·H

↔
x

T

= 0. (3.22)

Furthermore, we can formulate a CSS code by using a PCM of H↔
z = H↔

x and the resultant

quantum code may be referred to as a dual-containing quantum CSS code or self-orthogonal

quantum CSS code. For dual-containing CSS codes, the symplectic criterion can be further

simplified to H↔
zH

↔
z

T = 0.

Again, the classical code constructions can be readily transformed into their quantum ver-

sion provided that they satisfy the symplectic criterion of Eq. (3.20). In other words, unless

the symplectic condition is satisfied by them, some of the popular classical codes cannot be

’transplanted’ into the quantum domain. However, fortunately, this limitation can be relaxed

by utilizing the family of EA-QSCs [?, ?]. To elaborate a little further, transforming a classical

codes into a QSC does not come without cost. Invoking the above-mentioned EA-QSC construc-

tion requires so-called preshared maximally-entangled qubits before the encoding procedure, as

detailed in [?]. However, the mechanism of presharing the maximally-entangled qubits allows

us to transform a set of non-symplectic QSCs into their symplectic counterpart. In closing this

section we note that the classification of QSCs is summarized at a glance in Fig. 3.3.

3.4. Protecting A Single Qubit: Design Examples 61

Dual-Containing

CSS EA

Non Dual-Containing

Quantum Stabilizer Codes

Non-CSS

HzHx

T +HxHz

T = 0 HzHx

T +HxHz

T != 0

H =

✓
H′

z
0

0 H′
x

◆

H′
z
H′

x

T = 0

H = (Hz|Hx) H′
z
H′

x
!= 0 or

H′
z
= H′

x
H′

z
!= H′

x

Figure 3.3: The classification and characterization of QSCs, where CSS stands for Calderbank-
Shor-Steane and EA for entanglement-assisted. Chandra et al. [?]

3.4 Protecting A Single Qubit: Design Examples

In Chapter 1, we have already mentioned the three pioneering contributions on QSCs, which

are only capable of handling a single qubit error, while in Section 3.3, we briefly highlighted

the di!erent types of QSC constructions. In this section, we will link up both ideas in a more

concrete context.

3.4.1 Classical and Quantum 1/3-rate Repetition Codes

Before we delve deeper into the aforementioned QSCs, let us commence with a simple 1/3-rate

classical repetition codes, which maps a binary digit of “0” or “1” into a vector that contains

three replicas of each binary digit as

0
G
↔↑

(
0 0 0

)
,

1
G
↔↑

(
1 1 1

)
. (3.23)

To elaborate briefly, we have created two legitimate codewords, which have a Hamming distance

of three. Given the three-bit codewords, we can have eight di!erent received words. Two of

these are legitimate error-free codewords and six of them are erroneous. However, even if one of

the bits is corrupted, majority logic allows us to correct it. By contrast, if two bits are corrupted,

the majority logic decision would opt for the wrong legitimate codeword, because more errors

were imposed by the channel than the error correction capability of code. This situation is often

referred to as the code being overloaded by an excessive number of errors.

Let us now briefly portray the task of the decoder from a syndrom decoding - rather than

majority logic - perspective. If the first and second bit are di!erent, we know that one of them

is corrupted, bit it is not clear at this stage, which one. So this is the first symptom of having

62 3. From Classical to Quantum Coding

an error. This simple calculation provides us with the first syndrom bit, which is a logical

one. Similarly, if the first and third bit are di!erent, it is not clear, which of these two bits is

corrupted, but we have a second syndrom bit. Simple logic dictates that this is only possible, if

the first bit was corrupted. This can hence be inverted for correcting this 3-bit codeword. But

again, if there are two or three errors, this 1/3-rate code having a minimum distance of three

between the legitimate codewordsbecome overwhelmed. The above pair of syndrom bits allow

us to distinguish four possible scenarios, namely an error-free one and having a single error in

any of the three positions.

Hence, from the brief description of the basic classical codes given in Section 3.2, the mapping

in Eq. (3.23) can be encapsulated into a generator matrix G as given below:

G =

(
1 1 1

)
. (3.24)

From the generator matrix G given in Eq. (3.24) and the PCM formulation given in Eq. (3.3),

we obtain the PCM H for a 1/3-rate classical repetition code encapsulated by

H =




1 1 0

1 0 1



 , (3.25)

where the first row returns the first bit of the two-bit syndrome and acccordingly the second

row evaluates the second bit. Thus, it can be easily checked by using the syndrome computation

of Eq. (3.9) that the syndrome value of (0 0) is obtained if the received word ŷ is equal to the

valid codeword, either (0 0 0) or (1 1 1). The syndrome computation yields a syndrome vector

with (n ↔ k)-element and in this case for a 1/3-rate classical repetition code, it generates a

syndrome vector with two elements. Therefore, again, there are four possible outcomes from

the syndrome computation and one of them indicates the error-free received word, which is the

(0 0) syndrome. Since a 1/3-rate classical repetition code may be viewed as a short block code,

the syndrome computation and the associated error pattern is readily checked using a look-up

table, namely Table. 3.3.

Table 3.3: Syndrome computation and the associated error pattern for a 1/3-rate classical
repetition code.

Syndrome (s) Error Pattern (e) Index of Corrupted Bit

(0 0) (0 0 0) -

(0 1) (0 0 1) 3

(1 0) (0 1 0) 2

(1 1) (1 0 0) 1

Next, we proceed with with a simple 1/3-rate quantum repetition code that is capable of

recovering a single bit-flip, but no phase-flip. Let us assume that we have a quantum state

|ω↓ = ε0|0↓+ε1|1↓. As a consequence of the No Cloning Theorem of quantum mechanics, there

is no unitary transformation U capable of mapping an arbitrary quantum state |ω↓ onto a state

3.4.1. Classical and Quantum 1/3-rate Repetition Codes 63

of |ω↓ = |ω↓
↓3. However, we are still allowed to make a copy of the orthogonal states. Hence,

the mapping of the orthogonal quantum states |0↓ and |1↓ may be carried out by a unitary

transformation U as follows:

|0↓L = U

|0↓ ⇒ |0↓↓2


= |000↓,

|1↓L = U

|1↓ ⇒ |0↓↓2


= |111↓. (3.26)

In a more general scenario, the mapping of a single logical qubit to n physical qubits is arranged

by a unitary transformation carried out by a quantum encoder V, which can be formulated as

follows:

|ω↓ = V

(
|ω↓ ⇒ |0↓↓(n→1)

)
= ε0|0↓L + ε1|1↓L, (3.27)

where |0↓L denotes the encoded state of the logical qubit |0↓, |1↓L denotes the encoded state of

the logical qubit |1↓, while |0↓↓n→1 represents the auxiliary or redundant qubits (also referred to

as ancillas), and the superscript of ⇒(n↔ 1) represents (n↔ 1)-fold tensor products. Hence, for

1/3-rate quantum repetition codes, the state of the logical qubit |ω↓ corresponds to the state of

the physical qubit |ω↓ as given by

|ω↓ = V

(ε0|0↓+ ε1|1↓)⇒ |0↓↓2


= ε0|000↓+ ε1|111↓, (3.28)

where the string |000↓ defines the encoded logical qubit |0↓L and |111↓ defines |1↓L. Again,

it is important to bear in mind that the state of |ω↓ = ε0|000↓ + ε1|111↓ is not equal to

|ω↓ = |ω↓
↓3. More explicitly, this relationship can also be expressed as |ω↓ = ε0|000↓+ε1|111↓ ⇔=

|ω↓
↓3. The state of the physical qubits of the 1/3-rate quantum repetition code is stabilized, or

synonymously ’parity-checked’ by the pair of stabilizer operators S1 = ZZI and S2 = ZIZ. A

valid codeword or a valid encoded state, which is not a!ected by the stabilizer operators S1 and

S2, has an input state of |ω↓ and returns the state of |ω↓, hence it yields the so-called eigenvalues

of +1, and more explicitly, it is described below:

S1|ω↓ = ε0|000↓+ ε1|111↓ ↘ |ω↓,

S2|ω↓ = ε0|000↓+ ε1|111↓ ↘ |ω↓. (3.29)

By contrast, if the stabilizer operators g1 and g2 are applied to the corrupted states |ω̂↓,

they both yield eigenvalues that are not in the all-one state. For instance, let us assume that

we received a corrupted state having a bit-flip error imposed on the first qubit of |ω↓ yielding

|ω̂↓ = ε0|100↓+ε1|011↓. Then, upon applying the stabilizer operators S1 = ZZI and S2 = ZIZ

to the state of |ω̂↓, it may be readily shown after few steps that we arrive at the following

64 3. From Classical to Quantum Coding

eigenvalues:

S1|ω̂↓ = ZZI(ε0|100↓+ ε1|011↓)

=





1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 ↔1 0 0 0 0 0

0 0 0 ↔1 0 0 0 0

0 0 0 0 ↔1 0 0 0

0 0 0 0 0 ↔1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





.





0

0

0

ε1

ε0

0

0

0





=





0

0

0

↔ε1

↔ε0

0

0

0





↘ ↔ε0|100↓ ↔ ε1|011↓ ↘ ↔|ω̂↓, (3.30)

S2|ω̂↓ = ZIZ(ε0|100↓+ ε1|011↓)

=





1 0 0 0 0 0 0 0

0 ↔1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 ↔1 0 0 0 0

0 0 0 0 ↔1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 ↔1 0

0 0 0 0 0 0 0 1





.





0

0

0

ε1

ε0

0

0

0





=





0

0

0

↔ε1

↔ε0

0

0

0





↘ ↔ε0|100↓ ↔ ε1|011↓ ↘ ↔|ω̂↓. (3.31)

The resultant eigenvalues of ±1 act similarly to the syndrome vector of classical codes, where

the eigenvalue +1 is associated with the classical syndrome value 0 and the eigenvalue ↔1 with

the classical syndrome value 1. More explicitly, the single-qubit error patterns imposed on the

1/3-rate quantum repetition codes and the associated eigenvalues are portrayed in Table. 3.4.

However, this specific construction is only capable of detecting and correcting a single bit-flip

error imposed by the Pauli channel on the physical qubits, but no phase-flips.

Since the physical qubits may experience not only bit-flip errors, but also phase-flip errors

as well as both bit-flip and phase-flip errors, a di!erent mapping is necessitated to protect the

3.4.1. Classical and Quantum 1/3-rate Repetition Codes 65

Table 3.4: Single qubit bit-flip errors along with the associated eigenvalues in 1/3-rate quantum
repetition where the eigenvalues act similarly with the syndrome values in classical
linear block codes.

Received States |ϖ̂↓ Eigenvalue g1|ϖ̂↓ Eigenvalue g2|ϖ̂↓ Syndrome (s) Index of Corrupted Qubit

ϱ0|000↓+ ϱ1|111↓ +1 +1 (0 0) -

ϱ0|001↓+ ϱ1|110↓ +1 ↑1 (0 1) 3

ϱ0|010↓+ ϱ1|101↓ ↑1 +1 (1 0) 2

ϱ0|100↓+ ϱ1|011↓ ↑1 ↑1 (1 1) 1

physical qubits from phase-flip error. In order to protect the physical qubits from a phase-flip

error, we may require a di!erent basis but we can still invoke a similar approach. To elaborate

further, the Hadamard transformation (H) maps the computational basis of {|0↓, |1↓} onto the

Hadamard basis of {|+↓, |↔↓}, where the states of |+↓ and |↔↓ are defined as

|+↓ ↘ H|0↓ =
1
≃
2
(|0↓+ |1↓), (3.32)

|↔↓ ↘ H|1↓ =
1
≃
2
(|0↓ ↔ |1↓), (3.33)

and the unitary Hadamard transformation H, which acts on a single qubit state, is given by

H =
1
≃
2




1 1

1 ↔1



 . (3.34)

A phase-flip error defined over the Hadamard basis of {|+↓, |↔↓} acts similarly to the bit-flip

error defined over the computational basis of {|0↓, |1↓}. Hence, for the handling of a single phase-

flip error, the encoder of the 1/3-rate quantum repetition code protecting against phase-flips

carries out:

|0↓L = U

|0↓ ⇒ |0↓↓2


= |+++↓,

|1↓L = U

|1↓ ⇒ |0↓↓2


= |↔↔↔↓. (3.35)

Therefore, the logical qubit of |ω↓ corresponding to the physical qubits |ω↓ is given by

|ω↓ = V

(ε0|0↓+ ε1|1↓)⇒ |0↓↓2


= ε0|+++↓+ ε1|↔↔↔↓. (3.36)

The state of physical qubits given in Eq. (3.36) can be stabilized by the operators S1 = XXI and

S2 = XIX. The detection and correction of a phase flip error can be carried out in analogy with

the 1/3-rate quantum repetition code for handling the bit-flip error. The stabilizer operators

can be derived from the classical PCM H by mapping the Pauli matrices I, X, Y and Z onto

(F2)
2 using one of the Pauli mappings given in Eq. 3.18. Each row of H is associated with a

stabilizer operator Si → S, where the i-th column of both Hz and Hx corresponds to the i-th

66 3. From Classical to Quantum Coding

qubit and the binary 1 locations represent the Z and X positions in the PCMs Hz and Hx,

respectively. For instance, for the 1/3-rate quantum repetition code, which is stabilized by the

operators S1 = ZZI and S2 = ZIZ, the PCM H is given as follows:

H =




1 1 0 0 0 0

1 0 1 0 0 0



 . (3.37)

Since the 1/3-rate quantum repetition code in this example can only correct a bit-flip (X) error,

which is stabilized by the Z operators, the PCM Hx contains only zero elements. The same

goes for a 1/3-rate quantum repetition code conceived for handling a phase-flip (Z) error, which

is stabilized by the operators S1 = XXI and S2 = XIX. The PCM H corresponding to this

particular QSC is defined as follows:

H =




0 0 0 1 1 0

0 0 0 1 0 1



 . (3.38)

It is clearly shown in Eq. (3.37) and (3.38) that the PCM of a 1/3-rate quantum repetition code

is similar to that of the 1/3-rate classical repetition code given in Eq. (3.25).

In order to encode the logical qubits into physical qubits, we require the unitary transforma-

tion V acting as the quantum encoder. To represent the quantum encoding circuit, one of the

essential components is the controlled-NOT (CNOT) quantum gate, which has been described

in Subsection 2.3.1.4. A logical qubit in the superimposed state of |ω↓ = ε0|0↓ + ε1|1↓ and a

qubit in the pure state of |0↓ are manipulated by the quantum CNOT gate into following state:

CNOT(|ω↓, |0↓) = CNOT(ε0|0↓+ ε1|1↓, |0↓)

= CNOT(ε0|00↓+ ε1|10↓)

=





1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0





.





ε00

0

ε10

0





=





ε0

0

0

ε1





↘ ε0|00↓+ ε1|11↓. (3.39)

Similarly, we may also use the CNOT definition given in Eq. (2.33) to determine the resultant

state as described below:

CNOT(|ω↓, |0↓) = CNOT(ε0|0↓+ ε1|1↓, |0↓)

= CNOT(ε0|00↓+ ε1|10↓)

= ε0|0, (0⇑ 0)↓+ ε1|1, (1⇑ 0)↓

= ε0|00↓+ ε1|11↓. (3.40)

3.4.2. Shor’s 9-Qubit Code 67

For the sake of creating the encoded state of a 1/3-rate quantum repetition code, we require

a single logical qubit and two ancillas prepared in the pure state of |0↓, as described in Eq. (3.28).

In the first step, the CNOT unitary transformation is performed between the logical qubit and

the first ancilla, in which the logical qubit acts as the control qubit and the ancilla as the target

qubit. The same step is repeated during the second stage between the logical qubit and the

second ancilla, where the second ancilla is also preserved as the target qubit. Therefore, the

encoding circuit of the 1/3-rate quantum repetition code can be represented as in Fig 3.4, which

was designed for protecting the physical qubits from a single bit-flip error, as also seen in the

mapping given in Eq. (3.26).

For its 1/3-rate quantum repetition code counterpart protecting the physical qubits from

a phase-flip error, we require the Hadamard transformation to obtain the mapping given in

Eq. (3.35). The Hadamard transformation is required for changing the base of quantum repeti-

tion codes from the computational basis {|0↓, |1↓} to the Hadamard basis {|+↓, |↔↓}. Hence, we

can readily create the encoding circuit for a 1/3-rate quantum repetition code for protecting the

physical qubits from a phase-flip error by placing the Hadamard gates after the second stage as

portrayed in Fig. 3.5.

| 〉

|0〉

|0〉

Figure 3.4: The encoding circuit of the 1/3-rate quantum repetition code protecting the phys-
ical qubits from a bit-flip error.

| 〉

|0〉

|0〉

H

H

H

Figure 3.5: The encoding circuit of the 1/3-rate quantum repetition code protecting the phys-
ical qubits from a phase-flip error.

3.4.2 Shor’s 9-Qubit Code

Since we have elaborated briefly on the construction of QSCs along with the Pauli to binary

isomorphism, we may now proceed with the corresponding examples of di!erent QSC construc-

tions conceived for protecting the physical qubits from any type of a single qubit error. Firstly,

we commence with Shor’s code [?]. In order to protect the qubits from any type of single qubit

error, a logical qubit is mapped onto nine physical qubits. This code may also be viewed as a

concatenated version of two 1/3-rate quantum repetition codes, where the first stage is dedicated

68 3. From Classical to Quantum Coding

to the protection of the physical qubits from phase-flip errors, while the second stage is invoked

for handling the bit-flip errors. To elaborate further, at the first stage of Shor’s code, the state

of a logical qubit is encoded by using the following mapping: |0↓ ↑ |+++↓, |1↓ ↑ |↔↔↔↓. At

the second stage, we encode each of the states of |+↓ to the state of (|000↓+ |111↓) /
≃
2, while

the state of |↔↓ is mapped to the state of (|000↓ ↔ |111↓) /
≃
2. Therefore, the final state of the

encoded logical qubits |0↓L and |1↓L as follows:

|0↓L =
1
≃
2
(|000↓+ |111↓)⇒

1
≃
2
(|000↓+ |111↓)⇒

1
≃
2
(|000↓+ |111↓)

=
1

2
≃
2
(|000000000↓+ |000000111↓+ |000111000↓+ |000111111↓

+ |111000000↓+ |111000111↓+ |111111000↓+ |111111111↓), (3.41)

|1↓L =
1
≃
2
(|000↓ ↔ |111↓)⇒

1
≃
2
(|000↓ ↔ |111↓)⇒

1
≃
2
(|000↓ ↔ |111↓)

=
1

2
≃
2
(|000000000↓ ↔ |000000111↓ ↔ |000111000↓+ |000111111↓

↔ |111000000↓+ |111000111↓+ |111111000↓ ↔ |111111111↓). (3.42)

Based on the above description, the encoding circuit of Shor’s code is portrayed in Fig. 3.6.

The state determined by the nine physical qubits of Shor’s code, where the latter are defined in

Eq. (3.41) and (3.42), is stabilized by the eight stabilizer operators which are listed in Table 3.5.

Table 3.5: The eight stabilizer operators of Shor’s 9-qubit code, which stabilizes a single logical
qubit with the aid of eight auxiliarry qubits.

Si Stabilizer Operator

S1 ZZIIIIIII

S2 IZZIIIIII

S3 IIIZZIIII

S4 IIIIZZIII

S5 IIIIIIZZI

S6 IIIIIIIZZ

S7 XXXXXXIII

S8 IIIXXXXXX

To elaborate a little further, Shor’s code is a member of the class of non-dual-containing

CSS codes. Explicitly, it belongs to the class of CSS codes because the stabilizer formalism of

Shor’s code implies that the code handles the Z error and the X error separately, whilst it is a

non-dual-containing code because the PCMs Hz and Hx are not identical. Based on the list of

stabilizer operators given in Table 3.5, the PCM H of Shor’s code is given in Eq. (3.43), where

each row of the PCM corresponds to each of the stabilizer operators listed in Table 3.5.

3.4.3. Steane’s 7-Qubit Code 69

| 〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

H

H

H

Figure 3.6: The encoding circuit V of Shor’s 9-qubit code.

H
Shor

=





1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1





. (3.43)

The quantum coding rate (rQ) of a quantum code C[n, k] is defined by the ratio of the

number of logical qubits k to the number of physical qubits n, which can be formulated as

rQ =
k

n
. (3.44)

Hence again, for Shor’s 9-qubit code the quantum coding rate is rQ = 1/9.

3.4.3 Steane’s 7-Qubit Code

Steane’s code was proposed for protecting a single qubit from any type of error by mapping

a logical qubit onto seven physical qubits, instead of nine qubits. In contrast to Shor’s code,

Steane’s code is a dual-containing CSS code, since the PCMs Hz and Hx are based on that of

70 3. From Classical to Quantum Coding

the clasical Hamming code HHam, which is repeated here for convenience:

HHam =





1 1 0 1 1 0 0

1 0 1 1 0 1 0

0 1 1 1 0 0 1




. (3.45)

It can be confirmed that the classical Hamming code is a dual-containing code, because it

satisfies the condition HHam.HT

Ham = 0. Therefore, the PCM H of Steane’s code is defined as:

HSteane =




HHam 0

0 HHam



 =





1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0 0 0 0 0 0 0

0 1 1 1 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 0 1 1 0 0

0 0 0 0 0 0 0 1 0 1 1 0 1 0

0 0 0 0 0 0 0 0 1 1 1 0 0 1





. (3.46)

Since Steane’s code is a member of the dual-containing CSS codes, the encoded state of the

logical qubit |0↓L and |1↓L may be determined from its classical code counterpart. Let C1(7, 4)

be the Hamming code and C2(7, 3) be its dual. Both of the codes are capable of corrrecting a

single bit error. Hence, the resultant CSS quantum code derived from these codes, namely the

C[n, k1 ↔ k2] = C[7, 1], is also capable of correcting a single qubit error. For Steane’s code the

states of the encoded logical qubit of |0↓L and |1↓L are defined as follows:

|0↓L =
1√
|C2|

∑

x↘C1,C2

|x↓, (3.47)

|1↓L =
1√
|C2|

∑

x↘C1,x/↘C2

|x↓. (3.48)

Since C2 is the dual of C1, the PCM of C2, denoted by H(C2) is by definition the generator matrix

of C1, which is denoted by G(C1). Hence, the parity-check matrix of C2 can be written as

H(C2) = G(C1) =





1 0 0 0 1 1 0

0 1 0 0 1 0 1

0 0 1 0 0 1 1

0 0 0 1 1 1 1





. (3.49)

Based on the PCM given in Eq. (3.45) and (3.49), we can define the code space of C1 and

C2, which is described in Table 3.6. Finally, upon using Eq. (3.47), (3.48), and also the code

space given in Table 3.6, the encoded states of the logical qubit |0↓L and |1↓L of Steane’s code

3.4.3. Steane’s 7-Qubit Code 71

Table 3.6: The code space of C1 and C2 for determining the encoded state of Steane’s code.

x → C1, C2 x → C1, x /→ C2

0000000 1111111

0111001 1000110

1011010 0100101

1100011 0011100

1101100 0010011

1010101 0101010

0110110 1001001

0001111 1110000

may be formulated as:

|0↓L =
1

2
≃
2
(|0000000↓+ |0111001↓+ |1011010↓+ |1100011↓

+ |1101100↓+ |1010101↓+ |0110110↓+ |0001111↓), (3.50)

|1↓L =
1

2
≃
2
(|1111111↓+ |1000110↓+ |0100101↓+ |0011100↓

+ |0010011↓+ |0101010↓+ |1001001↓+ |1110000↓). (3.51)

Again, it can be readily seen that the quantum coding rate of Steane’s 7-qubit code is 1/7. Its

encoding circuit is portrayed in Fig. 3.7, while the corresponding set of stabilizers is listed in

Table 3.7. Observe in the table that in the positions of the logical ones seen in Eq. 3.45 we have

either Z or X, while the logical zeros correspond to I. Furthermore, the first three rows in the

table are mirrored by the bottom three rows upon replacing Z by x. Steane’s code is clearly more

e”cient than Shor’s code, because it requires seven - rather than nine - quibits for protecting

a single one. However, the separate treatment of bit-flips and phase-flips is still associated

with some extra redundancy, as it becomes explicit by listing the number of possible erroneous

scenarios. Explicitly, each of the seven qubits might be corrupted in three possible ways by X,

Z and Y errors, which results in 21 possibilites, plus we have an error-free scenario.Therefore

we would require five stabilizers, which would allow us to di!erentiate up to 32 situations. But

given the six stabilizers of Table 3.6 we could potentially distinguish as many as 64 scenarios.

Therefore we surmize that there exists a more e”cient code. Following the same logic, let us

consider a five-qubit code, where again, each qubit may be corrupted in three di!erent ways,

yielding a total of 15 possible cases, plus an error-free scenario. These 16 cases would require

four stabilizers for uniquely and unambiguously distinguishing and eventually correcting all

single-qubit errors. This is why Laflamme’s 1/5-rate code has the fond connotation of being a

’perfect’ code, which will be discussed in the next section.

72 3. From Classical to Quantum Coding

H

H

H

|0〉

|0〉

|0〉

|0〉

|0〉

|0〉

| 〉

Figure 3.7: The encoding circuit V of Steane’s 7-qubit code.

Table 3.7: The stabilizer operators of Steane’s 7-qubit code.

Si Stabilizer Operator

S1 ZZIZZII

S2 ZIZZIZI

S3 IZZZIIZ

S4 XXIXXII

S5 XIXXIXI

S6 IXXXIIX

3.4.4 Laflamme’s 5-Qubit Code - The Perfect Code

Again, Laflamme’s code maps a single logical qubit onto five physical qubits, which is also

referred to as the “perfect code”, because as alluded to in the previous sections, in order to

protect a logical qubit, the lowest number of physical qubits required is five [?, ?]. This 5-qubit

scheme is a non-CSS code, since the stabilizer formalism is designed to handle the Z errors

and X errors simultaneously. There are several existing designs related to the perfect 5-qubit

code [?,?] and in this treatise, we use the PCM formulation given in [?]. Explicitly, its non-CSS

characteristics can be readily observed from the PCM Hperfect, which is specified as follows:

Hperfect =





0 1 1 0 0 1 0 0 1 0

0 0 1 1 0 0 1 0 0 1

0 0 0 1 1 1 0 1 0 0

1 0 0 0 1 0 1 0 1 0





. (3.52)

Hence, the stabilizer operators of the 5-qubit code may be explicitly formulated as in Table 3.8.

In general, the encoded state of a QSC which encodes a single-logical qubit into n physical

3.4.4. Laflamme’s 5-Qubit Code - The Perfect Code 73

Table 3.8: The stabilizer formalism of the perfect 5-qubit code.

Si Stabilizer Operator

S1 XZZXI

S2 IXZZX

S3 XIXZZ

S4 ZXIXZ

qubits can defined as follows [?]:

|0↓L =


Si↘S

1
≃
N


I↓n + Si


|0↓↓N

, (3.53)

|1↓L =


Si↘S

1
≃
N


I↓n + Si


|1↓↓N

, (3.54)

where the factor N is introduced to preserve the unitary constraint. Therefore, based on the

stabilizer operators as well as on Eq. (3.53) and (3.54), the encoded state of Laflamme’s 5-qubit

code can be defined as follows:

|0↓L =
1

≃
N


I↓5 +XZZXI

 
I↓5 +XZZXI

 
I↓5 +XZZXI




I↓5 +XZZXI

 
I↓5 +XZZXI


|0↓↓5

, (3.55)

|1↓L =
1

≃
N


I↓5 +XZZXI

 
I↓5 +XZZXI

 
I↓5 +XZZXI




I↓5 +XZZXI

 
I↓5 +XZZXI


|1↓↓5

. (3.56)

Finally, after a few further steps we arrive at:

|0↓L =
1
4
(|00000↓ ↔ |00011↓+ |00101↓ ↔ |00110↓+ |01001↓+ |01010↓ ↔ |01100↓ ↔ |01111↓

↔ |10001↓+ |10010↓+ |10100↓ ↔ |10111↓ ↔ |11000↓ ↔ |11011↓ ↔ |11101↓ ↔ |11110↓), (3.57)

|1↓L =
1
4
(|11111↓ ↔ |11100↓+ |11010↓ ↔ |11001↓+ |10110↓+ |10101↓ ↔ |10011↓ ↔ |10000↓

↔ |01110↓+ |01101↓+ |01011↓ ↔ |01000↓ ↔ |00111↓ ↔ |00100↓ ↔ |00010↓ ↔ |00001↓). (3.58)

The same method can be utilized for determining the encoded state of a logical qubit for

Shor’s code and Steane’s code. However, both Shor’s code and Steane’s code o!er a more

simplistic approach for determining their corresponding encoded states. The design of an e”cient

encoding circuit V conceived for the 1/5-rate code of Laflamme can be found in [?,?,?].

Based on the aforementioned constructions, we evaluated the performance of the above three

QSCs by simulation in the context of quantum depolarizing channels. The performance of the

9-qubit Shor-code, 7-qubit Steane-code and 5-qubit Laflamme-code is portrayed in Fig. 3.8 in

terms of the qubit error rate (QBER) vs. the depolarizing probability (p). Observed that the

performances of all three QSCs are quite similar, which is not unexpected, because they are all

74 3. From Classical to Quantum Coding

Depolarizing probability (p)
0 0.02 0.04 0.06 0.08 0.1

Q
B
E
R

10−4

10−3

10−2

10−1

100

9-qubit Shor’s code
7-qubit Steane’s code
5-qubit Laflamme’s

Figure 3.8: QBER performance of the QSCs protecting a single qubit, namely Shor’s 9-qubit
code, Steane’s 7-qubit code and the perfect 5-qubit code, recorded for the quantum
depolarizing channel. The similarity of performances is because all of the QSCs rely
on hard-decision syndrome decoding and they all have the same error correction
capabilities.

capable of correcting a single-qubit error.

3.5 Summary and Conclusions

The purpose of this chapter is to provide the similarities between the classical and quantum error

correction codes. More specifically, the QSCs can be viewed as the syndrome-based version of

QECCs, as exemplified by the 1/3-rate quantum repetition code. By using the classical-to-

quantum Pauli isomorphism, we can observe that a QSC can be treated as a syndrome-based

classical error-correction code, whose PCM can be separated into two independent PCMs, one

for dealing with bit-flip (X) errors, which is the PCM Hx, and one for handling the phase-flip

(Z) errors, which is the PCM Hz. Based on how to mitigate the X and the Z errors, a QSC can

be classified either as a CSS code or a non-CSS code. The main di!erence between the two is the

CSS codes handle the X and the Z errors independently, as exemplified by the PCMs of Shor’s

code and Steane’s code, while the non-CSS codes treat them simultaneously, as exemplified by

the PCM of the Laflamme’s code.

We have simulated the QBER performance for Shor’s, Steane’s and Laflamme’s code over

the quantum depolarizing channel. The simulation results show a similar QBER performance for

all of the aforementioned codes. The main reason is all of Shor’s, Steane’s and Laflamme’s code

exhibit the same minimum distance (d = 3), which translates directly to the error correction

capability of the code (t = 1) despite of their di!erences in code type, codeword length and and

quantum coding rate. Therefore, we believe that the trade-o! between conflicting parameters in

QSCs such as minimum distance, quantum coding rate and codeword length is a pivotal subject

3.5. Summary and Conclusions 75

to investigate. This specific line of investigation will be carried out in Chapter 6.

76 3. From Classical to Quantum Coding

Chapter 4
Revisiting Classical Syndrome

Decoding

4.1 Introduction

In Chapters 3 we kept the level of treatment relatively simple for readers who are exposed to

the quantum coding concepts for the first time, including the syndrom decoding basics relying

on the C(7, 4) Hamming code. A rudimentary introduction to quantum stabilizer codes was also

provided.

In Chapters 7 and ??, we then o!ered somewhat deeper insights into the construction of

stabilizer codes from the known classical codes based on the underlying quantum-to-classical

isomorphism. Let us recall that since a Quantum Stabilizer Code (QSC) can be mapped onto

an equivalent classical binary or quaternary Parity Check Matrix (PCM), classical PCM-based

syndrome decoding may be invoked during the quantum decoding process. More explicitly,

the ‘syndrome processing’ block of Figure ?? may be expanded, as shown in Figure 4.1. The

process begins with the computation of the syndrome of the received sequence
ω̂


using the

stabilizer generators, which collapse to a binary 0 or 1 upon measurement. For estimating the

equivalent channel error P̃ (or ˜̂
P in quaternary domain), the binary syndrome sequence s is fed

to a classical PCM-based syndrome decoder, which operates over the equivalent classical PCM

associated with the QSC. Finally, the estimated binary (or quaternary) error is mapped onto

the equivalent Pauli error P̃ using the binary-to-Pauli mapping of Eq. (??) (or quaternary-to-

Pauli mapping of Eq. (??)). The classical syndrome decoder component used in the middle of

Figure 4.1 bears some similarity to that of a conventional classical code, but it also exhibits

some di!erences:

(a) In contrast to the syndrome of a classical code, which is computed as the product of the

77

78 4. Revisiting Classical Syndrome Decoding

Binary−to−PauliSyndrome
Computation

PCM−based

Classical

MappingSyndrome Decoder

| ̂〉 P̃s P̃

Figure 4.1: Syndrome processing block seen in Figure ??.

PCM and the transpose of the channel error vector (HP
T), the syndrome of a quantum

code is computed using the symplectic product of Eq. (??) (or the trace inner product of

Eq. (??)).

(b) The conventional classical decoding aims for finding the most likely error vector, given

the syndrome observed, while quantum decoding aims for finding the most likely error

coset, which takes into account the degenerate nature of quantum codes, as discussed in

Section ??.

In this chapter, we will focus our attention on the classical syndrome decoding techniques

conceived for conventional classical codes transmitted over a classical channel, thereby ignoring

the above-mentioned pair of di!erences. The concepts developed in this chapter together with

those of Chapter ?? will be subsequently used in the later chapters in the context of quantum

codes. We have also conceived a reduced-complexity syndrome-based decoder in this chapter.

Again, in contrast to conventional codeword decoding, which finds the most likely codeword,

having the minimum Hamming distance, syndrome decoding finds the most likely error having

the minimum Hamming weight. The notion of syndrome decoding stems from the Look-Up

Table (LUT) based decoding of linear block codes, whereby the syndrome of the received se-

quence characterizes the errors by harnessing a pre-computed LUT [?]. An LUT-based syndrome

decoder is in essence a minimum-distance decoder, which finds the error vector having the min-

imum Hamming weight. By contrast, the soft-decision Maximum Likelihood (ML) codeword

decoding of a linear block code requires a brute force attempt for computing the conditional

probability for all possible codewords x, given the received sequence y P(x|y) (or the probabil-

ity of all possible errors e given the observed syndrome s for syndrome decoding P(e|s)). To

circumvent this tedious task, Bahl et al. [?] were the first to conceive the syndrome-based1 code

trellis2 for linear block codes. However, they did not provide a detailed construction. This gap

was filled by Wolf in [?], whereby the method of constructing the syndrome-based code trellis

for linear block codes was presented. Wolf [?] also proved that in contrast to a brute force ML

decoding of a linear block code C(n, k) over GF(q), which would require q
k evaluations, a code

trellis requires only q
min{k,n→k} states. The ideas presented in [?, ?] for the trellis-based ML

codeword decoding of linear block codes are readily applicable to the trellis-based ML syndrome

decoding, which relies on the corresponding syndrome-based error trellis. Parallel to these devel-

opments, Schalkwijk and Vinckin [?,?,?] conceived the idea of a syndrome-based error trellis for

1We call this trellis syndrome-based because it is constructed from the PCM of the linear block code,
while the classic trellis of a convolutional code is constructed using the code generators.

2Each path of a code trellis is a valid codeword, while each path of an error trellis is a possible
channel error, which would yield a given syndrome sequence. Therefore, a code trellis is used for
codeword decoding, while an error trellis is used for syndrome decoding.

4.1. Introduction 79

convolutional codes. They exploited the inherent symmetries of the trellis structure for reducing

the complexity of the decoding hardware required for the hard-decision syndrome decoding of

convolutional codes. Later, soft-decision syndrome decoding approaches were presented in [?]

and [?], which were based on the error trellis and code trellis, respectively. This concept was

further extended to the family of high-rate turbo codes in [?].

The error trellis-based syndrome decoding is of particular significance, because the state

probabilities of an error trellis are a function of the channel errors rather than of the coded

sequence. Consequently, at high Signal-to-Noise Ratios (SNRs), the syndrome decoder is more

likely to encounter a zero-state due to the predominant error-free transmissions. This underlying

property of syndrome decoding has been exploited in [?, ?] for developing a Block Syndrome

Decoder (BSD) for convolutional codes, which divides the received sequence into erroneous and

error-free parts based on the syndrome. More specifically, the BSD only decodes the erroneous

blocks, with the initial and final states of the trellis initialized to zero. Therefore, the decoding

complexity is substantially reduced at higher SNRs. It also o!ers a potential for paralleliza-

tion [?]. The concept of BSD was further extended to turbo codes in [?], where a pre-correction

sequence3 was also computed at each iteration to correct the errors. Consequently, the Ham-

ming weight of the syndrome sequence decreases with ongoing iterations. Thus, the decoding

complexity was reduced not only at higher SNRs, but also for the higher-indexed iterations.

Furthermore, a syndrome-based Maximum A-Posteriori (MAP) decoder was proposed in [?] for

designing an adaptive low-complexity decoding approach for turbo equalization. Some other

applications of BSD are dealt with in [?,?,?].

Inspired by the significant decoding complexity reductions reported for BSD, our novel

contribution in this chapter is that we have extended the application of the syndrome-based

MAP decoder of [?] together with the BSD of [?] to Turbo Trellis Coded Modulation (TTCM)

for the sake of reducing its decoding complexity [?]. The resultant scheme is referred to as BSD-

TTCM.We have investigated the performance of our proposed BSD-TTCM for transmission over

the Additive White Gaussian Noise (AWGN) channel as well as over an uncorrelated Rayleigh

fading channel in this chapter.

The rest of this chapter is organized as follows. In Section 4.2, we detail the LUT-based

syndrome decoding method, which forms the basis of the syndrome decoding concept. This is

followed by a discussion on the trellis-based syndrome decoding in Section 4.3. More particularly,

Section 4.3.1 focuses on the construction of the syndrome-based trellis of linear block codes,

while in Section 4.3.2 we extend this syndrome-based trellis formalism to convolutional codes.

Section 4.4 deals with the BSD. More specifically, in Section 4.4.1, we lay out the general BSD

formalism, while our proposed block-based syndrome decoder designed for TTCM is presented

in Section 4.4.2. We then evaluate the performance of our proposed decoder in Section 4.5.

Finally, we summarize the chapter in Section 4.6.

3Pre-correction sequence is an estimated/predicted error sequence, which is used to correct errors in
the received information.

80 4. Revisiting Classical Syndrome Decoding

4.2 Look-Up Table-Based Syndrome Decoding

The PCM-based syndrome decoding technique discussed in Section ?? is in fact the LUT-

based syndrome-based decoder, which is based on Table ??. In this section, we will detail the

construction of the LUT.

The LUT-based syndrome decoding derives its philosophy from the standard array-based

decoding. For a binary linear block code C(n, k), standard array is a 2n→k
⇐ 2k array, which

distributes all the possible 2n n-tuple vectors into 2k disjoint subsets of size 2n→k, such that

each subset contains only one valid codeword. More specifically, a standard array is constructed

as follows:

Let {x1, x2, . . . , x2k
} be the set of valid codewords (n-bit each) of C(n, k). Place all these

2k codewords of C in the first row of the standard array, commencing from the all-zero

codeword.

Select any minimum-weight vector e2 from the pool of 2n n-bit vectors, which is not

contained in the first row. List the coset (e2 + C) in the second row for ensuring that

e2 + xi is in the ith column, where xi is the ith valid codeword.

Select another minimum-weight vector e3 from the remaining pool, i.e. excluding the

vectors contained in the first two rows, and list the coset (e3 + C) in the third row.

Continue the process for all 2n→k cosets.

The resultant standard array may be formulated as:





x1 = 0 x2 . . . xi . . . x
2k

e2 e2 + x2 . . . e2 + xi . . . e2 + x
2k

e3 e3 + x2 . . . e3 + xi . . . e3 + x
2k

...
...

e
2n→k e

2n→k + x2 . . . e
2n→k + xi . . . e

2n→k + x
2k





, (4.1)

where {e1 = 0, e2, . . . , e2n→k} constitutes the set of possible minimum-weight errors, which may

be identified using the code C(n, k). More explicitly, each row of Eq. (4.1) is a unique coset,

whose coset leader is the minimum weight vector given in the first column. We may notice in

Eq. (4.1) that adding (modulo 2) the coset leader to any element of the same coset yields the

corresponding valid codeword. For example, if we add e3 to the second element of the third

coset according to e3 + x2, we get x2. Hence, the coset leader identifies the most likely (having

the minimum Hamming weight) error for its coset.

Since the PCM-based syndrome decoding approach discussed in Section ?? LUT-based syn-

drome decoder, let us construct the associated standard array. Recall from Section ?? that a

3-bit repetition code C(3, 1) has two valid codewords, i.e. x1 = [000] and x2 = [111]. Using

4.3. Trellis-Based Syndrome Decoding 81

Eq. (4.1) and this set of valid codewords, we get the following standard array:





x1 x2

e2 e2 + x2

e3 e3 + x2

e4 e4 + x2





=





000 111

001 110

010 101

100 011





. (4.2)

Let us assume furthermore that the received vector y = [011] lies in the fourth coset. Conse-

quently, the estimated error is [100] and the corresponding estimated codeword is [011]+[100] =

[111], which is the first element of the subset (column) to which y belongs.

Since the standard array is a (2n→k
⇐2k)-element array, it imposes huge storage requirements

for large linear block codes. This may be alleviated by using the LUT-based syndrome decoding.

Let us consider the ith element of the jth coset of the standard array in Eq. (4.1). Its syndrome

may be formulated as:

s = (ej + xi)H
T = ejH

T + xiH
T = ejH

T
. (4.3)

Hence, each coset is identified by a unique syndrome. Consequently, rather than storing all the

2k elements of the coset, we can construct an LUT, which only stores the coset leader and the

corresponding syndrome, i.e. we have:





e1 = 0 0

e2 e2H
T

e3 e3H
T

e4 e4H
T





=





000 00

001 01

010 10

100 11





. (4.4)

This is equivalent to the LUT given in Table ??, which also has 2 columns and 2n→k = 4 rows.

4.3 Trellis-Based Syndrome Decoding

Trellis-based syndrome decoding operates over a syndrome-based error trellis. More specifically,

each path of an error trellis characterizes a unique channel error for a given syndrome. Conse-

quently, the set of paths of the error trellis for a particular syndrome is the same as the coset

of the standard array (Eq. (4.1)) corresponding to that syndrome. When the syndrome is zero,

which is equivalent to the first coset of Eq. (4.1), i.e. to set of all valid codewords, the error

trellis collapses to a code trellis. The trellis-based syndrome decoding therefore invokes either

the classic Viterbi algorithm [?] or the Bahl-Cocke-Jelinek-Raviv (BCJR) decoding (also called

MAP decoding) [?] for estimating the most likely channel error for a given syndrome. In this

context, let us now have a look at the construction of the syndrome-based error trellis for linear

82 4. Revisiting Classical Syndrome Decoding

0 00 00

0 00 0

✓
0
0

◆

✓
1
0

◆

✓
1
1

◆

✓
0
1

◆
1 1

1

1

1

1

0

0

0

0

0

0

1 1

1

1

1

1

1

1

t = 1 t = 2 t = 3 t = 4 t = 5

s0(0) s0(1)

s1(1)

s0(2)

s2(2)

s3(2)

s1(2)

t = 0

Figure 4.2: Syndrome-based trellis for a linear block code C(5, 3) constructed over GF(2).

block codes and convolutional codes in Section 4.3.1 and 4.3.2, respectively. Finally, the MAP

algorithm will be presented later in Section 4.4.2.2.

4.3.1 Linear Block Codes

Consider a linear block code C(n, k) constituted over GF(q) having an (n ↔ k) ⇐ n PCM H,

whose ith column is represented by hi for i = {1, 2, . . . , n}. The syndrome-based trellis of this

code is defined by a set of states interconnected by unidirectional edges, where a state is basically

represented by an (n ↔ k)-bit syndrome. Analogously to a conventional trellis, the edges are

drawn between the trellis-states at depth t and those at depth (t↔ 1), for t = {0, 1, . . . , n}, with

the direction of the edge emerging from the state at depth (t ↔ 1) and arriving at the state at

depth t. At any trellis-depth t, there are at most q
n→k nodes and the lth trellis-state at depth

t is denoted as sl(t). Based on this notation, let us now construct the syndrome-based trellis of

Figure 4.2 for a binary code C(5, 3), whose PCM is given by,

H =




1 1 0 1 0

1 0 1 0 1



 =

(
h1 h2 h3 h4 h5

)
. (4.5)

The trellis of Figure 4.2 can be constructed as follows:

(a) The trellis emerges from the trellis-state (0, 0) at t = 0, i.e. we have s0(0) = (0, 0).

(b) We next determine the set of trellis-states for t = {1, . . . , 5} as follows:

(a) We compute the edges emerging from the trellis-state s0(0) at trellis-depth t = 0 to

the states at depth t = 1 using the relationship:

sl(t) = si(t↔ 1) + εjht, for j = 0, 1, . . . , (q ↔ 1), (4.6)

4.3.1. Linear Block Codes 83

where sl(t) is the lth state at depth t, si(t↔ 1) is the ith state at depth (t↔ 1) and

εj is an element of GF(q). Since we are using a binary code, there are only two

possible values of εj in Eq. (4.6) i.e. ε0 = 0 and ε1 = 1. Substituting these values

of εj into Eq. (4.6) at t = 1 yields:

s0(1) = s0(0) + ε0h1 =




0

0



+ 0.




1

1



 =




0

0



 , (4.7)

s1(1) = s0(0) + ε1h1 =




0

0



+ 1.




1

1



 =




1

1



 . (4.8)

Consequently, the trellis-state s0(0) = (0, 0) at t = 0 is connected to the states

s0(1) = (0, 0) and s1(1) = (1, 1) at t = 1, as seen in the trellis of Figure 4.6. The

corresponding edges are labeled by 0 and 1 for ε0 = 0 and ε1 = 1, respectively.

Eq. (4.7) and Eq. (4.8) may also be computed using an alternate approach. We

know that for a received vector y and the PCM H, the syndrome vector s is given

by,

s = yH
T
. (4.9)

At t = 1, we receive only the first element of y i.e. y = [y10000]
T . Therefore,

Eq. (4.7) and Eq. (4.8) can also be formulated as:

sl(1) =




1 1 0 1 0

1 0 1 0 1



 .





y1

0

0

0

0





where y1 → {ε0,ε1}. (4.10)

(b) The process is similarly repeated for t = 2, where we have:

sl(2) = s0(1) + εjh2

sl(2) = s1(1) + εjh2, (4.11)

for j = {0, 1}. If the alternate approach of Eq. (4.10) is adopted, Eq. (4.11) may be

84 4. Revisiting Classical Syndrome Decoding

0 00 00
✓

0
0

◆

✓
1
0

◆

✓
1
1

◆

✓
0
1

◆
1 1

1

1

1

1

0

0

0

1

1

1

0 0

t = 1 t = 2 t = 3 t = 4 t = 5t = 0

Figure 4.3: Expurgated syndrome-based code trellis for the binary code C(5, 3).

written as:

sl(2) =




1 1 0 1 0

1 0 1 0 1



 .





y1

y2

0

0

0





, where y1, y2 → {ε0,ε1}, (4.12)

since we have two received bits y1 and y2 at t = 2.

(c) This process is repeated until we reach the end of the PCM, i.e t = 5.

(c) Finally, any paths, which do not terminate at the all-zero syndrome, can be removed,

hence resulting in the expurgated code trellis, which is shown in Figure 4.3. Since only

the paths terminating at the all-zero syndrome are considered, these paths correspond

to the valid codewords. For generating the error trellis, we discard all paths, which do

not terminate at the syndrome of the received vector y. Consequently, each path of the

expurgated error trellis defines a possible error sequence. In other words, the error trellis

collapses to a code trellis, when the syndrome observed is zero.

The above-mentioned process for constructing a syndrome-based trellis of a linear block code

may be generalized as follows:

(a) The trellis starts from an all-zero state, i.e. there is a single state at t = 0 denoted by

s0(0), which is equivalent to an all-zero vector of length (n↔ k).

(b) For each t = {1, 2, . . . , n}, the trellis-states at depth t are obtained from the set of states at

depth (t↔ 1) using Eq. (4.6). Edges are drawn between the state si(t↔ 1) at trellis-depth

4.3.2. Convolutional Codes 85

t ↔ 1 and the q states sl(t ↔ 1) at depth t, which are labeled by the corresponding value

of εj .

(c) For a code trellis, the constructed trellis is expurgated by removing those paths, which

do not lead to an all-zero state at depth n. Consequently, each of the q
k paths in the

resultant trellis defines a valid codeword. By contrast, for the error trellis, the constructed

trellis is expurgated by discarding those paths, which do not terminate at the syndrome

observed, i.e. at the syndrome of the received vector y.

4.3.2 Convolutional Codes

The conventional code trellis of a convolutional code is derived from the generator matrix G.

By contrast, an error trellis is constructed using the corresponding PCM, which is known as

the syndrome former H
T for convolutional codes. Let us review the example given in [?] for

illustrating the trellis construction procedure. We use a rate-2/3 convolutional code, whose

generator G(D) is given by:

G(D) =




1 +D D 1 +D

D 1 1



 . (4.13)

The corresponding syndrome former is as follows:

H
T (D) =





1

1 +D
2

1 +D +D
2




. (4.14)

The circuit of G(D) for CC(n, k) is realized in Figure 4.4(a), whereby the input information

sequence ut = (u(1)

t
, . . . , u

(k)

t
) at time instant t is encoded by the generator G(D), yielding the

output code sequence of vt = (v(1)
t

, . . . , v
(n)

t
). Let et = (e(1)

t
, . . . , e

(n)

t
) be the channel error

experienced during transmission. The received sequence yt = (y(1)

t
, . . . , y

(n)

t
) is therefore given

by:

y
j

t
= v

j

t
⇑ e

j

t
. (4.15)

Analogously to the linear block codes, we may define the resultant syndrome sequence s using

the syndrome former HT as follows4:

s = yH
T = (v + e)HT = eH

T
. (4.16)

This realization of the syndrome former is shown in Figure 4.4(b), which employs the error

sequence et = (e(1)
t

, . . . , e
(n)

t
) as its input for computing the corresponding syndrome st at time

instant t using the syndrome former of Eq. (4.14). Consequently, we may construct the trellis for

4Recall from Section ?? that the PCM of a convolutional code is a semi-infinite matrix. The semi-
infinite binary matrix H

T corresponding to H
T (D) of Eq. (4.14) is defined later in Eq. (4.20).

86 4. Revisiting Classical Syndrome Decoding

D

D

u(2)t

v(0)t

v(1)t

u(1)t

v(2)t

(a) Encoder G

D D

e(1)t

e(2)t

e(3)t

st

�(2)
t �(1)

t

(b) Syndrome Former H
T

Figure 4.4: Realization of the encoder and syndrome former given in Eq. (4.13) and Eq. (4.14),
respectively.

(00)

(01)

(10)

(11)

110

011
101

011
101
000

110

100 010
111

011

111
001
100

010

010

111
001

111
001

100
010

000 110
011

101

101
000

110

011

t� 1 t t� 1 t

st = 0 st = 1

et = 000 et = 100

Figure 4.5: Syndrome-based error sub-trellises for HT corresponding to st = 0 and st = 1.

the syndrome former of Figure 4.4(b) as we conventionally do using the encoder G. Furthermore,

since the syndrome st can either have a value of 0 or 1, we divide the resultant trellis into two

sub-trellis modules corresponding to st = 0 and st = 1, as shown in Figure 4.5. Here, the state

at time t is defined as ↼t = (↼(1)

t
↼
(2)

t
) and each branch leading from ↼t→1 to ↼t is labeled with

the error et = (e(1)
t

, e
(2)

t
, e

(3)

t
). Let us assume that the received sequence is:

{yt}
3

t=1 = {011 011 111}. (4.17)

4.3.2. Convolutional Codes 87

(00)

(01)

(10)

(11)

010

111
001

111
001

100
010

000 110
011

101

101
000

110

011

000

111

100

110

011
101

s1 = 0 s2 = 1 s3 = 0

e3 = 011

t = 2t = 0 t = 3y2 = 011 y3 = 111t = 1y1 = 011
e2 = 100e1 = 000

Figure 4.6: Syndrome-based error trellis for H
T corresponding to the received sequence of

Eq. (4.17), which is constructed by concatenating the sub-trellises of Figure 4.5.

Since the received sequence yt and the inflicted channel error et yield the same syndrome ac-

cording to Eq. (4.16), we feed yt into the circuit of Figure 4.4(b) for computing the syndrome.

Consequently, using the syndrome former of Figure 4.4(b), whose registers are initialized to the

zero state, we get {st}
3

t=1 = {0, 1, 0}, while the resultant states are ↼1 = (10), ↼2 = (10) and

↼3 = (10), respectively. The corresponding trellis can be constructed by starting from the state

↼0 = (00) and concatenating the sub-trellises of Figure 4.5 based on the value of st. More

specifically, for the syndrome values of {st}
3

t=1 = {0, 1, 0} , we concatenate the sub-trellis for

st = 0 to that for the state st = 1, followed by another sub-trellis for the st = 0. This yields

the trellis of Figure 4.6 for the received sequence of Eq. (4.17), which is initialized to the state

↼0 = (00) and terminates at ↼3 = (10).

The error trellis of Figure 4.6 is equivalent to the conventional code trellis generated using

the generator G, which is shown in Figure 4.7. Here the state at time t is (u(1)

t
, u

(2)

t
) and each

branch is labeled with the coded bits (v(1)
t

, v
(2)

t
, v

(3)

t
). Furthermore, the trellis emerges from

and it is terminated at the all-zero states5. Each path of Figure 4.6 corresponds to a path of

Figure 4.7 and this correspondence is a one-to-one relationship [?]. Consider an arbitrary path

ẽ = {000 100 011} of Figure 4.6 (marked with a thick line). Since the received sequence is

y = {011 011 111}, the estimated transmitted code sequence ṽ is computed as:

ṽ
(j)

t
= ẽ

(j)

t
⇑ y

(j)

t
. (4.18)

Hence, we have ṽ = {011 111 100}, which is a path of the trellis seen in Figure 4.7 (marked

with a thick line). We may, therefore, conclude that for every error path in the error trellis, there

is a corresponding unique path in the conventional code trellis. Either the Viterbi or the MAP

algorithm can then be used for determining the most likely error ẽ for the received sequence.

The estimated error sequence is then added (bit-wise modulo 2) to the received sequence y as

in Eq. (4.18), yielding the most likely transmitted code sequence ṽ. It is then passed through

5It is assumed that termination bits are used.

88 4. Revisiting Classical Syndrome Decoding

011

101
110

100
111

001
010

111 100
010

001

000011

(00)

(01)

(10)

(11)

011

110

101

110

100

011

111

101

t = 1 t = 2t = 0 t = 3y3 = 111y1 = 011
v2 = 000 v3 = 000v1 = 000

y2 = 011

Figure 4.7: Conventional code trellis, generated using the encoder G of Figure 4.4(a), corre-
sponding to Figure 4.6. Each path of Figure 4.6 can be mapped onto a path of
the code trellis using Eq. (4.18).

the inverse encoder G→1 for estimating the most likely information sequence ũ as follows:

ũ = ṽG
→1

. (4.19)

The syndrome-based error trellis of Figure 4.6 has the same complexity as the conventional

code trellis of Figure 4.7 for soft-decision decoding, which is ∝ nq
k
q
m for CC(n, k,m) and

grows exponentially upon increasing the value of k (increasing the coding rate R). By contrast,

Sidorenko et al. [?] proposed a syndrome-based trellis, which has a lower complexity6 than

the conventional trellis for both hard-decision and soft-decision decoding. This construction

is derived from the Wolf trellis of [?] conceived for linear block codes, which was discussed in

Section 4.3.1. The complexity of the resultant trellis is ∝ nq
min(k,n→k)

q
m, which decreases upon

increasing R for R >
1

2
and it is approximately equivalent to that of the conventional trellis

for R <
1

2
. More explicitly, Sidorenko’s method [?] of constructing the syndrome-based trellis

divides each branch of Figure 4.6 into n stages.

Let us now continue the same example as in Eq. (4.14). Recall from Section ?? that a

convolutional code is equivalent to a semi-infinite linear block code. For the syndrome former

of Eq. (4.14), the associated semi-infinite parity check matrix can be constructed as:

H =





111

001 111

011 001 111

011 001 111

. . .
. . .





, (4.20)

6The complexity of a code trellis is the number of operations (selections and additions) required to
decode a block [?].

4.3.2. Convolutional Codes 89

Pruning

(000)

(001)

(010)

(011)

(101)

(100)

(110)

(111) Subtrellis 1

0

Pruning

1

t = 4t = 2 t = 3t = 0

Figure 4.8: Syndrome-based code trellis for the PCM of Eq. (4.20).

which is composed of the time-shifted versions of the basic PCM Hb given by:

Hb =





111

001

011




. (4.21)

Consequently, we can construct its syndrome-based trellis by interconnecting a series of sub-

trellises formed using the basic PCM Hb, where the number of interconnected sub-trellises is

equal to the length of the received bit stream.

Figure 4.8 shows the first sub-trellis of the syndrome-based code trellis for the PCM H of

Eq. (4.20), which has (23 = 8) states, since the associated Hb has 3 rows (syndromes). The

trellis of Figure 4.8 is constructed as follows:

(a) The trellis emerges from an all-zero state i.e from (0, 0, 0) at t = 0.

(b) The first sub-trellis is constructed using Eq. (4.21). Here each state is labeled by three

syndromes, namely s3s2s1
7, where s1, s2 and s3 correspond to the first, second and third

row of Hb. The states at depth t are obtained from the set of states at depth (t↔1) using

the relationship:

sl(t) = si(t↔ 1) + εjht, for j = 0, 1, . . . , (q ↔ 1). (4.22)

Here, sl(t) is the lth node at depth t, si(t↔ 1) is the ith node at depth (t↔ 1), εj is the

element of Fq and ht is the tth column of Hb. Connecting lines are drawn between the

node si(t↔ 1) and the two nodes at depth t and each line is labeled by the corresponding

7In Section 4.3.1, state was represented by s1s2s3. Both representations are equivalent.

90 4. Revisiting Classical Syndrome Decoding

value of εj . sl(t) from si(t↔ 1). At t = 1, we have:

s0(1) = s0(0) + ε0h1 =





0

0

0




+ 0.





1

0

0




=





0

0

0




, (4.23)

s1(1) = s0(0) + ε1h1 =





0

0

0




+ 1.





1

0

0




=





1

0

0




. (4.24)

Consequently, the state (000) at t = 0 is connected to states (000) and (001) at t = 1 via

bits 0 and 1, respectively. At t = 2, we have:

s0(2) = s0(1) + ε0h2 =





0

0

0




+ 0.





1

0

1




=





0

0

0




, (4.25)

s1(2) = s0(1) + ε1h2 =





0

0

0




+ 1.





1

0

1




=





1

0

1




. (4.26)

s2(2) = s1(1) + ε0h2 =





1

0

0




+ 0.





1

0

1




=





1

0

0




, (4.27)

s3(2) = s1(1) + ε1h2 =





1

0

0




+ 1.





1

0

1




=





0

0

1




. (4.28)

Consequently, the state (000) at t = 1 is connected to states (000) and (101) at t = 2 via

bits 0 and 1, respectively, while the state (001) at t = 1 is connected to states (001) and

(100) at t = 2 via bits 0 and 1, respectively. This process is repeated for t = 3.

(c) Recall that if y is the received bit stream, then the syndrome vector s of a linear block

code is formulated as:

s = yH
T
. (4.29)

Since in Eq. (4.20) only the first three (n = 3) elements of the first row are non-zero, the

first element of s in Eq. (4.29), i.e. s1, is therefore only a!ected by the first three received

4.4. Block Syndrome Decoding 91

bits. Consequently, at t = 3, which marks the end of the first sub-trellis, only those paths

are retained for which the first bit of the syndrome is 0. This implies that the specific

paths terminating at states (000), (010), (100) and (110) are retained, while those ending

at (001), (011), (101) and (111) are discarded. Moreover, since the first element s1 of the

syndrome s (least significant bit of the state) is completely defined at this point, we no

longer have to represent this bit in the trellis. This syndrome bit is discarded, making

room for the fourth syndrome bit, which is set to 0 initially. This process of removing the

least significant bit is referred to as pruning in [?]. Therefore, the trellis states are now

represented by s4s3s2 and the valid states at t = 3, i.e. (000), (010), (100) and (110), are

mapped onto (000), (001), (010) and (011).

(d) Step 2 is repeated in order to construct the second sub-trellis starting from the valid states

obtained after pruning in Step 3. The process of generating the sub-trellis and pruning for

the sake of interconnecting them is repeated until the length of trellis becomes equivalent

to that of the received bit stream.

(e) The resultant trellis represents all the valid codewords. The most likely valid codeword is

determined by finding the specific path having the minimum Hamming distance from the

received sequence.

This approach can also be adapted for reducing the complexity of the syndrome-based error

trellis [?]. For the error trellis, the pruning is carried out on the basis of the syndrome of the

received sequence, rather than the zero syndrome.

4.4 Block Syndrome Decoding

4.4.1 General Formalism

The syndrome associated with a received sequence depends on the specific channel conditions.

More explicitly, the syndrome is a function of the channel error sequence e encountered during

transmission. Consequently, we are more likely to have zero-valued syndromes at higher SNRs,

when the channel error sequence e has longer strings of zeros. If these error-free segments are

successfully detected, then the decoding complexity can be substantially reduced by decoding

only the erroneous portions. More explicitly, the decoder is switched o!, when the transmission

is assumed to be error-free, leading to the Block Syndrom Decoding (BSD) concept of [?, ?].

A critical design parameter for the BSD is the minimum number of consecutive zero syn-

dromes (Lmin) after which the sub-block is deemed to be error-free. This must be long enough to

ensure that the performance of BSD approaches that of a full-complexity decoder. A lower value

of Lmin will result in more error-free blocks, thereby reducing the complexity imposed. However,

this will increase the likelihood of false detection, thereby degrading the BER performance of

the system. On the other hand, a higher value of Lmin will give a better BER performance, but

at the expense of an increased decoding complexity. Hence, the choice of Lmin hast to strike a

trade-o! between the BER performance attained and the complexity imposed. The minimum

number of consecutive zero syndromes Lmin can be further split into the parameters Lo! and

92 4. Revisiting Classical Syndrome Decoding

0 1 0 0 0 0000 0 0 1

Syndrome Sequence Block K Block (K + 1)

� Lmin

Lo↵ Lon

Figure 4.9: Design parameters of BSD [?].

Lon, where we have Lmin =

Lo! + Lon + 1


[?], as shown in Figure 4.9. Here, Lo! denotes

the number of consecutive zero syndromes after which the decoder can be safely switched o!.

Therefore this defines the end of the previous erroneous sub-block. By contrast, Lon denotes the

number of stages before the first non-zero syndrome, when the decoder has to be switched on

again. Therefore, the start of the next erroneous sub-block is defined by Lon. More specifically,

if L0 is the length of the sub-block having at least Lmin consecutive zero syndromes, then the

initial Lo! symbols of this sub-block are appended to the previous erroneous block and the last

Lon symbols are appended to the following erroneous block. Only the remaining (L0↔Lmin+1)

symbols are considered to be error-free. This ensures that the trellis of the erroneous sub-blocks

starts from and terminates at the all-zero state.

4.4.2 Block Syndrome Decoder for TTCM

Turbo Trellis-Coded Modulation (TTCM) [?] constitutes a bandwidth-e”cient near-capacity

joint modulation/coding solution, which relies on the classic turbo coding architecture, but in-

volves the bandwidth-e”cient Trellis-Coded Modulation (TCM) [?] instead of the constituent

convolutional codes. More explicitly, the constituent TCM codes, which can be optimally de-

signed using EXtrinsic Information Transfer (EXIT) charts [?], are concatenated in a parallel

fashion and iterative decoding is invoked at the receiver for exchanging extrinsic information

between the pair of TCM decoders. In order to reduce its decoding complexity, we propose to re-

duce the e!ective number of decoding iterations by appropriately adapting the syndrome-based

block decoding approach of [?, ?] for TTCM.

4.4.2. Block Syndrome Decoder for TTCM 93

Computation
Syndrome

Metric
Channel

Estimation
Error

Syndrome−based
MAP Decoder

Hard
Demapper

De−
Blocking

Blocking

Syndrome−
based

Recovery
Error

Error−free
yt

ỹt

rt

ẽt

st

P o
1 (et)

P (yt|et)

P o
1 (ut)

P a
1 (ut)

P o
2 (ut)

P e
1 (ut)

+

�

Figure 4.10: Schematic of the proposed BSD-TTCM Decoder. Only one constituent decoder
is shown here. Pa

i [.], P
e

i [.] and Po

i [.] are the a-priori, extrinsic and a-posteriori
probabilities related to the ith decoder; et is the channel error on the transmitted
symbol and ut is the information part of the tth channel error et. Babar et
al. [?]

4.4.2.1 System Model

Figure 4.10 shows the schematic of one of the two constituent decoders of the BSD conceived for

TTCM, which we refer to as BSD-TTCM. The received symbol sequence yt is demapped onto the

nearest point xi in the corresponding 2n-ary constellation diagram, yielding the hard-demapped

symbols ỹt, i.e. we have:

ỹt = argmin
i

(yt ↔ htxi), (4.30)

for i → {0, . . . , 2n ↔ 1} and,

yt = htxt + nt. (4.31)

Here, xt is the complex-valued phasor corresponding to the n-bit transmitted codeword ct, which

is obtained using the 2n-PSK bit-to-symbol mapper µ as follows:

xt = µ (ct) , (4.32)

while ht is the uncorrelated Rayleigh-distributed fading amplitude and nt is the noise experi-

enced by the tth symbol.

Recall that in TTCM, the odd and even symbols are punctured for the upper and lower TCM

encoders, respectively [?]. Consequently, the parity bits of the corresponding hard-demapped

punctured symbols are set to zero [?] in the ‘Hard Demapper’ block of Figure 4.10. Then, a

so-called pre-correction sequence ẽt, which is predicted by the error estimation module, is used

for correcting any predicted errors in the hard-demapped output. This sequence is initialized

to zero for the first iteration. The syndrome s is computed for the corrected symbol stream r

using the syndrome former matrix H
T as follows:

s = rH
T
, (4.33)

94 4. Revisiting Classical Syndrome Decoding

where, the jth bit of rt is related to that of ỹt and ẽt, for j → {0, . . . , n↔ 1}, as follows:

r
(j)

t
= ỹ

(j)

t
⇑ ẽ

(j)

t
, (4.34)

with rt =
(
r
(0)

t
, . . . , r

(j)

t
, . . . , r

(n→1)

n

)
, ỹt =

(
ỹ
(0)

t
, . . . , ỹ

(j)

t
, . . . , ỹ

(n→1)

t

)
, and ẽt =

(
ẽ
(0)

t
, . . . , ẽ

(j)

t
, . . . , ẽ

(n→1)

t

)
.

Then the syndrome is analyzed for the sake of dividing the received block into error-free

and erroneous sub-blocks. The error-free sub-blocks are then subjected to a hard-decision and

only the erroneous sub-blocks are passed to the MAP decoder. Like in the conventional TTCM

decoder, both constituent decoders have a similar structure and iterative decoding is invoked

for exchanging extrinsic information between the two.

4.4.2.2 Syndrome-Based MAP Decoder

We have invoked the syndrome-based MAP decoder of [?] in the BSD-TTCM of Figure 4.10.

In contrast to the conventional MAP decoder, which operates on the basis of the code trellis,

its syndrome-based MAP counterpart relies on the error trellis constructed using the syndrome

former H
T [?, ?]. More explicitly, each trellis path of a code trellis represents a legitimate

codeword. By contrast, each path of an error trellis specifies the hypothetical error sequence

causing a departure from a specific legitimate code trellis path. Furthermore, both trellises have

the same complexity and every error path in the error trellis uniquely corresponds to a codeword

path in the code trellis [?]. The classic MAP algorithm [?] computes the A-Posteriori Probability

(APP) Po(ut) for every M -ary transmitted information symbol ut given by Po(ut) = P(ut =

m|yt) for m → {0, 1, . . . ,M↔1}, where M = 2n→1, (n↔1) is the number of bits in an information

symbol and R = n→1

n
is the coding rate. However, the syndrome-based MAP computes the APP

for every M -ary channel error experienced by the information symbol. In other words, ut is the

transmitted information symbol in the code trellis, whereas, in the error trellis, ut denotes the

M -ary channel error experienced by the information symbol. Therefore, the channel information

P(yt|xt) related to the transmitted codeword xt, is modified to P(yt|et) for the channel error et,

which is formulated as:

P(yt|et) =
1

2↽↼2
. e

→ |yt→htx̃t|2

2ω2 , (4.35)

where ↼
2 is the noise variance per dimension and x̃t is given by:

x̃t = µ (c̃t) , (4.36)

for,

c̃
(j)

t
= ỹ

(j)

t
⇑ e

(j)

t
. (4.37)

Here, we have c̃t =
(
c̃
(0)

t
, . . . , c̃

(j)

t
, . . . , c̃

(n)

t

)
and et =

(
e
(0)

t
, . . . , e

(j)

t
, . . . , e

(n)

t

)
. The APP of ut

can be calculated in terms of the forward-backward recursive coe”cients εt and ϱt as follows:

Po(ut) =
∑

(ϖ̂ ,ϖ)≃
ut=m

φt(⇀̂ , ⇀) . εt→1(⇀̂) . ϱt(⇀), (4.38)

4.4.2. Block Syndrome Decoder for TTCM 95

where the summation implies adding all the probabilities associated with those transitions (from

state ⇀̂ to ⇀) of the error trellis for which ut = m. Furthermore, we have:

φt(⇀̂ , ⇀) = Pa(ut) . P(yt|et),

εt(⇀) =
∑

all ϖ̂

φt(⇀̂ , ⇀) . εt→1(⇀̂),

ϱt→1(⇀̂) =
∑

all ϖ

φt(⇀̂ , ⇀) . ϱt(⇀), (4.39)

where Pa(ut) is the a-priori probability of the information part of the error et, i.e. ut. At the

first iteration, no a-priori information is available; hence, it is initialized to be equiprobable, i.e.

Pa(ut) = 1/M .

4.4.2.3 Error Estimation

Similar to the bit-wise pre-correction sequence proposed in [?] for turbo codes, we make an

estimate of the 2n-ary symbol error in each iteration to ensure that the Hamming weight of

the syndrome decreases throughout the ongoing iterations. While the extrinsic information was

used in [?] for the estimating the pre-correction sequence, we have improved the estimation by

using the APP instead of the extrinsic information. This proceeds as follows:

The information part of the pre-correction sequence ẽt is set to the hard decision of the

APP of the information symbol (Po(ut)) computed by the other decoder.

The parity part of ẽt is set to the hard decision value of the APP of the codeword (Po(et))

gleaned from the previous iteration of the same decoder, which yields the same information

symbol as that computed in the first step.

Figure 4.11 verifies the accuracy of our pre-correction sequence. Here the average number of

di!erences ⇁e between the actual and estimated error is plotted against the number of itera-

tions at an SNR per bit of Eb/N0 = 3.8 dB, for 1000 frames of 12 000 TTCM-8PSK symbols

transmitted over an AWGN channel. Both constituent decoders are characterized separately,

which are referred to as Dec 1 and Dec 2 in Figure 4.11. Observe that the di!erences decrease

at each successive iteration, eventually approaching zero at the 6th iteration. Furthermore, the

Hamming weight wh of the syndrome closely follows the same trend.

4.4.2.4 Syndrome-Based Blocking

The Hamming weight of the syndrome sequence of Eq. (4.33) tends to decrease upon increasing

the SNR, since only a few errors are encountered. It also decreases with each successive iteration.

This is because the errors are estimated at each iteration and the corresponding correction is

applied to the received symbols. In other words, upon increasing either the number of iterations

or the SNR, the syndrome tends to exhibit longer sequences of zeros, which indicates near-error-

free transmission. This fact can be exploited to partition the received blocks into error-free

and error-infested segments, as proposed in [?, ?]. This is achieved by heuristically choosing

96 4. Revisiting Classical Syndrome Decoding

ttcm6382.gle

0

1000

2000

3000

4000

5000

6000

7000

e
o
r

w
h

0 1 2 3 4 5 6 7

Iteration No.

e - Dec 1

e - Dec 2
wh - Dec 1
wh - Dec 2

Figure 4.11: Variation in the number of di!erences (⇁e) between the actual and estimated
error and Hamming weight (wh) of the syndrome with increasing iterations at
Eb/N0 = 3.8 dB. Babar et al. [?]

a design parameter, Lmin = (Lstart + Lend + 1), which is the minimum number of consecutive

zero syndromes after which the sub-block may be deemed error-free. Furthermore, Lstart and

Lend define the start and end of the next and previous sub-blocks, respectively. If L0 is the

length of the sub-block having at least Lmin consecutive zero syndromes, then the initial Lend =

(Lmin ↔ 1)/2 symbols of this sub-block are appended to the previous erroneous block and the

last Lstart = (Lmin↔1)/2 symbols are appended to the following erroneous block [?,?]. Only the

remaining (L0 ↔Lmin +1) symbols are considered error-free. This ensures that the trellis of the

erroneous sub-blocks starts from and terminates at the zero state. The hypothetical error-free

blocks do not undergo further decoding and the corresponding APPs of the error-free trellis

segment are set to 1. On the other hand, the erroneous blocks are fed to a MAP decoder with

the initial and final states of the decoding trellis set to zero.

Please bear in mind in this context that the design parameter Lmin must be chosen by striking

a trade-o! between the BER performance attained and the complexity imposed. A lower value

of Lmin will result in more error-free blocks, thereby reducing the complexity imposed. However,

it will degrade the BER performance of the system. On the other hand, a higher value of Lmin

will give a better BER performance, albeit at the expense of an increased decoding complexity.

4.5. Results and Discussions 97

Coding Rate 2/3

Modulation PSK

Interleaver length 12, 000

Iterations 6

Table 4.1: TTCM parameters.

SNR Range Lmin

Eb/N0 ′ 3.5 dB 51

3.5 < Eb/N0 ′ 3.6 dB 111

3.6 < Eb/N0 ′ 3.7 dB 401

3.7 < Eb/N0 ′ 3.8 dB 3001

3.8 < Eb/N0 ′ 3.9 dB 5001

Table 4.2: Optimum Lmin for the TTCM of Table 4.1 operating over an AWGN channel.
Babar et al. [?]

4.5 Results and Discussions

4.5.1 Performance of BSD-TTCM over AWGN Channel

In order to quantify the decoding complexity reduction achieved by the BSD-TTCM scheme,

we have analyzed the performance of TTCM in the context of an AWGN channel using the

parameters of Table 4.1. Furthermore, we have heuristically optimized the design parameter

Lmin while ensuring that the BSD-TTCM attains a similar BER to the conventional TTCM

decoder. Since the Hamming weight of the syndrome decreases with the SNR, the optimum

Lmin has to increase with the SNR to ensure that the performance is not compromised. We

have particularly focused our attention on the high-SNR region (i.e. Eb/N0 ∞ 3.5) and the Lmin

value was appropriately optimized for every 0.1 dB increment in Eb/N0, as listed in Table 4.2. It

must be mentioned here that the optimum Lmin for a particular value of Eb/N0 depends on the

code parameters of Table 4.1 as well as on the channel type. The BER performance of our BSD-

TTCM based on the design parameter Lmin of Table 4.2 is compared to that of the conventional

TTCM decoder in Figure 4.12. Both decoding schemes exhibit a similar performance. The

corresponding reduction in the decoding complexity is quantified in Figure 4.13 and Figure 4.14

in terms of:

Percentage of No-Decoding: This quantifies the total number of symbols in the error-

free sub-blocks as a percentage of the frame length (i.e. 12000).

Equivalent number of iterations: Each iteration is weighted by the percentage of the

symbols that had to be decoded, which quantified the equivalent (or e!ective) number of

98 4. Revisiting Classical Syndrome Decoding

iterations.

Observe in Figure 4.13 that as Eb/N0 is increased from 3.0 dB to 3.5 dB for Lmin = 51, the

percentage of non-decoded symbols increases for each iteration, reaching a maximum of 45% for

the 6th iteration at 3.5 dB. When we further increase Lmin to 111 at 3.6 dB, the percentage

of non-decoded symbols in iterations 2 to 5 decreases, while that in the 6th increases. This is

because at this point there are two counter-acting forces:

(a) An increased Lmin would reduce the number of error-free blocks.

(b) An increased Eb/N0 would decrease the Hamming weight of the syndrome sequence and,

therefore, increase the number of error-free blocks.

A similar trend is observed, when Eb/N0 is increased further. Explicitly, at high SNRs, at least

a 20% complexity reduction is achieved for the 5th iteration and 45% for the 6th iteration.

Figure 4.14 quantifies the decoding complexity in terms of the equivalent number of decoding

iterations. We may observe in Figure 4.14 that increasing the Eb/N0 from 3.0 dB to 3.5 dB

for Lmin = 51, reduces the number of e!ective iterations to a minimum of 4.8 at 3.5 dB. This

is equivalent to a (100 ⇐ (6 ↔ 4.8)/6) = 20% reduction in the number of decoding iterations.

Then, when Lmin is increased to 111 at 3.6 dB, the number of equivalent iterations increases

to 5. This corresponds to a reduction of (100 ⇐ (6 ↔ 5)/6) ⇓ 17% compared to the maximum

of 6 iterations and it is therefore still significant. On average our proposed scheme reduces

the e!ective number of iterations by at least one, i.e. by 17%, for high SNRs. We have also

benchmarked the performance of our proposed BSD-TTCM decoder against the conventional

hard-decision aided high-SNR Early Termination (ET) criterion of [?] in Figure 4.14. The

scheme considered outperforms ET by at high SNRs. The complexity may be further reduced by

increasing Lmin. However, as discussed before, this will incur a BER performance degradation.

4.5.2 Performance of BSD-TTCM over Uncorrelated Rayleigh

Fading Channel

We have further investigated the performance of BSD-TTCM in the event of uncorrelated

Rayleigh fading channel for the code parameters of Table 4.1. The corresponding optimum

design parameter Lmin for increasing the SNR in the high-SNR region (i.e. for Eb/N0 ∞ 6.2) are

listed in Table 4.3. Figure 4.15 compares the resultant BER performance of the proposed BSD-

TTCM to that of the conventional TTCM. As seen from Figure 4.15, syndrome-based blocking

does not incur any significant BER degradation and that both decoding schemes exhibit a simi-

lar BER performance. The corresponding reduction in the decoding complexity is quantified in

Figure 4.16 and Figure 4.17 in terms of the ‘percentage of no-decoding’ and ‘equivalent number

of iterations’, respectively.

In Figure 4.16, as Eb/N0 is increased from 5.0 dB to 6.2 dB for Lmin = 61, the percentage

of non-decoded symbols for each iteration increases, reaching about 30% for the 6th iteration

at 6.2 dB. As Eb/N0 is increased further, the percentage of non-decoded symbols decreases

4.5.2. Performance of BSD-TTCM over Uncorrelated Rayleigh Fading
Channel 99

ttcm6-syn4-ber14.gle

10
-6

2

5

10
-5

2

5

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

B
E

R

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

Eb/N0 (dB)

BSD-TTCM
TTCM

Lmin = 51 111 401 3001 5001

Figure 4.12: Comparison of the BER performance curve of BSD-TTCM with the conventional
TTCM decoding over an AWGN channel. The corresponding TTCM parameters
are summarized in Table 4.1, while the optimized Lmin are listed in Table 4.2.

Babar et al. [?]

ttcm6-syn4-dec23-ETa.gle

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

o
f

N
o

-D
e

co
d

in
g

(%
)

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

Eb/N0 (dB)

Iter 2
Iter 3
Iter 4
Iter 5
Iter 6

Lmin = 51 111 401 3001 5001

Figure 4.13: Reduction in decoding complexity of the BSD-TTCM of Figure 4.12, quantified
in terms of the ‘percentage of no-decoding’. Babar et al. [?]

100 4. Revisiting Classical Syndrome Decoding

ttcm6-syn4-dec23-ETb.gle

0

1

2

3

4

5

6

E
q

u
iv

a
le

n
t

n
o
.o

f
It

e
ra

tio
n

s

3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9

Eb/N0 (dB)

.
.

.

.

.

.

. . .

.

.
.

.

.

. BSD-TTCM

. ET

Lmin = 51 111 401 3001 5001

Figure 4.14: Reduction in decoding complexity of the BSD-TTCM of Figure 4.12, quantified
in terms of the ‘equivalent number of iterations’. Babar et al. [?]

SNR Range Lmin

Eb/N0 ′ 6.2 dB 61

6.2 < Eb/N0 ′ 6.6 dB 101

6.6 < Eb/N0 ′ 7.0 dB 301

7.0 < Eb/N0 ′ 7.4 dB 1201

7.4 < Eb/N0 ′ 7.8 dB 4001

Table 4.3: Optimum Lmin for the TTCM of Table 4.1 operating over an uncorrelated Rayleigh
fading channel.

during the iterations spanning from 2 to 4, while it increases during the iterations 5 and 6. This

behaviour is similar to that observed in Figure 4.13. We may also notice in Figure 4.16 that in

the high-SNR region at least a 20% complexity reduction is achieved for the 5th iteration and

30% for the 6th. By contrast, at least 20% and 45% complexity reduction was achieved for the

5th and the 6th iteration for transmission in the context of an AWGN channel in Figure 4.13.

Figure 4.17 plots the corresponding decoding complexity in terms of the e!ective number of

iterations. Increasing Eb/N0 from 5.0 dB to 6.2 dB for Lmin = 61 reduces the number of e!ective

iterations to a minimum of 5.27 at 6.2 dB. This is equivalent to a (100 ⇐ (6 ↔ 5.27)/6) ⇓ 12%

reduction in the number of decoding iterations. Thereafter the number of e!ective iterations

more or less remains the same. Hence, BSD-TTCM yields a decoding complexity reduction of

around 12% in the high-SNR region, when operating in uncorrelated Rayleigh fading channels,

which is slightly less than the 17% reduction observed for the AWGN channel in Figure 4.13.

Based on these results, it is reasonable to conclude that the decoding complexity of BSD-TTCM

is only slightly higher in an uncorrelated Rayleigh fading channel than in an AWGN channel,

4.5.2. Performance of BSD-TTCM over Uncorrelated Rayleigh Fading
Channel 101

ttcm6-syn4-RC-ber2.gle

10
-5

2

5

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

B
E

R

5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Eb/N0 (dB)

BSD-TTCM
TTCM

Lmin = 61 101 301 1201 4001

Figure 4.15: Comparison of the BER performance curve of BSD-TTCM with the conventional
TTCM decoding over an uncorrelated Rayleigh fading channel. The correspond-
ing TTCM parameters are summarized in Table 4.1, while the optimized Lmin

are listed in Table 4.3.

ttcm6-syn4-RC-ET2a.gle

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

o
f

N
o

-D
e

co
d

in
g

(%
)

5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Eb/N0 (dB)

Iter 2
Iter 3
Iter 4
Iter 5
Iter 6

Lmin = 61 101 301 1201 4001

Figure 4.16: Reduction in decoding complexity of the BSD-TTCM of Figure 4.15, quantified
in terms of the ‘percentage of no-decoding’.

but the attainable complexity savings are still quite significant. In Figure 4.17, we have also

benchmarked the performance of our proposed BSD-TTCM decoder against the conventional

hard-decision aided ET criterion of [?]. We may observe in Figure 4.17 that BSD-TTCM out-

performs ET for all SNRs.

102 4. Revisiting Classical Syndrome Decoding

ttcm6-syn4-RC-ET2b.gle

0

1

2

3

4

5

6

E
q

u
iv

a
le

n
t

n
o
.o

f
It

e
ra

tio
n

s

5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Eb/N0 (dB)

.
.

.

.
. .

.

.

.

.

. BSD-TTCM

. ET

Lmin = 61 101 301 1201 4001

Figure 4.17: Reduction in decoding complexity of the BSD-TTCM of Figure 4.15, quantified
in terms of the ‘equivalent number of iterations’.

SNR Range Lmin

Eb/N0 ′ 6.6 dB 61

6.6 < Eb/N0 ′ 7.0 dB 201

7.0 < Eb/N0 ′ 7.4 dB 281

7.4 < Eb/N0 ′ 7.8 dB 321

Table 4.4: Optimum Lmin for varying Eb/N0 over uncorrelated Rayleigh fading channel using
a frame of 500 symbols. Other TTCM parameters are same as that of Table 4.1.

4.5.3 E!ect of Frame Length on the Performance of BSD-TTCM

The high-SNR ET scheme, which we have used in Section 4.5.1 and 4.5.2 as a benchmarker,

o!ers higher reductions in the decoding complexity when shorter frames are used. Intuitively,

shorter frames also improve the e!ective decoding complexity reduction of the BSD approach.

Hence, BSD-TTCM is likely to outperform ET even for short frames. For the sake of sub-

stantiating this hypothesis, we have analyzed the performance of the 8-state TTCM relying on

8PSK transmissions over an uncorrelated Rayleigh fading channel using a frame length of 500

TTCM-8PSK symbols and 6 iterations. The corresponding SNR-based Lmin values are listed in

Table 4.4.

The design parameter Lmin of Table 4.4 is heuristically optimized for a particular Eb/N0

range, while ensuring that the BER performance curve of the resultant BSD-TTCM scheme

is the same as that of the conventional TTCM, which is demonstrated in Figure 4.18. The

corresponding decoding complexity is analyzed in Figure 4.19 and Figure 4.20. Reducing the

frame length from 12, 000 to 500 symbols increases the percentage of non-decoded symbols at

each iteration, as we can observe by comparing Figure 4.19 with Figure 4.13. Consequently,

4.6. Summary and Conclusions 103

ttcm6-syn4-RC-ber1-500.gle

10
-5

2

5

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

B
E

R

5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Eb/N0 (dB)

BSD-TTCM
TTCM

Lmin = 61 201 281 321

Figure 4.18: Comparison of the BER performance curve of BSD-TTCM with the conventional
TTCM decoding over an uncorrelated Rayleigh fading channel using the TTCM
parameters of Table 4.1 but with a reduced frame length of 500. The correspond-
ing optimized Lmin are listed in Table 4.3.

ttcm6-syn4-RC-ET1-500a.gle

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

o
f

N
o

-D
e

co
d

in
g

(%
)

5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Eb/N0 (dB)

Iter 2
Iter 3
Iter 4
Iter 5
Iter 6

Lmin = 61 201 281 321

Figure 4.19: Reduction in decoding complexity of the BSD-TTCM of Figure 4.18, quantified
in terms of the ‘percentage of no-decoding’.

BSD-TTCM still out performs the ET technique, as shown in Figure 4.20.

4.6 Summary and Conclusions

Since quantum codes invoke the classical syndrome decoding based approach, as illustrated in

Figure 4.1, in this chapter we discussed these decoding techniques operating in a classical chan-

104 4. Revisiting Classical Syndrome Decoding

ttcm6-syn4-RC-ET1-500b.gle

0

1

2

3

4

5

6

E
q

u
iv

a
le

n
t

n
o
.o

f
It

e
ra

tio
n

s

5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Eb/N0 (dB)

.
.

.

.

.

.

.

.

. . .
.

.

.

.

.

. BSD-TTCM

. ET

Lmin = 61 201 281 321

Figure 4.20: Reduction in decoding complexity of the BSD-TTCM of Figure 4.18, quantified
in terms of the ‘equivalent number of iterations’.

nel. In contrast to the widely used codeword based decoding, which aims for identifying the

most likely codeword, syndrome decoding characterizes the most likely channel error sequence.

In this context, we commenced our discussions with the LUT-based syndrome decoding in Sec-

tion 4.2, detailing the motivation behind the LUT-based syndrome decoding approach invoked

for classical linear block codes. More specifically, it was demonstrated with the aid of a design

example that the standard array-based codeword decoding imposes high storage requirements

on long block codes. Fortunately, the same task may be achieved with the aid of an LUT-based

decoder, which only requires a memory of size 2n→k
⇐ 2, as depicted in Eq. (4.2), while the

corresponding standard array of Eq. (4.1) has a size of 2n→k
⇐ 2k. We then proceeded with the

construction of the error trellis of linear block codes and of convolutional codes in Sections 4.3.1

and 4.3.2, respectively. It was shown in Figure 4.6 and Figure 4.7 that the conventional code

trellis and the syndrome-based error trellis are equivalent. More explicitly, each path of a code

trellis corresponds to a legitimate codeword, while each path of an error trellis is a legitimate

error sequence for a given syndrome. When the syndrome is zero, the error trellis collapses to

a code trellis. Finally, in Section 4.4, we detailed the reduced-complexity BSD approach. In

particular, we conceived a syndrome-based block decoding approach for TTCM in Section 4.4.2.

The proposed BSD-TTCM only decodes the blocks deemed to be erroneous, which are identified

using the syndrome sequence, hence reducing the asscoiated decoding complexity. Furthermore,

a pre-correction sequence is estimated at each iteration for reducing the decoding complexity of

the forthcoming iterations. Finally, we evaluated the performance of our proposed BSD-TTCM

for transmission over both an AWGN channel as well as an uncorrelated Rayleigh fading channel

in Section 4.5.

In Section 4.5.1, we compared the BER performance of the proposed BSD-TTCM to that

of the classic full-complexity TTCM decoder for transmission over an AWGN channel. It was

demonstrated in Figure 4.12 that the design parameter Lmin may be heuristically optimized

upon increasing the SNR values for the sake of achieving the same BER performance as that of

4.6. Summary and Conclusions 105

SNR No-Decoding Reduction w.r.t. Reference

Channel Range I = 5 I = 6 Iavg Early
Termination

Figures

AWGN ↔ 3.5 ↔ 20% ↔ 45% ↗ 5 ↔ 0.5 iteration Figure 4.13 and
Figure 4.14

Rayleigh ↔ 6.2 ↔ 20% ↔ 30% ↗ 5.3 ↔ 0.5 iteration Figure 4.16 and
Figure 4.17

Table 4.5: Summary of the achieved decoding complexity reduction, when BSD-TTCM is in-
voked using the simulation parameters of Table 4.1. Decoding complexity is quan-
tified in terms of the percentage of no-decoding as well as the equivalent number
of iterations Iavg. Complexity reduction is also compared with the high-SNR early
termination technique.

a classic TTCM decoder. We further quantified the complexity reductions attained in terms of

the percentage of non-decoded blocks at each iteration index as well as the number of e!ective

decoding iterations in Figure 4.13 and Figure 4.14, respectively. Quantitatively, we demonstrated

in Figure 4.13 that a decoding complexity reduction of at least 17% is attained at high SNRs

in terms of the e!ective number of iterations, with at least 20% and 45% reduction in the 5th

and 6th iterations, respectively, for transmission over an AWGN channel. It was also shown

in Figure 4.14 that reduced-complexity technique advocated outperforms the ET scheme at all

SNRs. These results are summarized in Table 4.58.

We further extended our analysis to the performance of BSD-TTCM over an uncorrelated

Rayleigh fading channel in Section 4.5.2. Analogously to the AWGN channel, the design pa-

rameter Lmin was optimized upon increasing SNR, so that the BSD-TTCM exhibits the same

performance as that of a classic decoder, as evidenced in Figure 4.15. It was observed in Fig-

ure 4.16 and Figure 4.17 and that the BSD approach o!ers a slightly less reduction in complexity

for transmission over the uncorrelated Rayleigh fading channel than that o!ered over the AWGN

channel. More specifically, the decoding complexity reduction for transmission over a Rayleigh

fading channel in Figure 4.16 was found to be about 12% in the high-SNR region, with at

least 20% and 30% reduction in the 5th and 6th iterations, respectively. In Section 4.5.3, we

furthermore evaluated the performance of our BSD-TTCM scheme for a short frame length of

500 symbols. It was observed in Figure 4.20 that BSD-TTCM outperforms the popular ET

technique, regardless of the frame length. These results are also tabulated in Table 4.5.

The classical-quantum communication system, which we conceived in Chapter 5, supports

only the transmission of classical information. By contrast, quantum communication systems

may transmit classical as well as quantum information. This in turn requires e”cient Quantum

Error Correction Codes (QECCs). QECCs are also vital for reliable quantum computation. In

the next chapter, we will proceed with the design of QECCs, which is based on the classical

to quantum isomorphism of Chapter ?? and on the classical syndrome decoding approach of

Chapter 4.

8‘With respect to’ is abbreviated as ‘w.r.t.’ in Table 4.5.

106 4. Revisiting Classical Syndrome Decoding

Chapter 5
Near-Capacity Codes for

Entanglement-Aided Classical

Communication

5.1 Introduction

Throughout the previous three chapters we have laid the foundations for the more deep-routed discussions of

this chapter inserted here for providing a more fast-paced portrayal of near-capacity code design principles in the

classical domain first. In Section 5.5 we will highlight the classical capacity improvements that may be attained

with the aid of entanglement and discuss the maximum code-rate capable of achieving an infinitesimally low

BER at a given depolarizing probability. Then in Section 5.5 we will delve into sophisticated EXIT-chart-

based near-capacity designs relying on so-called irregular convolutional codes and concatenated unity-rate

codes iteratively exchanging extrinsic information. These powerful design tools will be heavily relied upon in

the sophisticated frontier-research of Paft III of the book, but they are first introduced from a classical-domain

perspective.

Quantum-domain communication constitutes an attractive solution for absolute secure transmission [?].

More explicitly, any ‘measurement’ or ‘observation’ of the transmitted qubits by the eavesdropper perturbs the

associated quantum superposition, hence intimating the parties concerned [?]. In this context, entanglement-

assisted transmission of classical information over quantum channels is of particular significance. This idea

was conceived by Bennett [?] in his widely-cited 2-qubit SuperDense (2SD) coding protocol, which transmits

2 classical bits per channel use (cbits/use) over a noiseless quantum channel with the aid of a pre-shared

maximally entangled qubit. The corresponding Entanglement-Assisted Classical Capacity (EACC) of the so-

called quantum depolarizing channel was quantified in [?,?].

Analogous to Shannon’s well-known capacity theorem conceived for classical channels, the EACC quan-

tifies the capacity limit of reliable transmission of classical information over a noisy quantum channel, when

an unlimited amount of noiseless entanglement is shared between the transmitter and the receiver. The cor-

responding ‘classical-quantum-classical’ conversion based transmission model, whereby classical information

107

1085. Near-Capacity Codes for Entanglement-Aided Classical Communication

Bob

Alice

x

| x〉A
′B

N

| x〉AB

A

A′

B′

B

| y〉B
′B

E

D
y

Figure 5.1: Classical-quantum-classical transmission model employing 2-qubit SD. Babar et
al. [?, ?]

is transmitted over a quantum channel with the aid of the SuperDense (SD) coding protocol, is depicted in

Figure 5.1. Here, Alice intends to transmit her 2-bit classical message x to Bob using a 2-qubit maximally

entangled state |ωx→AB , where A denotes the information qubit, while B is a pre-shared entangled qubit trans-

mitted over a noiseless channel. More specifically, the pre-shared qubit B is transmitted to the receiver before

the actual transmission commences, for example it can be shared during the o!-peak hours, when the channel is

under-utilized. The classical message x is encoded by the block E of Figure 5.1 into the corresponding quantum

state using the 2SD coding protocol of [?]. The processed qubit A
↑ is passed through a quantum depolarizing

channel, which is denoted as NA
↑↓B

↑
. At the block D of Figure 5.1 Bob’s receiver performs symbol-by-symbol

Bell-basis measurement1 [?,?] on the received state |ωy→B
↑
B , yielding the 2-bit classical message y. This trans-

mission model was extended to a distributed network in [?], whereby the 2SD scheme of [?] was generalized

to an N-particle system with the aid of an N-qubit entangled state. The resultant protocol facilitates for the

receiver to detect messages from (N ↑ 1) users with the aid of a single N-qubit entangled quantum state as

well as a single joint quantum measurement, albeit this is achieved at the cost of a reduced EACC.

Recently, Chiuri et al. [?] experimentally determined the achievable EACC of a quantum depolarizing chan-

nel, which paves the way for the practical implementation of future quantum-based communication systems.

However, reliable transmission is impossible without e”cient error correction codes.

Inspired by the near-capacity performance of concatenated classical code designs, in this chapter we design

both bit-based as well as symbol-based concatenated classical-quantum code structures with the aid of EXtrinsic

Information Transfer (EXIT) charts for the sake of achieving a performance close to the EACC of the quantum

depolarizing channel. More explicitly, our novel contributions are as follows [?, ?]:

We have conceived an SD-based near-capacity design for entanglement-assisted classical communication

over a quantum depolarizing channel. Our design, referred to as an IRCC-URC-2SD arrangement,

incorporates a classical Irregular Convolutional Code (IRCC) and a Unity Rate Code (URC). We have

also introduced a soft-decision aided SD decoder for facilitating iterative decoding.

Our IRCC-URC-2SD design is bit-based, thereby incurring an capacity loss due to symbol-to-bit con-

version. To circumvent this capacity loss, we have proposed an alternative iterative code design referred

to as a symbol-based CC-URC-2SD. Our symbol-based design incorporates a single Convolutional Code

(CC) as the outer component, while the URC and 2SD schemes constitute the amalgamated symbol-

based inner code.

Again, the rest of the chapter is laid out as follows. We review the SD coding protocol in Section 5.2, while

the EACC of N-qubit SD schemes is investigated in Section 5.3. The bit-based system model and our near-

capacity design are detailed in Sections 5.4 and 5.5, respectively, while the corresponding simulation results

are discussed in Section 5.6. Next we have detailed our symbol-based scheme in Section 5.7 and the associated

results are discussed in Section 5.8. Finally, our conclusions are o!ered in Section 5.9.

1Bell-basis measurement is a joint measurement on a 2-qubit composite system for the sake of de-
tecting the orthonormal Bell states.

5.2. Review of the Superdense Coding Protocol 109

B

EPR Generation

Alice

H A

x1 x2

Quantum

Classical

|0→

|0→

| x→AB

A′

| x→A
′B

Bob

M
x1

x2

H

10 → Z 11 → XZ

01 → X00 → I

Figure 5.2: The quantum circuit of 2-qubit superdense coding. Alice generates the Einstein-
Podolsky-Rosen (EPR) pair |ωx↓

AB using a H gate and CNOT gate, respectively.
Qubit A is used for encoding the 2-bit message, while the qubit B is pre-shared

with Bob. Bob performs Bell-basis measurement on the received state |ωx↓
A

↑
B ,

yielding the original classical message.

5.2 Review of the Superdense Coding Protocol

5.2.1 2-Qubit Superdense Coding

The 2SD protocol [?] invokes the peculiar law of quantum entanglement for transmitting two classical bits

using a single qubit. Figure 5.2 shows the quantum circuit of 2SD [?]. Here, Alice intends to transmit two bits

of classical information x = (x1 x2) to Bob. Alice initiates the process by generating a maximally entangled

Bell state, also referred to as the Einstein-Podolsky-Rosen (EPR) pair [?], which is given by [?]:

|ωx→AB =
|00→ + |11→

↓
2

. (5.1)

This is achieved by applying the Hadamard gate (H) of Section 2.3.1.2 to two qubits initialized to the state

|0→, as depicted in the ‘EPR Generation’ block of Figure 5.2. More explicitly, the Einstein-Podolsky-Rosen pair

generation proceeds as follows:

Step 1: Apply the Hadamard gate to the first qubit:

|00→ ↔
1
↓
2
(|0→ + |1→) |0→ . (5.2)

Step 2: Apply the CNOT gate to the second qubit, which is controlled by the first qubit:

1
↓
2
(|00→ + |10→) ↔

1
↓
2
(|00→ + |11→) ↗ |ωx→AB

. (5.3)

The resultant qubit A is used for encoding the 2-bit classical message, while the qubit B may be pre-shared

with Bob before actual transmission takes place, for example during the instances, when the channel is not

busy. During the encoding procedure, Alice performs either the I, X, Z or XZ operation of Table 5.1 on her

1105. Near-Capacity Codes for Entanglement-Aided Classical Communication

(x1 x2) A |ωx↓
A

↑
B

0 0 I |00↓+ |11↓

0 1 X |10↓+ |01↓

1 0 Z |00↓ ↔ |11↓

1 1 XZ |10↓ ↔ |01↓

Table 5.1: Classical-to-quantum mapping for 2-qubit superdense coding. (The normalization
factor 1↗

2
is ignored for simplicity.)

qubit A, depending on her 2-bit message. More specifically, the classical message is embedded in the qubit A

as follows:

For (x1 x2) = (0 0), do not apply any operation,

For (x1 x2) = (0 1), apply the X gate of Section 2.3.1.1 to A,

1
↓
2
(|00→ + |11→) ↔

1
↓
2
(|10→ + |01→) . (5.4)

For (x1 x2) = (0 1), apply the Z gate of Section 2.3.1.1 to A,

1
↓
2
(|00→ + |11→) ↔

1
↓
2
(|00→ ↑ |11→) . (5.5)

For (x1 x2) = (0 1), apply the Z gate followed by the X gate to A,

1
↓
2
(|00→ + |11→) ↔

1
↓
2
(|10→ ↑ |01→) . (5.6)

This classical to quantum mapping is summarized in Table 5.1.

Alice sends the appropriately processed qubit A↑ over the quantum channel to Bob. Let us assume having a

noiseless channel here. Since the four Bell states ωx→A
↑
B of Table 5.1 are orthonormal, they are distinguishable

at the receiver. Recall that qubit B is pre-shared with Bob. Upon receiving the processed qubit A
↑, Bob

performs a collective Bell-basis measurement on the received state |ωx→A
↑
B , which is carried out as follows:

Step 1: Apply the CNOT gate to qubit B, which is controlled by the qubit A
↑:

|ω00→ =
1
↓
2
(|00→ + |11→) ↔

1
↓
2
(|00→ + |10→),

|ω01→ =
1
↓
2
(|10→ + |01→) ↔

1
↓
2
(|11→ + |01→),

|ω10→ =
1
↓
2
(|00→ ↑ |11→) ↔

1
↓
2
(|00→ ↑ |10→),

|ω11→ =
1
↓
2
(|10→ ↑ |01→) ↔

1
↓
2
(|11→ ↑ |01→). (5.7)

5.2.2. N-Qubit Superdense Coding 111

Step 2: Apply the Hadamard gate to the first qubit:

1
↓
2
(|00→ + |10→) ↔

1
↓
2

1
↓
2
((|0→ + |1→)|0→ + (|0→ ↑ |1→)|0→) ↗ |00→,

1
↓
2
(|11→ + |01→) ↔

1
↓
2

1
↓
2
((|0→ ↑ |1→)|1→) + (|0→ + |1→)|1→) ↗ |01→,

1
↓
2
(|00→ ↑ |10→) ↔

1
↓
2

1
↓
2
((|0→ + |1→)|0→ ↑ (|0→ ↑ |1→)|0→) ↗ |10→,

1
↓
2
(|11→ ↑ |01→) ↔

1
↓
2

1
↓
2
((|0→ ↑ |1→)|1→ ↑ (|0→ + |1→)|1→) ↗ ↑|11→. (5.8)

Step 3: Measure the first qubit:

|00→ ↔ 00,

|01→ ↔ 01,

|10→ ↔ 10,

↑|11→ ↔ 11. (5.9)

Hence, Alice transmits only a single qubit, namely A
↑, to Bob through the quantum channel for commu-

nicating a 2-bit classical message, resulting in a transmission rate of 2 cbits/use. Indeed, the transmission

of the pre-shared entangled qubit B also consumes transmission resources, hence the overall transmission re-

quirements remain the same as in a classical scenario. However, traditionally this is considered to be less

of a problem, because the entangled qubit may be shared during o!-peak hours, when the network is under-

utilized [?]. Alternatively, if both the transmitter and receiver are mobile, sharing may take place if and when

they are close to each other [?].

5.2.2 N-Qubit Superdense Coding

N-qubit SuperDense coding (NSD) [?] is a generalization of the 2SD scheme to a multi-qubit channel, which

facilitates for the receiver to read messages from multiple users with the aid of a single entangled quantum state

as well as using a single joint quantum measurement. Let us consider a system supporting N users sharing an

N-qubit Greenberger-Horne-Zeilinger (GHZ) state [?], where each user possesses one qubit. Furthermore, one

of the users intends to receive information from the (N ↑ 1) other users (the source transmitters in this case).

For N qubits, there are 2N unitary operations, which map the initial N-qubit state onto a unique quantum

state. Therefore, the source transmitters mutually decide a priori to perform only certain operations on the

qubit in their possession. Since there are 2N operations and (N ↑ 1) source transmitters, one transmitter can

perform four operations on its qubit, while the remaining (N ↑ 2) transmitters can perform two operations.

Consequently, the former can transmit 2 cbits/use, while the latter can only transmit 1 cbit/use. The over-

all rate is therefore N

N→1
cbits/use. The receiver makes a collective measurement on the N-qubit state for

determining the classical information transmitted by each transmitter.

Let us now consider the 3-qubit system of Figure 5.3, where two source transmitters intend to transmit three

classical information bits to a receiver over a quantum channel. Since there are three users, the corresponding

3-qubit Greenberger-Horne-Zeilinger state, which is shared amongst the users, is given by:

|ωx→AB =
|000→ + |111→

↓
2

. (5.10)

Here A constitutes a 2-qubit subsystem having qubits A1 and A2. The entangled triplet |ωx→AB is prepared by

the first transmitter (Tx1) and shared both with the second source transmitter (Tx2) as well as the receiver, i.e.

with Bob, before actual communication takes place. For simplicity, we may combine the two source transmitters

1125. Near-Capacity Codes for Entanglement-Aided Classical Communication

B

A1

GHZ Generation

Classical

H H

A2

0 → I

1 → X

Tx1

A′
1

A′
2

01 → X

10 → Z

11 → XZ

Tx2

00 → I

M

x1

x2

x3

x1

x2

x3

| x〉AB

| x〉A
′B

Alice

Bob

Quantum

Figure 5.3: The quantum circuit for 3-qubit superdense coding. Alice generates the
Greenberger-Horne-Zeilinger state |ωx↓

AB using a H gate and CNOT gates re-
spectively. Qubits A1 and A2 are used for encoding the 3-bit message, while the

qubit B is pre-shared with Bob. Bob measures the received state |ωx↓
A

↑
B in the

orthonormal basis, yielding the original classical message.

(x1 x2 x3) A1 A2 |ωx↓
A

↑
B

0 0 0 I I |000↓+ |111↓

0 0 1 I X |010↓+ |101↓

0 1 0 I Z |000↓ ↔ |111↓

0 1 1 I XZ |010↓ ↔ |101↓

1 0 0 X I |100↓+ |011↓

1 0 1 X X |110↓+ |001↓

1 1 0 X Z |100↓ ↔ |011↓

1 1 1 X XZ |110↓ ↔ |001↓)

Table 5.2: Classical-to-quantum mapping for 3-qubit superdense coding. The normalization
factor 1↗

2
is ignored for simplicity.

into a single device, namely into Alice’s device, who wishes to transmit 3 classical bits to Bob. More explicitly,

one bit is transmitted from Tx1 of Figure 5.3, while two bits are transmitted from Tx2 to Bob. The qubits

A1 and A2 are used by Tx1 and Tx2, respectively, for mapping three classical bits onto two processed qubits,

while the entangled qubit B is pre-shared with Bob, as illustrated in Figure 5.3. Since Alice is in possession of

the pair of qubits A1 and A2, she can perform the I, X, Z or XZ Pauli operations on each of these qubits for

generating distinct output qubit states |ωx→A
↑
B , which are orthonormal and therefore distinguishable at the

receiver. This may be achieved by adopting any set of classical-to-quantum mapping rules, which are capable

of ensuring that the resultant states |ωx→A
↑
B are orthonormal. Table 5.2 enlists one such mapping.

5.3 Entanglement-Assisted Classical Capacity

Under the assumptions discussed in Section 5.2.1, 2SD doubles the capacity of a noiseless quantum channel.

Conventionally it is assumed that the pre-sharing of the entangled qubit destined from Alice to Bob takes place

5.3. Entanglement-Assisted Classical Capacity 113

over a noiseless channel and only the processed qubit(s) is passed through a noisy quantum channel [?,?]. The

corresponding EACC of 2SD has already been derived in [?, ?] based on its equivalence to a 4-ary symmetric

classical channel. In this section, we will generalize it to N-qubit SD by exploiting the well-known equivalent

M-ary classical channel model (M = 2N).

Let us recall that the capacity C of a classical channel is equivalent to the maximum value of the conveyed

mutual information I(x, y) between the transmitted symbol x and the received symbol y, i.e. we have [?]:

C = max
P(x)

I(x, y) = max
P(x)

[H(y) ↑ H(y|x)], (5.11)

where H is the classical entropy function. Since C is maximized for equiprobable source symbols, the capacity

of an M-ary classical channel is given by:

C = log
2
M ↑ H(y|x), (5.12)

which is further defined as follows [?,?]:

C = log
2
M + E

[
M→1∑

m=0

P(y|x = x
(m)) log

2
P(y|x = x

(m))

]
, (5.13)

using Eq. (10) and (11) of [?]. Here E[.] is the expectation (or time average) of y and x
(m) is the mth

hypothetically transmitted classical message for m ↘ {0, 1, . . . ,M ↑ 1}.

Based on Eq. (5.13), the capacity of NSD coding relying on a single noiseless pre-shared entangled qubit

may be readily expressed as:

CNsd =
N +

∑
M→1

m=0
P(y|x = x

(m)) log
2
P(y|x = x

(m))

N ↑ 1
cbits/use, (5.14)

where P(y|x) denotes the transition probabilities of the induced classical channel2.

Symbol-by-symbol measurements performed at the 2-qubit superdense decoder reduces the transmission

model of Figure 5.1 to a 4-ary classical channel. Consequently, the channel transition probabilities of the

induced classical channel may be encapsulated as:

P(y|x = x
(m)) =






1 ↑ p, if E = 0

p/3, if E ↘ {1, 2, 3},
(5.15)

where m ↘ {0, 1, 2, 3}. Furthermore, E is the decimal equivalent of the N-bit classical error e, which is induced

by the depolarizing channel. More specifically, the N-bit classical error e = [e1, . . . , ei, . . . , eN] relates the i
th

bit of x = [x1, . . . , xi, . . . , xN] to that of y = [y1, . . . , yi, . . . , yN] as follows:

yi = xi ≃ ei or ei = yi ≃ xi. (5.16)

Substituting Eq. (5.15) in Eq. (5.14) yields the entanglement-assisted classical capacity of 2SD over a quantum

depolarizing channel, i.e we have:

C2sd = 2 + (1 ↑ p) log
2
(1 ↑ p) + p log

2
(p/3), (5.17)

which gives a maximum capacity of 2 cbits/use for the noiseless scenario.

Similarly, symbol-by-symbol measurements performed at the 3-qubit superdense decoder reduces the overall

2Due to the time-invariant nature of P(y|x), the average information is the same as the instantaneous
value. The expectation operation of Eq. (5.13) can be therefore ignored.

1145. Near-Capacity Codes for Entanglement-Aided Classical Communication

(2) URC−SD Decoder

(2) URC−SD Encoder

IRCC

(1)

IRCC

(1)

EncoderEncoder

Decoder Decoder

Encoder

Decoder

u2

⇡

⇡−1

⇡
v1

A(v1)

E(v1)

E(u2)

A(u2)

URC

URC

E(x)

x

û1

u1

SD

SD

(y, e)

Channel

Depolarizing

Quantum

| x〉A
′
B

| y〉B
′
B

Figure 5.4: Schematic of the proposed IRCC-URC-SD classical-quantum communication sys-
tem. Babar et al. [?]

transmission to an 8-ary classical channel. However, unlike the 2SD scheme, now 2 qubits are transmitted over

the noisy quantum channel. All the possible quantum channel errors along with the corresponding probabilities

of occurrence and the resultant classical error patterns e are listed in Table 5.3. The resulting corrupted state

|ωy→B
↑
B for the transmitted state 1↔

2
(|000→ + |111→) is also tabulated in Table 5.3. It must be noted that

di!erent quantum errors may result in the same e, for example the third and sixth rows of Table 5.3 have

the same classical error pattern. Consequently, we combined the probabilities corresponding to the same error

patterns arriving at the following channel transition probabilities for the 3SD scheme:

P(y|x = x
(m)) =






(1 ↑ p)2 + p
2
/9, if E ↘ {0}

(1 ↑ p)(p/3) + p
2
/9, if E ↘ {2, 3, 6, 7}

2(1 ↑ p)(p/3), if E ↘ {4}

2p2
/9, if E ↘ {1, 5},

(5.18)

where we have m ↘ {0, 1, . . . , 7}. Eq. (5.18) may be substituted in Eq. (5.14) to compute the EACC of the

3SD scheme, when communicating over a quantum depolarizing channel. More explicitly, we have:

C3sd =
3

2
+

1

2

7∑

m=0

P(y|x = x
(m)) log

2
P(y|x = x

(m)). (5.19)

Hence, the 3SD scheme has a maximum capacity of 1.5 cbits/use, when the channel is noiseless.

5.4 Bit-Based Code Structure

In this section we will present the architecture of our proposed classical-quantum communication system, which

is designed for approaching the EACC of the NSD code with the aid of EXIT charts [?, ?,?]. Figure 5.4 shows

the general schematic of the proposed system, which employs a classical IRCC [?, ?] for achieving the near-

capacity performance. Furthermore, a classical symbol-based recursive URC having a generator polynomial of

G(D) = 1

1+D
[?] is used as a precoder for reaching the (1, 1) point of perfect decoding convergence in the EXIT

chart [?]. We amalgamate our conceived soft-decision SD with the symbol-based URC, which hence constitutes

an amalgamated inner component, while the bit-based IRCC is our outer component.

At the transmitter, the system is fed with classical bits {u1}, which are encoded by an IRCC encoder. The

5.4. Bit-Based Code Structure 115

Error on A1 Error on A2 |ωy↓
B

↑
B Error (e/E) Error Probability

I I |000↓+ |111↓ 000/0 (1↔ p)(1↔ p)

X I |100↓+ |011↓ 011/3 (p/3)(1↔ p)

Z I |000↓ ↔ |111↓ 100/4 (p/3)(1↔ p)

Y I |100↓ ↔ |011↓ 111/7 (p/3)(1↔ p)

I X |010↓+ |101↓ 010/2 (1↔ p)(p/3)

I Z |000↓ ↔ |111↓ 100/4 (1↔ p)(p/3)

I Y |010↓ ↔ |101↓ 110/6 (1↔ p)(p/3)

X X |110↓+ |001↓ 001/1 (p/3)(p/3)

Z X |010↓ ↔ |101↓ 110/6 (p/3)(p/3)

Y X |110↓ ↔ |001↓ 101/5 (p/3)(p/3)

X Z |100↓ ↔ |011↓ 111/7 (p/3)(p/3)

Z Z |000↓+ |111↓ 000/0 (p/3)(p/3)

Y Z |100↓+ |011↓ 011/3 (p/3)(p/3)

X Y |110↓ ↔ |001↓ 101/5 (p/3)(p/3)

Z Y |010↓+ |101↓ 010/2 (p/3)(p/3)

Y Y |110↓+ |001↓ 001/1 (p/3)(p/3)

Table 5.3: List of all the possible quantum errors when the first and second qubit, A1 and A2

respectively, of the 3-qubit Greenberger-Horne-Zeilinger state 1↗
2
(|000↓+ |111↓) are

transmitted over a quantum depolarizing channel. The normalization factor 1↗
2
is

ignored for simplicity.

1165. Near-Capacity Codes for Entanglement-Aided Classical Communication

IRCC-encoded bits {v1} of Figure 5.4 are then interleaved (ε), yielding the permuted bit stream {u2}, which

is converted to symbols3 and fed to the URC encoder of Figure 5.4. Classical to quantum domain conversion

then takes place at the SD encoder, which maps the classical symbols x onto the orthogonal quantum states

|ωx→A
↑
B using the entangled state |ωx→AB , as discussed in Section 5.1. Hence, the SD encoder has a function

similar to that of the classical Phase-Shift Keying (PSK) or Quadrature Amplitude Modulation (QAM) bit-to-

symbol mapper, which maps several classical bits onto a complex-valued phasor for communication using the

classical electromagnetic waves. The qubits of the resultant quantum state are then serially transmitted over

the quantum depolarizing channel4.

At the receiver, iterative decoding is invoked for exchanging extrinsic information between the inner (URC-

SD) and outer (IRCC) decoders. Here the notations A(b) and E(b) refer to the a priori and extrinsic prob-

abilities of b, where we have b ↘ {v1, u2, x}, which are exploited for achieving decoding convergence to a

vanishingly low Bit Error Rate (BER). The SD decoder converts the received orthogonal states |ωy→B
↑
B to

classical symbols y by performing a joint measurement in the orthonormal basis. It must be highlighted here

that a conventional SD decoder yields the hard-decision outputs. Instead, here we conceive a soft-decision SD

decoder, which computes the corresponding extrinsic probability E(x) for the transmitted classical symbol x,

as follows:

E(x) ⇐ P(y|x), (5.20)

where P(y|x) is given by Eq. (5.15) and (5.18) for the 2-qubit and 3-qubit schemes, respectively. The soft

output E(x) is then fed into the Maximum A-Posteriori (MAP) decoder of URC, which engages in iterative

decoding with the IRCC decoder.

5.5 Near-Capacity Design

5.5.1 EXIT Charts

EXIT charts [?, ?, ?] are capable of visualizing the convergence behaviour of iterative decoding schemes by

exploiting the input/output relations of the constituent decoders in terms of their average Mutual Information

(MI) transfer characteristics. In the context of our proposed model of Figure 5.4, the EXIT chart visualizes

the exchange of the following four MI terms:

(a) average a priori MI between u2 and A(u2): IA(u2),

(b) average a priori MI between v1 and A(v1): IA(v1),

(c) average extrinsic MI between u2 and E(u2): IE(u2), and

(d) average extrinsic MI between v1 and E(v1): IE(v1).

Here, IA(u2) and IE(u2) constitute the EXIT curve of the inner decoder, while IA(v1) and IE(v1) yield the

EXIT curve of the outer decoder. For the sake of constructing the inner and outer EXIT curves, the Log

Likelihood Ratios (LLRs)5 related to the a priori probabilities of A(u2) and A(v1) respectively, are modeled

3Bit-to-symbol convertor is assumed to be inside the URC Encoder block of Figure 5.4.
4As illustrated earlier in Figure 5.1, the processed qubit(s) A↔ is transmitted over the noisy quantum

channel, while B is shared between Alice and Bob over a noiseless channel.
5The LLR L(x) of a bit x is the log of the ratio of the probabilities of the bit taking the two possible

values of 0 and 1, which is given by [?]:

L(x) = ln

(
P(x = 1)

P(x = 0)

)
.

5.5.2. Near-Capacity IRCC-URC-SD Design 117

using a Gaussian distribution, having a mean of ϑ2

A
/2 and a variance of ϑ2

A
, for a range of IA(u2), IA(v1) ↘ [0, 1].

The corresponding average extrinsic MI can be formulated as [?, ?]:

IE(u2) = log
2
M + E

[
M→1∑

m=0

E(u(m)

2
) log

2
(E(u(m)

2
))

]
, (5.21)

and

IE(v1) = log
2
M + E

[
M→1∑

m=0

E(v(m)

1
) log

2
(E(v(m)

1
))

]
. (5.22)

Furthermore, since we are employing symbol-to-bit conversion at the URC decoder, we incorporate binary

EXIT charts in our design. This in turn implies that in Eq. (5.21) and (5.22) we have M = 2 and m ↘ {0, 1}.
The resultant inner EXIT function Tu2

is given by:

IE(u2) = Tu2
[IA(u2), p], (5.23)

while the outer EXIT function Tv1
is as follows:

IE(v1) = Tv1
[IA(v1)]. (5.24)

More explicitly, unlike Tv1
, Tu2

is a function of the depolarizing probability p, since the inner decoder is fed

by the channel. Finally, the MI transfer characteristics of both the decoders encapsulated by Eq. (5.23) and

(5.24) are plotted in the same graph, with the x and y axes of the outer decoder swapped. The resultant EXIT

chart is capable of visualizing the exchange of extrinsic MI as a stair-case-shaped decoding trajectory, as the

iterations proceed. Examples of EXIT charts will be given in Section 5.6.

5.5.2 Near-Capacity IRCC-URC-SD Design

We have exploited the area property of EXIT charts [?] for designing a near-capacity classical error correction

code for our classical-quantum communication system of Figure 5.4. According to this property, the area under

the normalized EXIT curve of the inner decoder is approximately equal to the attainable channel capacity [?],

provided that the channel’s input symbols are equiprobable. Since our system model of Figure 5.4 transmits

classical information over a quantum depolarizing channel, the attainable channel capacity of the system is the

entanglement-assisted classical capacity given in Eq. (5.14). However, as mentioned in Section 5.4, symbol-to-

bit conversion takes place at the output of the URC decoder. This incurs a capacity loss [?]. More explicitly,

the corresponding bit-based capacity of 2SD may be computed by marginalizing the symbol-based channel

transition probabilities P(y|x) of Eq. (5.15) to the bit-based probabilities P(yi|xi) for i ↘ {1, 2}, assuming that

the constituent bits are independent. More specifically, we get:

P(yi = xi|xi) = 1 ↑
2

3
p,

P(yi ⇒= xi|xi) =
2

3
p. (5.25)

Based on this marginalized perspective, the resultant 4-ary classical channel may be viewed as a pair of

independent Binary Symmetric Channels (BSCs) having a crossover probability of 2p/3. The capacity of each

BSC is given by:

Ci

BSC
= 1 + (1 ↑

2

3
p) log

2
(1 ↑

2

3
p) +

2

3
p log

2
(
2

3
p), (5.26)

1185. Near-Capacity Codes for Entanglement-Aided Classical Communication

for i ↘ {1, 2}. Since 2 classical bits are transmitted per channel use in the 2SD scheme, the symbol-based

capacity of Eq. (5.17) is reduced to the sum of the capacity of these two BSCs, which is equivalent to:

Cbit

2sd
=

2∑

i=1

Ci

BSC

= 2 ·
[
1 + (1 ↑

2

3
p) log

2
(1 ↑

2

3
p) +

2

3
p log

2
(
2

3
p)


, (5.27)

where Ci

BSC
is the capacity of the ith BSC given in Eq. (5.26). More explicitly, the generalized formula of the

bit-based capacity of an NSD scheme relying on a single noiseless pre-shared entangled qubit is given by:

Cbit

Nsd
=

1

N ↑ 1
·

N∑

i=1

Ci

BSC
, (5.28)

where N = 2 for the 2SD scheme.

Similarly, for computing the bit-based EACC of 3SD, the induced 8-ary channel may be viewed as three

independent BSCs. For the sake of computing the channel transition probabilities associated with each of

the three BSCs, we normalize the symbol-based conditional probability of Eq. (5.18) for each of the three

constituent bits as follows:

P(y1 = x1|x1) =
∑

e1=0

P(y = x + e|x = x
(m)) = 1 ↑

4

3
p +

8

9
p
2
,

P(y1 ⇒= x1|x1) =
∑

e1=1

P(y = x + e|x = x
(m)) =

4

3
p ↑

8

9
p
2
,

P(y2 = x2|x2) =
∑

e2=0

P(y = x + e|x = x
(m)) = 1 ↑

4

3
p +

8

9
p
2
,

P(y2 ⇒= x2|x2) =
∑

e2=1

P(y = x + e|x = x
(m)) =

4

3
p ↑

8

9
p
2
,

P(y3 = x3|x3) =
∑

e3=0

P(y = x + e|x = x
(m)) = 1 ↑

2

3
p,

P(y3 ⇒= x3|x3) =
∑

e3=1

P(y = x + e|x = x
(m)) =

2

3
p. (5.29)

Using Eq. (5.13) as well as (5.29) and exploiting the fact that 3 classical bits are transmitted per 2 channel

uses in 3SD, the symbol-based capacity of Eq. (5.19) is reduced to:

Cbit

3sd
=

1

2
·

3∑

i=1

Ci

BSC

=
1

2
· [3 ↑ 2 ⇑ H2(

4

3
p ↑

8

9
p
2) ↑ H2(

2

3
p)], (5.30)

where Ci

BSC
is the capacity of the ith BSC, while H2(z) is the binary entropy function, which is given by,

H2(z) = ↑z log
2
(z) ↑ (1 ↑ z) log

2
(1 ↑ z). (5.31)

The capacity loss for both the 2SD and 3SD schemes is quantified in Figure 5.5, which compares their bit-based

and symbol-based capacities. Nevertheless, it must be pointed out that by virtue of being a unity rate code, the

URC does not impose any capacity loss, as verified in Figure 5.5. The capacity of our inner decoder (URC-SD)

is approximately equal to the attainable bit-based entanglement-assisted classical capacity for both 2-qubit

and 3-qubit superdense codes. The URC is only invoked for transforming the horizontal EXIT curve of the SD

decoder to a slanted one for the sake of improving the scheme’s decoding convergence, as detailed in the next

section.

5.5.2. Near-Capacity IRCC-URC-SD Design 119

2sd-3sd-cap1-rev4.gle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
la

ss
ic

a
lI

n
fo

rm
a

tio
n

R
a

te
(c

b
its

/u
se

)

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Depolarizing Probability (p)

2SD
URC-2SD
3SD
URC-3SD

Bit-based
Symbol-based

0.1650.11

0.75

Figure 5.5: Classical information rate (cbits/use) versus quantum depolarizing probability for
2-qubit and 3-qubit superdense codes with and without URC. Symbol-to-bit con-
version incurs a capacity loss for 2SD as well as 3SD. Babar et al. [?]

Furthermore, the area under the normalized EXIT curve of the outer decoder is equivalent to (1 ↑ Ro),

where Ro is its coding rate [?]. Therefore, our near-capacity design aims for creating a narrow, but marginally

open tunnel between the EXIT curves of the inner and outer decoders at the highest possible depolarizing

probability, which corresponds to the lowest possible SNR for a classical channel. A feasible design option

could be to create the EXIT curves of all the possible convolutional codes to find the optimal code C, which

gives the best match, i.e. whose EXIT curve yields a marginally open tunnel with the inner decoder’s EXIT

curve of URC-SD. To circumvent this tedious task, we have invoked the IRCC of [?], whereby a family of

subcodes Cl, l ↘ {1, 2, . . . , L}, is used for constructing the target code C. Due to its inherent flexibility,

the resultant IRCC provides a better match than any single code. Furthermore, for the sake of reducing the

encoding and decoding complexity, the family of subcodes Cl is constructed by selecting an ri-rate convolutional

code Ci as the mother code and obtaining the remaining (L ↑ 1) subcodes Cl by puncturing the mother code

for rate rl > r1 and by adding more generators and subsequently puncturing for rl < r1. The l
th subcode has

a coding rate of rl and it encodes a specifically designed fraction, ϖl, of the original information bits to ϖlNc

encoded bits. Here, Nc is the total length of the coded frame. More specifically, for an L-subcode IRCC, ϖl is

the l
th IRCC weighting coe”cient satisfying the following constraints [?, ?]:

L∑

l=1

ϖl = 1 , Ro =
L∑

l=1

ϖlrl , ϖl ↘ [0, 1], ⇓l , (5.32)

which can be conveniently represented in the following matrix form:




1 1 . . . 1

r1 r2 . . . rL




[
ϖ1 ϖ2 . . . ϖL


T

=




1

Ro





C ω = d . (5.33)

In our design, we have employed an IRCC relying on a set of 17 memory-4 convolutional subcodes having 17

di!erent coding rates between 0 and 1, which was found in [?]. These 17 subcodes are derived such that it

covers the complete range of coding rates from 0.1 to 0.9 with a rate-increment of 0.05, i.e. having rates of

rl ↘ {0.1, 0.15, 0.2, . . . , 0.85, 0.9}. Figure 5.6 shows the inverted outer EXIT curves for each of the constituent

1205. Near-Capacity Codes for Entanglement-Aided Classical Communication

exitchart-ircc-components.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I A
(v

1
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IE(v1)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I A
(v

1
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IE(v1)

CC: R={0.1, ..., 0.9}

R=0.1

R=0.15

R=0.2

R=0.25

R=0.3

R=0.35

R=0.4

R=0.45

R=0.5

R=0.55

R=0.6

R=0.65

R=0.7

R=0.75

R=0.8

R=0.85

R=0.9

Figure 5.6: Normalized outer EXIT curves (inverted) of the 17 IRCC subcodes. Babar et
al. [?]

subcode of the IRCC scheme.

In physically tangible terms, the input bit stream is divided into 17 fractions corresponding to the 17

di!erent-rate subcodes and the specific optimum fractions to be encoded by these codes are found by dynamic

programming. More specifically, the EXIT curves of the 17 subcodes, given in Figure 5.6, are superimposed

onto each other after weighting by the appropriate fraction-based weighting coe”cients, which are determined

by minimizing the area of the open EXIT-tunnel. To elaborate a little further, the transfer function of the

IRCC is given by:

IE(v1) = Tv1


IA(v1)


=

L∑

l=1

ϖl Tv1,l


IA(v1)


, (5.34)

where Tv1,l


IA(v1)


= IE(v1),l is the transfer function of the l

th subcode. We employed the curve matching

algorithm of [?,?] for optimizing the weighting coe”cients of the IRCC subcodes by ensuring that a narrow, yet

open tunnel exists between the EXIT curves of the outer and inner decoder at the highest possible depolarizing

probability; thus, guaranteeing that the system has a near-capacity performance.

5.6 Results and Discussions I

Based on the near-capacity design of Section 5.5, we have designed an SD-based near-capacity code for

entanglement-assisted classical communication over the quantum depolarizing channel. We next evaluate the

performance of our 2-qubit and 3-qubit designs in Section 5.6.1 and 5.6.2, respectively.

5.6.1. Performance of IRCC-URC-2SD 121

2SD-EXIT-155-1.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I E
(u

2
)
,

I A
(v

1
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IA(u2)
, IE(v1)

. .

. .

. .

. .

. .

. .
..
..
. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

..

..

..

..

..

..

..

..

..

..

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

..

..
..

..

..
..

..

..

..

..

..

....................................

IRCC-URC-2SD at p = 0.15
2SD
Inner (URC-2SD)
Outer (IRCC)

. Trajectory

0.531

Figure 5.7: Normalized EXIT curves of the IRCC-URC-2SD system of Figure 5.4 at a depo-
larizing probability of 0.15 using the simulation parameters of Table 5.4. Babar
et al. [?]

5.6.1 Performance of IRCC-URC-2SD

Since we intend to design a system having a rate of 1 cbit/use, we have assumed a constant overall coding rate

of 0.5 for the IRCC. Figure 5.7 shows the normalized EXIT curves for 2SD at a depolarizing probability of 0.15

and using an interleaver length of 30, 000 bits. As expected, the EXIT curve of the 2SD decoder is a horizontal

straight line. Hence, our URC is used as a precoder, to transform this horizontal EXIT curve into a slanted

curve which terminates at the (1, 1) point of the EXIT chart; thus, facilitating a possible convergence to an

infinitesimally low BER. More specifically, the area under the EXIT curve remains the same, yet reaches the

(1, 1) point. Furthermore, using the curve matching algorithm of [?, ?], the IRCC weight vector of Eq. (5.33)

was optimized to get a narrow open tunnel as evident in Figure 5.7. The corresponding simulation parameters

are summarized in Table 5.4, where only seven subcodes are activated. The tunnel of Figure 5.7 is narrow,

but wide enough for successful convergence, as visualized using the decoding trajectories. If the depolarizing

probability is increased beyond p = 0.15, the EXIT curves of the inner and outer decoder would crossover,

hence closing the tunnel. Thus, the system has a convergence threshold of p = 0.15. In other words, it can

tolerate depolarizing probabilities upto p = 0.15, and yet achieve an infinitesimally low BER. However, this

would require a high number of iterations between the IRCC and URC-2SD, hence imposing a high complexity.

The coding rate of the designed IRCC-URC-2SD system is 1 cbit/use, since a 1/2-rate IRCC is used. From

the bit-based capacity curve of Figure 5.5, it can be found that the associated noise limit is p
↗ = 0.165. By

contrast, the convergence threshold of our system is p = 0.15. Thus, it operates within [10⇑ log
10

(0.165

0.15
)] = 0.4

dB of the noise limit6. Alternatively, this discrepancy may also be quantified in terms of the di!erence in the

6The di”erence in dB between two channel depolarizing probabilities p1 and p2 is calculated as

follows [?, ?]:
(
10↘ log

10

p1

p2

)
.

1225. Near-Capacity Codes for Entanglement-Aided Classical Communication

SD scheme 2-qubit

IRCC coding rate 1/2

IRCC active subcodes ,4 = 0.0177, ,5 = 0.0145, ,7 = 0.6455, ,12 = 0.1797,

,13 = 0.0580, ,16 = 0.0105, ,17 = 0.0742

Interleaver length 30, 000 bits

Overall system rate 1 cbits/use

Table 5.4: Simulation parameters of the IRCC-URC-SD scheme of Figure 5.4.

area under the inner and outer EXIT curves, which corresponds to the normalized capacity loss. The area

under the normalized EXIT curve of our URC-2SD scheme is 0.531, whereas that under the IRCC is 0.5. Thus,

the capacity of our IRCC-URC-2SD scheme is only [0.031⇑ 2] = 0.062 cbits/use away from the capacity, when

p = 0.15.

We have further evaluated the BER performance of our IRCC-URC-2SD scheme in Figure 5.8 for the

simulation parameters of Table 5.4. As it can be observed in Figure 5.8, the performance improves upon

increasing the number of iterations. More specifically, the 2-qubit system starts to converge to a lower BER,

as the number of iterations increases at a depolarizing probability of p = 0.15, which matches the convergence

thresholds predicted using EXIT charts. More explicitly, since the EXIT chart tunnel closes beyond the

depolarizing probability threshold of p = 0.15, the system fails to converge, if the depolarizing probability is

increased further. Hence, the performance does not improve upon increasing the number of iterations if the

depolarizing probability exceeds the threshold. By contrast, when the depolarizing probability is below the

threshold, the BER improves at each successive iteration. Here, the trade-o! between the complexity imposed

and the performance attained comes into play. It should also be noted that the performance improves with

diminishing returns at a higher number of iterations. For example, doubling the number of iterations from

I = 8 to I = 16 for IRCC-URC-2SD increases the tolerable depolarizing probability by 0.0225, corresponding

to a BER of 10→4. A further increase to I = 32 iterations only improves p by around 0.01 at a BER of 10→4.

We further demonstrate this in Figure 5.9, where we quantify the distance from the capacity, i.e. from the

noise limit of p↗ = 0.165, in terms of dB at a BER of 10→4 upon increasing the number of iterations. We may

observe in Figure 5.9 that we approach the achievable noise limit with diminishing returns, as the number of

iterations is increased.

To elaborate further on the significance of using an IRCC rather than a conventional 1/2-rate CC, we have

also conceived a corresponding setup, whereby the IRCC of Figure 5.4 is replaced by a memory-4 1/2-rate

CC in the proposed IRCC-URC-2SD system. This is synonymous to employing an IRCC, which has only the

9th subcode active. Figure 5.10 shows the resultant EXIT curves for p = 0.15 and p = 0.125. It can be

observed in Figure 5.10 that for p = 0.15, which is the convergence threshold of our IRCC-URC-2SD design,

the inner and outer EXIT curves of the CC-URC-2SD scheme exhibit a cross-over. Thus, implying that the

CC-URC-2SD configuration fails to converge at p = 0.15. An open tunnel emerges only when p is decreased

to 0.125. Consequently, the convergence threshold of CC-URC-2SD is p = 0.125, which is lower than that of

our near-capacity design of Figure 5.7. It must also be pointed out here that the area between the inner and

outer EXIT curves at the convergence threshold is wider than Figure 5.7. The wider the gap, the higher the

capacity loss. Therefore, using a regular CC, rather than an IRCC, yields a poor match between the inner and

outer decoders’ EXIT curves.

5.6.1. Performance of IRCC-URC-2SD 123

IRCC-URC-SD-6a.gle

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

C
la

ss
ic

a
lB

E
R

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Depolarizing Probability (p)

2
S

D
C

a
p

a
ci

ty

I = 1, 2, 8, 16, 32

Figure 5.8: Achievable BER performance of the IRCC-URC-2SD scheme of Figure 5.4 upon
increasing the number of iterations, i.e. I = {1, 2, 8, 16, 32}. The simulation
parameters are summarized in Table 5.4. The dashed-line at p↑ = 0.165 marks the
noise limit for a classical information rate of 1 cbit/use, which is obtained from
the bit-based EACC curve of 2SD given in Figure 5.5.

IRCC-URC-2SD-gain-iter.gle

0

1

2

3

4

5

6

7

8

9

10

D
is

ta
n

ce
fr

o
m

C
a

p
a

ci
ty

(d
B

)

0 4 8 12 16 20 24 28 32

Number of Iterations

Figure 5.9: Performance of the IRCC-URC-2SD scheme of Figure 5.8, at a BER of 10→4,
which is quantified in terms of the distance from the bit-based EACC of 2SD, i.e.
p
↑ = 0.165, as the number of iterations is increased.

1245. Near-Capacity Codes for Entanglement-Aided Classical Communication

2SD-CC-EXIT-1.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

I E
(u

2
)
,

I A
(v

1
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IA(u2)
, IE(v1)

CC-URC-2SD
Inner (URC-2SD) @ p = 0.15
Inner (URC-2SD) @ p = 0.125
Outer (CC)

Figure 5.10: Normalized EXIT curves of the CC-URC-2SD system using the simulation pa-
rameters of Table 5.4, but only the 9th subcode of IRCC is active. Babar et
al. [?]

5.6.2 Performance of IRCC-URC-3SD

As another example, we designed an IRCC-URC-3SD scheme having a classical transmission rate of 0.75

cbits/use. We have therefore assume a coding rate of 0.5 for the IRCC. Figure 5.11 shows the EXIT curves

for our 3-qubit SD at a depolarizing probability of 0.1. The optimized IRCC weights are given in Table 5.5,

where only five subcodes are activated. For p ⇔ 0.1, the system successfully converges and the decoding

trajectory terminates at the (1, 1) point of the EXIT chart. Since our 3SD transmits 1.5 cbits/use and we

have used 1/2-rate IRCC, the e!ective throughput of the designed system is 0.75 cbits/use. The corresponding

depolarizing probability according to the bit-based capacity curve of Figure 5.5 is p
↗ = 0.11. Thus, in terms of

the depolarizing probability, our designed system operates within [10 ⇑ log
10

(0.11

0.10
)] = 0.4 dB of the capacity.

Furthermore, the area under the normalized EXIT curve of the inner decoder is 0.5209. The deviation from

the capacity curve is therefore [0.0209 ⇑ 1.5] ⇐ 0.031 cbits/use.

We have further evaluated the corresponding BER performance in Figure 5.12 for the simulation parameters

of Table 5.5. Analogous to our IRCC-URC-2SD scheme in Figure 5.8, the performance in Figure 5.12 improves

upon increasing the number of iterations. Particularly, the system converges for p ⇔ 0.1, which conforms to

our EXIT chart predictions of Figure 5.11. Furthermore, for p ⇔ 0.1, the performance tends to approach the

noise limit of p↗ = 0.11. This is also demonstrated in Figure 5.13, which plots the distance from the capacity

(dB) at a BER of 10→4 as a function of the number of iterations. As observed previously for our 2SD scheme,

the performance converges towards the noise limit, as the number of iterations increases, but this happens with

diminishing returns at higher number of iterations.

We have further benchmarked the performance of our IRCC-URC-SD system of Figure 5.4 against the

classical Turbo Code (TC) in Figure 5.14 for both 2SD as well as 3SD designs. This was achieved by replacing

5.6.2. Performance of IRCC-URC-3SD 125

3SD-EXIT-1-2.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
I E

(u
2
)
,

I A
(v

1
)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

IA(u2)
, IE(v1)

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

..

..

..

..

..
....

..

....

..

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

..

..

. .

..

..
....
..

IRCC-URC-3SD at p = 0.1
3SD
Inner (URC-3SD)
Outer (IRCC)

. Trajectory

0.5209

Figure 5.11: Normalized EXIT curves of the IRCC-URC-3SD system at a depolarizing prob-
ability of 0.1 using the simulation parameters of Table 5.5. Babar et al. [?]

SD scheme 3-qubit

IRCC coding rate 1/2

IRCC active subcodes ,6 = 0.2641, ,7 = 0.4062, ,12 = 0.1068,

,13 = 0.1247, ,17 = 0.0982

Interleaver length 30, 000 bits

Overall system rate 0.75 cbits/use

Table 5.5: Simulation parameters of the IRCC-URC-SD scheme of Figure 5.4.

1265. Near-Capacity Codes for Entanglement-Aided Classical Communication

IRCC-URC-SD-6b.gle

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

C
la

ss
ic

a
lB

E
R

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Depolarizing Probability (p)

3
S

D
C

a
p

a
ci

ty

I = 1, 2, 8, 16, 32

Figure 5.12: Achievable BER performance of the IRCC-URC-3SD scheme of Figure 5.4 with
increasing number of iterations, i.e. I = {1, 2, 8, 16, 32}. The simulation param-
eters are summarized in Table 5.5. The dashed-line at p↑ = 0.11 marks the noise
limit for a classical information rate of 0.75 cbit/use, which is obtained from the
bit-based EACC curve of 3SD given in Figure 5.5.

IRCC-URC-3SD-gain-iter.gle

0

1

2

3

4

5

6

7

8

9

10

D
is

ta
n

ce
fr

o
m

C
a

p
a

ci
ty

(d
B

)

0 4 8 12 16 20 24 28 32

Number of Iterations

Figure 5.13: Performance of the IRCC-URC-3SD scheme of Figure 5.12 at a BER of 10→4,
which is quantified in terms of the distance from the bit-based EACC of 3SD,
i.e. p↑ = 0.11, as the number of iterations is increased.

5.6.2. Performance of IRCC-URC-3SD 127

compareALL2.gle

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

C
la

ss
ic

a
lB

E
R

0.0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Depolarizing Probability (p)

Uncoded
TC(8 Iter)
TC(16 Iter)
IRCC-URC-SD (32 Iter)

(Filled marker) 2SD
(Hollow marker) 3SD

3
S

D
C

a
p

a
ci

ty

2
S

D
C

a
p

a
ci

ty

Figure 5.14: Comparison of the achievable BER performance of our IRCC-URC-SD scheme
with TC-SD having a memory-3 1/2-rate TC as the outer component. 2SD and
3SD schemes are plotted with filled and hollow markers, respectively, and their
simulation parameters are summarized in Table 5.4 and Table 5.5, respectively.
Uncoded BER curves for both 2SD as well as 3SD are also plotted for comparison.
Results are summarized in Table 5.6. Babar et al. [?]

TC-SD IRCC-URC-SD

2SD 1.9 dB 0.6 dB

3SD 2.2 dB 0.75 dB

Table 5.6: Distance of the TC-SD and IRCC-URC-SD schemes from the capacity at a BER of
10→4 using the performance curves of Figure 5.14.

the IRCC-URC unit of Figure 5.4 with TC7. We have used a memory-3 1/2-rate TC for our comparison, since

it invokes 16 states in each iteration, which is the same as the number of states invoked per iteration in our

design8. The uncoded BER curves of our 2SD and 3SD schemes are also plotted in Figure 5.14. Furthermore,

we have used a su”ciently high number of iterations, i.e. I = 32, for our designed system to ensure that the

system reaches the top right corner of the EXIT chart at a depolarizing probability that is close to the noise

limit. More specifically, as observed in Figure 5.9 and Figure 5.13 for the 2SD and 3SD schemes, respectively,

doubling the number of iterations from 16 to 32 improves the performance only slightly. Therefore, we can

safely assume that if the increasing the number of iterations may not improve the performance appreciably. By

contrast, I = 16 iterations were used for TC since it did not yield any appreciable performance improvement,

when the number of iterations was increased beyond I = 8, as evidenced in Figure 5.14. Our proposed IRCC-

URC-SD system is capable of performing closer to the capacity, hence, outperforming the turbo code for both

2SD and 3SD. The corresponding distances from the capacity expressed in terms of dB at a BER of 10→4 are

tabulated in Table 5.6, where the noise limits for 2SD and 3SD are p
↗ = 0.165 and p

↗0.11, respectively.

7Symbol-to-bit conversion takes place at the output of SD decoder. Consequently, the symbol-based
probabilities of Eq. (5.15) and (5.18) are converted to bit-based LLRs, assuming that the bits constituting
the symbol are independent.

8Since a memory-3 turbo code has two components with 23 states, total number of states per iteration
are 2↘ 23 = 16. Similarly, a memory-4 IRCC invokes 24 = 16 states per iteration.

1285. Near-Capacity Codes for Entanglement-Aided Classical Communication

(2) URC−SD Decoder

(2) URC−SD Encoder

CC

(1)

CC

(1)

EncoderEncoder

Decoder Decoder

Encoder

Decoder

v′

⇡s

⇡−1
s

⇡s
v

A(v)

E(v)

E(v′)

A(v′)

URC

URC

E(x)

x

û

u

SD

SD

(y, e)

Channel

Depolarizing

Quantum

| x〉A
′
B

| y〉B
′
B

Figure 5.15: Schematic of the proposed symbol-based CC-URC-SD classical-quantum com-
munication system. Babar et al. [?]

5.7 Symbol-Based Code Structure

Since the design of Figure 5.4 uses a bit interleaver and hence bit-based iterative decoding, symbol-to-bit

conversion is invoked before the related soft-information is fed from the inner decoder (URC-SD) to the outer

decoder (IRCC). This in turn incurs a capacity loss. As gleaned from Figure 5.5, for a 2SD scheme having a

classical information rate of 1 cbit/use, a bit-based system ensures reliable transmission for p ⇔ 0.165, while

a symbol-based system would increase the noise limit to p
↗ = 0.1875. Therefore, a bit-based error correction

scheme incurs a capacity loss of around 0.6 dB as compared to its symbol-based counterpart. This capacity

loss was previously identified in [?] for classical discrete-memoryless channels and a modified binary LDPC

code was proposed to circumvent this issue. Similarly, to circumvent the quantum channel capacity loss, we

have conceived an iterative code design for symbol-based CC-URC-2SD, which incorporates a single CC as the

outer component, while the URC and 2SD schemes constitute the amalgamated inner code.

Figure 5.15 shows the proposed system model. At the transmitter, the system is fed with classical bits {u},
which are encoded by a 1/2-rate CC. The encoded 4-ary coded symbols v = (v1 v2) are then interleaved by a

symbol interleaver (εs), yielding the permuted symbol stream v
↑, which is fed to the symbol-based recursive

URC having a generator polynomial of G(D) = 1

1+D
[?]. Similar to the bit-based design of Figure 5.4, classical

to quantum domain conversion then takes place at the SD encoder of Figure 5.15 and the encoded qubits

|ωx→A
↑
B are serially transmitted over the quantum depolarizing channel. The receiver of Figure 5.15 is also

same as that of Figure 5.4 with the bit interleaver replaced by a symbol interleaver.

Since our proposed model of Figure 5.15 relies on symbol-based iterative decoding, we invoke non-binary

EXIT charts of [?, ?, ?] for the sake of achieving a near-capacity performance.

5.8 Results and Discussions II

Using the non-binary EXIT-charts, we have optimized our iterative code structure of Figure 5.15 to design

a system with a coding rate of 1 cbit/use. According to the symbol-based capacity curve of Figure 5.5, the

corresponding noise limit for our system is p
↗ = 0.1875.

Design Objective I: For the sake of comparing the symbol-based scheme of Figure 5.15 with the bit-

based scheme of Figure 5.4, which uses a 1/2-rate memory-4 IRCC, find the optimal 1/2-rate memory-4

convolutional code, which gives the best match with URC-2SD in the CC-URC-2SD configuration, when

symbol-based iterative decoding is invoked.

5.8. Results and Discussions II 129

findouterg25paper3.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

,

Inner @ p=0.15
Inner @ p=0.16
Optimal Outer

Outer Codes
pth = 0.15
pth < 0.15

I E
(v

′)
I A

(v
)

IA(v′) IE(v)

Figure 5.16: Normalized EXIT curves of the CC-URC-2SD system. Various 1/2-rate memory-
4 convolutional codes were used as outer components. The optimal outer code
has generator polynomials (g1, g2) = (31, 36)8. Babar et al. [?]

For the sake of achieving this objective, we created the EXIT curves of all the possible 1/2-rate memory-4

convolutional codes by evaluating all legitimate generator polynomials to find the optimal code C, which yields

a marginally open tunnel at the highest possible channel depolarizing probability. The EXIT characteristics of

some of these (2, 1, 4) CCs are plotted in Figure 5.16 along with the inner decoder EXIT curve of the URC-2SD

scheme at p = 0.15 and p = 0.16. As gleaned from the figure, all outer decoder EXIT curves plotted in ‘solid’

lines exhibit a convergence threshold of pth = 0.15, i.e. a marginally open tunnel exists for p = 0.15. If the

depolarizing probability is increased beyond 0.15, the inner and outer decoder EXIT curves will crossover,

thereby closing the tunnel. By contrast, the pair of outer decoder EXIT curves plotted in ‘dashed’ lines have

pth < 0.15. Hence, our desired optimal code C is one of those associated with pth = 0.15. It may be further

observed in Figure 5.16 that the EXIT curve labeled as ‘Optimal Outer’, whose octally represented generator

polynomials are (g1, g2) = (31, 36)8, converges faster than the others9. Therefore, we have selected it as our

optimal outer component.

The BER performance of the optimal CC of Figure 5.16 is recorded in Figure 5.17 using the simulation

parameters of Figure 5.7. As it can be observed, the turbo-cli! formulation starts around p = 0.15, which

matches the convergence threshold predicted using EXIT charts. More specifically, at p ⇔ 0.15, the system

converges to a low BER as the number of iterations increases, while for p ↖ 0.16, the performance fails to

improve upon increasing the number of iterations. This is because, as shown in Figure 5.16, the EXIT chart

tunnel closes at p = 0.16. Thus, the system fails to converge to a low BER for p ↖ 0.16. It may also

be observed that the performance only moderately improves with diminishing returns at higher number of

iterations. Furthermore, since doubling the number of iterations from I = 10 to I = 20 only improves the

performance slightly at a BER of 10→4, we may conclude that I = 20 iterations are su”cient to approach the

9The optimal outer code yields the widest area between the inner and outer EXIT curves after the
(0.5, 0.5)-point. This signifies that fewer decoding iterations are required.

1305. Near-Capacity Codes for Entanglement-Aided Classical Communication

SD scheme 2-qubit

Interleaver length 30, 000 bits

Overall system rate 1 cbits/use

Convolutional Code

Coding rate 1/2

Memory 4

(g1, g2) (31, 36)8

Table 5.7: Simulation parameters of the CC-URC-2SD scheme of Figure 5.15.

CC-URC-SD-mem4-3.gle

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

C
la

ss
ic

a
lB

E
R

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Depolarizing Probability (p)

2
S

D
C

a
p

a
ci

ty

I = 1, 2, 5, 10, 15, 20

Figure 5.17: Achievable BER performance of the CC-URC-2SD scheme of Figure 5.15 with
increasing number of iterations, i.e. I = {1, 2, 5, 10, 15, 20}. Simulation param-
eters are summarized in Table 5.7. The dashed-line at p

↑ = 0.1875 marks the
noise limit for a classical information rate of 1 cbit/use, which is obtained from
the symbol-based EACC curve of 2SD given in Figure 5.5.

(1, 1)-point of near-perfect convergence. This is also demonstrated in Figure 5.18, where the distance from

the capacity in dBs is plotted at a BER of 10→4 for the increasing number of iterations. We may observe

in Figure 5.18 that there is only a negligible improvement in performance, when the number of iterations is

increased from 15 to 20.

We further compare our symbol-based CC-URC-2SD to the bit-based IRCC-URC-2SD of Figure 5.4 in

Figure 5.19, where the uncoded BER of 2SD is also plotted. It may be observed that both systems have the

same convergence threshold of p = 0.15, which is within [10⇑log
10

(0.15

0.1875
)] = 1 dB of the achievable noise limit.

Since an IRCC has a higher encoding and decoding structural complexity than a single-component CC, we can

achieve the same convergence threshold at a lower encoding/decoding structural complexity using the symbol-

based scheme. Furthermore, the CC-URC-2SD system exhibits an improved BER performance compared to

the IRCC-URC-2SD scheme, as shown in Figure 5.19. After I = 2 iterations, the IRCC-URC-2SD arrangement

yields a BER of 10→4 at p = 0.0225, while the CC-URC-SD scheme has a BER of 10→4 at p = 0.0525.

Therefore, CC-URC-2SD outperforms the IRCC-URC-2SD arrangement by [10 ⇑ log
10

(0.0225

0.0525
)] = 3.7 dB.

5.8. Results and Discussions II 131

CC-URC-SD-gain-iter.gle

0

1

2

3

4

5

6

D
is

ta
n

ce
fr

o
m

C
a

p
a

ci
ty

(d
B

)

0 5 10 15 20 25

Number of Iterations

Figure 5.18: Performance of the CC-URC-2SD scheme of Figure 5.17, at a BER of 10→4, which
is quantified in terms of the distance from the symbol-based EACC of 2SD, i.e.
p
↑ = 0.1875, as the number of iterations is increased.

CC-compareALL2a.gle

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1

C
la

ss
ic

a
lB

E
R

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Depolarizing Probability (p)

Uncoded
CC-URC-2SD Mem 4
IRCC-URC-2SD

2
S

D
C

a
p

a
ci

ty

I = 2

I = 32 I = 20

Figure 5.19: Comparison of the achievable BER performance of the bit-based IRCC-URC-2SD
of Figure 5.4 and the symbol-based CC-URC-2SD design of Figure 5.15 using the
simulation parameters of Table 5.4 and Table 5.7, respectively.

Moreover, as demonstrated in Figure 5.8, the IRCC-URC-2SD scheme achieves perfect convergence after about

I = 32 iterations, while only I = 20 iterations are su”cient for the symbol-based CC-URC-2SD. We further

benchmark the performance against the achievable symbol-based capacity of p
↗ = 0.1875. At a BER of 10→4

and after a su”ciently high number of iterations (I = 20 for CC-URC-2SD and I = 32 for IRCC-URC-2SD),

the CC-URC-2SD scheme operates within [10 ⇑ log
10

(0.149

0.1875
)] = 1 dB of the capacity, while the IRCC-URC-

2SD regime exhibits a deviation of [10 ⇑ log
10

(0.142

0.1875
)] = 1.2 dB from the capacity. Thus, the performance of

both systems becomes comparable, once perfect convergence is achieved. However, the IRCC-URC-2SD scheme

requires 60% more iterations than the symbol-based CC-URC-SD arrangement.

1325. Near-Capacity Codes for Entanglement-Aided Classical Communication

findoutercomppaper2.gle

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

,

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Inner @ p=0.15
. Outer Mem 2

Outer Mem 3
Outer Mem 4

I E
(v

′)
I A

(v
)

IA(v′) IE(v)

Figure 5.20: Normalized EXIT curves of the CC-URC-2SD system optimized for varying con-
straint lengths. Optimal outer components are plotted here: CC(2, 1, 2) with
(g1, g2) = (7, 5)8, CC(2, 1, 3) with (g1, g2) = (17, 15)8 and CC(2, 1, 4) with
(g1, g2) = (31, 36)8. Babar et al. [?]

Design Objective II: Find the optimal 1/2-rate memory-2 and memory-3 convolutional codes, which

exhibit the best EXIT-curve shape match with URC-2SD in the CC-URC-2SD configuration, when symbol-

based iterative decoding is invoked.

Again, for the sake of finding the optimal memory-2 and memory-3 outer components, we created the

EXIT curves for all the possible codes, as we previously did in Figure 5.16. It was found that the CC(2, 1, 2)

having the generators (g1, g2) = (7, 5)8 and the CC(2, 1, 3) with generators (g1, g2) = (17, 15)8 yield the

best match. The corresponding EXIT curves for the optimized memory-2 and memory-3 CCs are plotted

in Figure 5.20 together with the optimal memory-4 CC of Figure 5.16. All codes have the same decoding

convergence threshold. The corresponding BER performance is compared in Figure 5.21 after both 2 and 20

iterations. The CC associated with a higher constraint length exhibits a lower BER before perfect convergence

is achieved, e.g. after 2 iterations as shown in Figure 5.21. Furthermore, after 20 iterations, all codes have

a similar performance at a BER of 10→4. Codes having a lower constraint length have the additional benefit

of a lower decoding complexity, since fewer states are invoked per iteration. We have further compared the

optimized symbol-based CC-URC-2SD designs for varying constraint lengths to the bit-based IRCC-URC-2SD

in Table 5.8 by quantifying their performance at a BER of 10→4 in terms of the distance (dB) from the noise

limit of p
↗ = 0.1875. All the three symbol-based configurations outperform the bit-based IRCC-URC-SD

scheme.

5.8. Results and Discussions II 133

CC-compareALL2b.gle

10
-4

2

5

10
-3

2

5

10
-2

2

5

10
-1

2

5

1
C

la
ss

ic
a

lB
E

R

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Depolarizing Probability (p)

CC-URC-2SD Mem 2
CC-URC-2SD Mem 3
CC-URC-2SD Mem 4

2
S

D
C

a
p

a
ci

ty

I = 2 I = 20

Figure 5.21: Comparison of the achievable BER performance of the symbol-based CC-URC-
2SD design of Figure 5.15 optimized for varying constraint lengths. Optimal CCs
are: CC(2, 1, 2) with (g1, g2) = (7, 5)8, CC(2, 1, 3) with (g1, g2) = (17, 15)8 and
CC(2, 1, 4) with (g1, g2) = (31, 36)8. Other simulation parameters are same as
Table 5.7.

Outer Code I = 2 I ↑ ∈

CC(2, 1, 2) 7.2 dB 1 dB

CC(2, 1, 3) 5.7 dB 1 dB

CC(2, 1, 4) 5.5 dB 1 dB

IRCC 9.2 dB 1.2 dB

Table 5.8: Comparison of the symbol-based CC-URC-2SD schemes having the optimized
CC(2, 1, 2), CC(2, 1, 3) and CC(2, 1, 4) of Figure 5.21 to the bit-based IRCC-URC-
2SD design of Figure 5.19 quantified in terms of the distance from the capacity
(noise limit p

↑ = 0.1875) at a BER of 10→4. Here ‘∈’ denotes ‘su”ciently high’
number of iterations for ensuring near-perfect convergence, which is assumed to be
I = 20 for CC-URC-2SD and I = 32 for IRCC-URC-2SD.

1345. Near-Capacity Codes for Entanglement-Aided Classical Communication

5.9 Summary and Conclusions

In this chapter, we have conceived both bit-based as well as symbol-based concatenated classical-quantum

code structures for entanglement-assisted classical communication over a quantum depolarizing channel. We

commenced with a review of the SD protocol in Section 5.2, which facilitates the transmission of N classical

bits by sending only (N ↑ 1) qubits over the noisy quantum channel, while one qubit is pre-shared with the

receiver. This results in a transmission rate of 2 cbits/use for the 2SD protocol of Section 5.2.1 and a rate

of N

N→1
cbits/use for the general NSD scheme of Section 5.2.2. We then derived the EACC for the general

NSD transmission in Section 5.3, which was also customized for the 2SD and 3SD schemes. In Section 5.4, we

presented our proposed bit-based IRCC-URC-SD system of Figure 5.4, which relies on channel coding operating

in the classical domain by serially concatenating an IRCC and a URC aided SD encoder. Furthermore, we

have introduced a soft-decision aided superdense decoder facilitating iterative decoding. More specifically, the

URC and SD constitute the amalgamated inner component, while the IRCC constitutes the outer component.

Therefore, iterative decoding is invoked for exchanging extrinsic information between the inner (URC-SD) and

outer (IRCC) decoders. Furthermore, we presented our EXIT-chart aided near-capacity design criterion in

Section 5.5 and demonstrated how the IRCC weighting coe”cients have to be optimized for ensuring that

a marginally open tunnel exits between the inner and outer decoders’ EXIT curves at the highest possible

depolarizing probability.

We then evaluated the performance of our bit-based IRCC-URC-SD design for 2SD and 3SD in Section 5.6.1

and 5.6.2, respectively, which was benchmarked against the bit-based EACC given in Figure 5.5. It was

demonstrated that our BER performance curves of Figure 5.8 and Figure 5.12 conform to the EXIT chart

predictions of Figure 5.7 and Figure 5.11, respectively. Furthermore, the proposed system of Figure 5.4 operates

within 0.4 dB of the achievable noise limit for both 2SD as well as 3SD schemes. More specifically, our design

exhibits a deviation of only 0.062 and 0.031 cbits/use from the corresponding 2-qubit and 3-qubit capacity

limits, respectively. We also benchmarked our system against the classical convolutional and turbo codes in

Figure 5.10 and Figure 5.14, respectively. It was shown in Figure 5.14 that the TC-2SD scheme operates within

1.9 dB of the capacity at a BER of 10→4, while the performance of our bit-based IRCC-URC-2SD is only 0.6 dB

from the capacity. Similarly, the TC-3SD scheme is 2.5 dB from the capacity at a BER of 10→4 in contrast to

the bit-based IRCC-URC-3SD, which operates within 0.75 dB.

Our bit-based code structure of Figure 5.4 incurs a capacity loss due to the symbol-to-bit conversion, as

quantified in Figure 5.5. To overcome this capacity loss, we conceived a symbol-based code design in Section 5.7,

which employs a single-component CC and a symbol interleaver in contrast to the IRCC and bit interleaver of

Figure 5.4. We optimized our symbol-based CC-URC-2SD design with the aid of non-binary EXIT charts in

Figure 5.16. Our simulation results of Section 5.8 demonstrated that the symbol-based CC-URC-2SD provides

a significant BER performance improvement, despite its lower encoding/decoding complexity than that of the

bit-based IRCC-URC-2SD. Quantitatively, after 2 iterations, our proposed symbol-based CC-URC-2SD design

incorporating a memory-4 CC outperformed the bit-based IRCC-URC-2SD scheme by 3.7 dB at a BER of

10→4, as evidenced in Figure 5.19. Furthermore, the bit-based IRCC-URC-2SD arrangement required around

60% more iterations than the symbol-based CC-URC-2SD for achieving perfect decoding convergence. We also

demonstrated in Figure 5.21 that the decoding complexity can be further reduced by using memory-2 and

memory-3 CCs, which rely on only 4 and 8 states, respectively, per iteration. It was found in Figure 5.21 that

even the memory-2 and memory-3 designs outperform the bit-based IRCC-URC-2SD. Finally, the performances

of our bit-based IRCC-URC-SD (I = 32) as well as the symbol-based CC-URC-SD (I = 20) at a BER of 10→4

are summarized in Figure 5.22, along with the TC-SD (I = 16) benchmark. To dispense with the exhaustive

search, it may be helpful to conceive a symbol-based IRCC, whose weighting coe”cients can be dynamically

adapted to provide the best EXIT-curve match with that of a given inner code, as also discussed in Chapter ??.

To conclude, in this chapter, we exploited classical redundancy for the reliable transmission of classical

information over a quantum channel. Consequently, this design approach is only appropriate when the infor-

mation to be transmitted is classical. For more general quantum communication systems, which may transmit

classical as well as quantum information, and for quantum computation systems, it is vital to invoke quantum

error correction codes, hence exploiting the redundancy in the quantum domain. In this spirit, we detail the

design principles for constructing quantum codes from the known classical codes in the next chapter.

5.9. Summary and Conclusions 135

2sd-3sd-cap-sum1.gle

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
la

ss
ic

a
lI

n
fo

rm
a

tio
n

R
a

te
(c

b
its

/u
se

)

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Depolarizing Probability (p)

Bit-based
Symbol-based

3SD

2SD

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
la

ss
ic

a
lI

n
fo

rm
a

tio
n

R
a

te
(c

b
its

/u
se

)

0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Depolarizing Probability (p)

IRCC-URC-2SD
TC-2SD
CC-URC-2SD
IRCC-URC-3SD
TC-3SD

Figure 5.22: Classical information rate (cbits/use) versus the quantum depolarizing proba-
bility for bit-based and symbol-based 2SD as well as 3SD schemes. The per-
formances of our designed bit-based IRCC-URC-SD (I = 32) and symbol-based
CC-URC-SD (I = 20), along with the TC-SD (I = 16) benchmark, are compared
at a BER of 10→4.

1365. Near-Capacity Codes for Entanglement-Aided Classical Communication

Part II

Near-Term Quantum Codes

Chapter 6
Quantum Coding Bounds and

a Closed-Form Approximation

of the Minimum Distance

versus Quantum Coding Rate

Having paved the way for the classical to quantum coding evolution throughout the chapters of Part I, in this

chapter of Part II we commence by outlining some quantum coding bounds derived from the classical coding

bounds as a function of code-rate and codeword length. In Chapter 7 we will then discuss the design and

performance of diverse Quantum Topological Error Correction Codes (QTECCs). These discussions will be

followed in Chapter ?? by demonstrating, how to apply them for the protection of quantum gates. The last

chapter of Part II of, namely Chapter ??, will finally highlight the so-called ’universal decoding’ principles,

which are applicable for the decoding of any arbitrary linear codes. The associated performance results are

based on Bose-Chaudhuri-Hocquenghem (BCH) and polar codes.

6.1 Introduction

To return to the subject of this chapter, the trade-o! between the coding rate and the minimum distance as

well as the codeword length is widely acknowledged in designing classical error correction codes. Since most

of the QSCs are derived from their classical counterparts, the same problem persists. Even though extensive

e!orts have been invested in designing the QSCs, the question of how to determine the realistically achievable

minimum distance d of a QSC given the quantum coding rate rQ and codeword length n remains unresolved.

For example, for a given codeword length of n = 128 and quantum coding rate of rQ = 1/2, the achievable

minimum distance is loosely bounded by 11 < d < 22, while for n = 1024 and rQ = 1/2, the achievable

minimum distance is bounded by 78 < d < 157. Naturally, having such a wide range of estimated minimum

distance is undesirable. For binary classical codes, this problem has been circumvented by the closed-form

139

140 6. Quantum Coding Bounds

approximation proposed by Akhtman et al. [?]. Therefore, in this chapter, we present an appealingly simple

and invertible closed-form approximation for determining the realistically achievable minimum distance of a

QSC, given the codeword length n and the quantum coding rate rQ. Our formulation is suitable for both the

idealized asymptotical case and for the practical finite-length codeword. Furthermore, our proposed closed-form

approximation is also applicable to the family of EA-QSCs.

This chapter is organized as follows. In Section 6.2, we survey the existing quantum coding bounds and

derive the bounds by exploiting the classical-to-quantum isomorphism. This is followed by our closed-form

approximation proposed for the idealized asymptotical limit in Section 6.3. Since the asymptotical limit has

limited relevance when it comes to practical implementations, we also proposed an approximation for practical

finite-length codewords. To unify the quantum coding bound approximation for both entanglement-assisted

and unassisted QSCs, we derive a closed-form approximation for arbitrarily entangled QSCs in Section 6.5.

Finally, we conclude this chapter in Section 6.6.

6.2 On Classical to Quantum Coding Bounds

In this section, we present the quantum version of the most well-known classical coding bounds, namely

the Singleton bound [?] and Hamming bound [?], which serve as the upper bounds, as well as the Gilbert-

Varshamov (GV) bound [?], which acts as the lower bound. Although there are several ways of deriving

the coding bounds in the quantum domain, we are interested in exploring the duality of coding bounds in

the classical and quantum domain. Therefore, we present the derivation of quantum coding bounds using

the classical to quantum isomorphism approach and demonstrate that the final results agree with the coding

bounds that are derived from a purely quantum domain perspective.

6.2.1 Singleton Bound

The Singleton bound of classical binary code constructions C(n, k, d) is defined as

n ↑ k ↖ d ↑ 1, (6.1)

where the notation n denotes the codeword length, k for the length of the uncoded information segment, and d

is the minimum distance amongst the legitimate codewords in the codebook C. The Singleton bound acts as an

upper bound in classical code constructions. The bound implies that the number of rows in a PCM associated

with the length of the syndrome vector, which is equal to (n↑ k), has to be greater than (d↑ 1). For the QSC

C[n, k, d], the rows of the PCM correspond to the number stabilizer operators. Since the stabilizer formalism

has to correct both the bit-flip errors and the phase-flip errors, the classical Singleton bound of Eq. (6.1) can

be readily transformed into the quantum Singleton bound as follows:

n ↑ k ↖ 2(d ↑ 1), (6.2)

where n now may also be referred to as the number of physical qubits and k is the number of logical qubits. In

order to show explicitly the trade-o! between the minimum distance and the quantum coding rate, Eq. (6.2)

can be modified to
k

n
⇔ 1 ↑ 2


d ↑ 1

n


. (6.3)

In the quantum domain, the Singleton bound is also known as the Knill-Laflamme bound [?]. The QSCs

achieving the quantum Singleton bound by satisfying the equality are classified as the quantum Maximum

Separable Distance (MDS) codes. One of the well-known QSCs having a minimum distance of d = 3 that

reaches the quantum Singleton bound is the ’perfect’ 5-qubit code C[n, k, d] = C[5, 1, 3].

6.2.2. Hamming Bound 141

6.2.2 Hamming Bound

In classical binary coding, a codebook C(n, k, d) maps the information words containing k bits into a codeword

of length n bits. The maximal number of errors, which is denoted by t that can be corrected by codebook C is

given by

t = ↙
d ↑ 1

2
∝. (6.4)

Therefore the maximum size of a binary codebook |C| = 2k is bounded by the sphere-packing bound which is

defined as:

2k ⇔
2n

t=↘ d→1

2
≃∑

j=0


n

j


. (6.5)

Since the QSCs have to correct three di!erent types of errors – namely the bit-flip errors (X), phase-flip errors

(Z), as well as both bit-flip and phase-flip errors (Y) – the size of the codebook for a QSC C[n, k, d] is now

bounded by

2k ⇔
2n

t=↘ d→1

2
≃∑

j=0


n

j


3j

. (6.6)

By modifying Eq. (6.6), we can express explicitly the bound of the quantum coding rate as a function of the

minimum distance d and codeword length n, as shown below:

k

n
⇔ 1 ↑

1

n
log

2




t=↘ d→1

2
≃∑

j=0


n

j


3j



 . (6.7)

If n tends to ′, we obtain
k

n
⇔ 1 ↑


d

2n


log

2
3 ↑ H


d

2n


, (6.8)

where H(x) is the binary entropy of x formulated as H(x) = ↑x log
2
x ↑ (1 ↑ x) log

2
(1 ↑ x). Equation (6.7)

and (6.8) are also known as the quantum Hamming bound [?], which also constitutes the upper bound for QSC

constructions.

6.2.3 Gilbert-Varshamov Bound

The analogy exploited to derive the quantum Hamming bound may also be used for transforming the classical

Gilbert-Varshamov (GV) bound, namely the lower bound for classical code constructions, into its quantum

counterpart. In the classical domain, the GV bound for classical codes C(n, k, d) is formulated as

2k ↖
2n

d→1∑
j=0


n

j


. (6.9)

Considering that the QSCs have to tackle three di!erent types of errors, the size of the codebook C[n, k, d] is
bounded by

2k ↖
2n

d→1∑
j=0


n

j


3j

. (6.10)

Hence, we can readily derive the quantum GV bound, the lower bound of the quantum coding rate as a function

of the minimum distance d and codeword length n as follows:

k

n
↖ 1 ↑

1

n
log

2




d→1∑

j=0


n

j


3j



 . (6.11)

142 6. Quantum Coding Bounds

Again, if n aprroaches ′, we obtain

k

n
↖ 1 ↑


d

n


log

2
3 ↑ H


d

n


, (6.12)

where H(x) is the binary entropy of x. The quantum GV bounds in Eq. (6.11) and (6.12) are valid for non-

CSS QSCs. However, a special case should be considered for dual-containing quantum CSS codes. It will be

shown in Section 6.4 that for some dual-containing CSS codes the code constructions violate the quantum GV

bound. Hence, a special bound has to be derived to accomodate the dual-containing CSS codes. In the classical

domain, a binary code C(n, k, d) maps a k-bit information word into an n-bit encoded codeword. The number

of syndrome measurement operators is determined by the number of rows in the PCM H of C(n, k, d), which

is equal to 2(n→k). With a simple modification of Eq. (6.9), the number of syndrome measurement operators

in C(n, k, d) is bounded by

2(n→k) ⇔




d→1∑

j=0


n

j




 . (6.13)

Recall that the dual-containing quantum CSS codes rely on dual-containing classical binary codes, which satisfy

the symplectic criterion of Eq. (??) and also comply with the constraint of Hz = Hx. Explicitly, half of the

stabilizer operators of C[n, k, d] are mapped onto Hz , while the other half are mapped onto Hx. Therefore,

the number of stabilizer operators of a dual-containing quantum CSS code is bounded by

2
(n→k)

2 ⇔




d→1∑

j=0


n

j




 . (6.14)

Based on Eq. (6.14), we may formulate the lower bound on the quantum coding rate of a dual-containing

quantum CSS code as follows:

k

n
↖ 1 ↑

2

n
log

2




d→1∑

j=0


n

j




 . (6.15)

As n approaches ′, we obtain the quantum GV bound for CSS codes, as suggested in [?], which is formulated

as
k

n
↖ 1 ↑ 2H


d

n


, (6.16)

where H(x) is the binary entropy of x. Based on the discussions above, we compare the asymptotic classical

and quantum coding bounds in Table. 6.1 as well as in Fig. 6.2. Since the QSCs are designed to mitigate both

bit-flip errors as well as phase-flip errors, the bounds of QSCs are significantly lower than those of their classical

counterparts. Nevertheless, the general concept still holds, the Singleton bound serves as a loose upper bound,

whilst the Hamming bound is a tighter upper bound.

6.3 Quantum Coding Bounds in the Asymptotical Limit

Although the classical to binary isomorphism assists us in the development of QSCs from the well-known

classical code designs, the issue of determining the actual achievable minimum distance, given the coding

rate and the codeword length remains unresolved. In the classical domain as we described previously, finding

the unique solution to the realistically achievable minimum distance of binary classical codes is still an open

problem, even though the upper bound and lower bound of the quantum coding rate versus the achievable

minimum distance can be found in the literature [?, ?, ?,?,?]. The bounds for the classical code constructions

are listed in Table. 6.2, while the corresponding asymptotic bounds are also plotted in Fig. 6.1. Observe in

the figure that we normalized d by n for the sake of being able to compare di!erent-length codes under fair

experimental conditions. To elaborate briefly, it is plausible that a longer code is capable of achieving a higher

minimum distance and a higher error correction capability, but this normalized minimum distance allows us

to gauge, whether the codelength extension does or does not yield an attractive increase in terms of d. This is

particularly important, because longer codes generally impose a higher decoding complexity. In the classical

6.3. Quantum Coding Bounds in the Asymptotical Limit 143

Table 6.1: Comparison of various classical and quantum coding bounds.

Coding Bound
Asymptotic

Classical Quantum

Singleton k

n
′ 1↔


d

n


k

n
′ 1↔ 2


d

n



Hamming k

n
′ 1↔H


d

2n


k

n
′ 1↔


d

2n


log

2
3↔H


d

2n



GV k

n
∞ 1↔H


d

n


k

n
∞ 1↔


d

n


log

2
3↔H


d

n



Coding Bound
Finite-length

Classical Quantum

Singleton k

n
′ 1↔


d→1

n


k

n
′ 1↔ 2


d→1

n



Hamming k

n
′ 1↔ 1

n
log

2




t=⇐ d→1

2
⇒

j=0


n

j




 k

n
′ 1↔ 1

n
log

2




t=⇐ d→1

2
⇒

j=0


n

j


3j





GV k

n
∞ 1↔ 1

n
log

2


d→1
j=0


n

j




k

n
∞ 1↔ 1

n
log

2


d→1
j=0


n

j


3j


Coding rate = r = k

n

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Singleton bound

Hamming bound

MRRW bound

Gilbert-Varshamov bound

Closed-form approximation

0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

Figure 6.1: The trade-o! between classical coding rate r and normalized minimum distance ⇁

as described by classical binary coding bounds. A simple quadratic function r(⇁) =
(2⇁ ↔ 1)2, which satisfies all of the bounds, acts as a closed-form approximation
for classical binary error correction codes as suggested in [?]. Chandra et al. [?]

domain, the tightest known lower bound was derived by Gilbert [?]. The Hamming bound [?] serves as a tight

upper bound for high coding rates, while the McEliece-Rodemich-Rumsey-Welch (MRRW) bound [?] serves as

the tightest upper bound for moderate and low coding rates. As seen in Fig. 6.1, the gap between the tight

upper bounds and the lower bound is quite narrow. It was observed in [?] that a simple quadratic expression

144 6. Quantum Coding Bounds

Coding rate (r), Quantum coding rate (rQ)
0 0.2 0.4 0.6 0.8 1

N
or
m
al
iz
ed

m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Quantum

Classical

Gilbert-Varshamov bound

Singleton bound

Hamming bound

Figure 6.2: The evolution from asymptotic classical binary coding bounds to the asymptotic
quantum coding bounds. Chandra et al. [?]

r(ϱ) = (2ϱ ↑ 1)2, where ϱ denotes the normalized minimum distance d/n, satisfies all the known asymptotic

bounds.

Table 6.2: The coding bounds for classical code constructions, with a minor modification
from [?].

Classical Bound Finite Asymptotic Notes

Singleton [?]

k

n

⇐ 1 →


d → 1

n


k

n

⇐ 1 →


d

n


a loose upper bound

Hamming [?]

k

n

⇐ 1 →
1

n

log2





t=↘ d→1

2
≃

∑

j=0


n

j





k

n

⇐ 1 → H


d

2n


tight upper bound for

very high code rate

MRRW [?]

k

n

⇐ H




1

2

→

 d

n


1 →

d

n



 tightest known asymp-

totic upper bound for

medium and low rate

codes

Plotkin [?]

k

n

⇐
1

n


1 → log2


2 →

n

d


tight upper bound for

finite-length at ε >
1

2

GV [?]

k

n

⇒ 1 →
1

n

log2




d→1∑

j=0


n

j




k

n

⇒ 1 → H


d

n


tightest known lower

bound

The well-known bounds for QSC constructions are listed in Table. 6.3 and they are also portrayed in

Fig. 6.3. The quantum Singleton bound serves as the loose upper bound, the quantum Hamming bound as a

tighter upper bound, and quantum GV bound as the tightest lower bound. However, a wide discrepancy can

be observed between the upper bound and the lower bound. For the sake of narrowing this gap, the quantum

Rain bound was derived using quantum weight enumerators [?]. To elaborate a little further, the quantum

Rain bound states that any quantum code of length n can correct at most ↙n→1

6
∝ errors. The resultant bound

is only a function of codeword length n. Hence, under the asymptotic limit, the quantum Rain bound is a

6.3. Quantum Coding Bounds in the Asymptotical Limit 145

straigth line at ϱ = 1/3, which does not exhibit any further trade-o! between the quantum coding rate and the

minimum distance. In order to enhance the accuracy of the quantum Rain bound, Sarvepalli and Klappenecker

derived a quantum version of the Griesmer bound [?]. By utilizing the quantum Griesmer bound and also the

quantum Rain bound, a stronger bound was created for CSS type constructions. In this treatise, we will refer

to this particular bound as the quantum Griesmer-Rain bound. For the sake of tightening the upper bound,

Ashikhmin and Litsyn generalized the classical linear programming approach to the quantum domain using the

MacWilliams identities [?]. The resultant quantum linear programming bound was proven to be tighter than

the quantum Hamming bound in the low coding rate domain. As the quantum coding rate approaches zero,

the achievable normalized minimum distance returned by the quantum Griesmer-Rain bound becomes ϱ = 0.33

and that of the quantum linear programming bound becomes ϱ = 0.32.

Recall from Section 3.3 that the QSCs may exhibit either a CSS or non-CSS structure. For CSS codes,

the minimum distance is upper-bounded by the quantum Hamming bound for moderate to high quantum

coding rates and by the quantum Griesmer-Rain bound for low coding rates, while it is also lower-bounded

by the quantum GV bound for CSS codes. On the other hand, for non-CSS QSCs, the minimum distance

is upper-bounded by the quantum Hamming bound for moderate to high coding rates and by the quantum

linear-programming bound for low coding rates. It is also lower-bounded by the quantum GV bound for general

quantum stabilizer codes. Even though substantial e!orts have been invested in tightening the gap between the

upper and lower bounds, a significant amount of discrepancy persists. Hence, creating a simple approximation

may be beneficial for giving us further insights into the realistic construction of QSCs.

Table 6.3: The well-known quantum coding bounds found in the literature.

Quantum Bound Finite-Length Asymptotic Notes

Singleton [?]

k

n

⇐ 1 → 2


d → 1

n


k

n

⇐ 1 → 2


d

n


very loose upper

bound

Hamming [?]

k

n

⇐ 1 →
1

n

log2





t=↘ d→1

2
≃

∑

j=0


n

j


3
j




k

n

⇐ 1 →


d

2n


log2 3 → H


d

2n


tight upper bound

for moderate and

high coding rate

Griesmer-Rain [?, ?]

k

n

⇐ 1 →


3d → 4

n


k

n

⇐ 1 → 3


d

n


tighter upper

bound for low

coding rates CSS

codes

Linear

k

n

⇐ H (ϑ) + ϑ log2 3 → 1

strengthen the upper

Programming [?] ϑ =

3

4

→
1

2

ε →
1

2

√
3ε (1 → ε) bound

GV [?]

k

n

⇒ 1 →
1

n

log2




d→1∑

j=0


n

j


3
j




k

n

⇒ 1 →


d

n


log2 3 → H


d

n


tight lower bound

for general stabi-

lizer codes

GV for CSS [?]

k

n

⇒ 1 → 2H


d

n


tight lower bound

for CSS codes

k

n

⇒ 1 →
2

n

log2




d→1∑

j=0


n

j



 lower bound for

dual-containing

CSS codes

Analogous to the classical closed-form approximation of [?], we also found that there exists a simple

closed-form quadratic approximation, which satisfies all the well-known quantum coding bounds. Explicitly

for quantum stabilizer codes, the following quadratic function was found to satisfy all the quantum coding

bounds:

rQ (ϱ) =
32

9
ϱ
2 ↑

16

3
ϱ + 1 for 0 ⇔ ϱ ⇔ 0.2197. (6.17)

We will further elaborate on the selection of this function in Section 6.5. It is important to note that the

closed-form approximation is subject to the asymptotical bound for either CSS type or non-CSS type quantum

146 6. Quantum Coding Bounds

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Quantum Singleton Bound

Quantum Hamming Bound

Quantum Griesmer-Rain Bound for CSS codes

Quantum Linear Programming Bound

Quantum GV Bound for Stabilizer Codes

Quantum GV Bound for CSS Codes

Closed Form Approximation

0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

Figure 6.3: The trade-o! between quantum coding rate rQ and normalized minimum distance
⇁ is characterized using quantum coding bounds. A simple quadratic closed-form
rQ (⇁) = 32

9
⇁
2
↔

16

3
⇁ + 1 satisfies all of the well-known quantum coding bounds,

which is portrayed by black solid lines. The blue dashed lines portrays the upper
bounds, while the red dashed lines denotes the lower bounds. Chandra et al. [?]

code constructions. The closed-form approximation in Eq. (6.17) o!ers the benefit of simplicity and it has the

inverse function as given by

ϱ(rQ) =
3
↓

2 ↑
√

rQ + 1


4
↓
2

for 0 ⇔ rQ ⇔ 1. (6.18)

This closed-form approximation suggests that it is possible to create a code construction whose minimum

distance grows linearly with the codeword length at the asymptotical limit since for a given quantum coding

rate rQ, it will correspond to a unique constant value of ϱ.

6.4 Quantum Coding Bounds on Finite-Length Codes

The asymptotic limits are only relevant for n ↔ ′. For practical applications, we require code constructions

with shorter codeword length, which necessitates a di!erent formulation for the quantum coding bounds.

Finding a closed-form approximation will be beneficial for determining the realistically attainable minimum

distance for the given code parameters. The well-known quantum coding bounds are listed in Table 6.3 and also

portrayed in Fig. 6.3. It is clearly seen that a simple quadratic approximation can satisfy all the well-known

bounds. For the finite-length quantum codes, we propose the closed-form approximation of

rQ(n, ϱ) = aϱ
2 + bϱ + c. (6.19)

To arrive at the closed-form approximation in Eq. (6.19), we have to determine three definitive points corre-

sponding to realistic quantum code constructions. As an example in this treatise, we use three QSC construc-

tions from the literature as listed below:

6.4. Quantum Coding Bounds on Finite-Length Codes 147

For uncoded logical qubits and unity rate codewords, we have

rQ(n, ϱ) = r(n,
1

n
) = 1. (6.20)

For a high coding rate, we will use the construction given in [?]. For n = 2j , there is a quantum

stabilizer code construction [n, k, d] = [n, n ↑ j ↑ 2, 3], which can be used to correct t = 1 error. This

code construction reaches the quantum Hamming bound. For arbitrary n, it can be written as

rQ(n, ϱ) = r(n,
3

n
) = 1 ↑

1

n
log

2
(n) ↑

2

n
. (6.21)

For a very low coding rate, we are using the quantum stabilizer code constructions derived from quadratic

residues [?,?]. By using simple linear regression, we arrive at

rQ(n, ϱ) = r(n,
2

n
+

1

4
) =

1

n
. (6.22)

Table 6.4: The list of QSC constructions that are used to plot practical code in Fig. 6.4.

C[n, k, d] for n = 31 and n = 32

QBCH [?] [31,1,7], [31,11,5], [31,21,3]

QRM [?] [32,10,6], [32,25,3]

QGF(4) [?] [31,1,11], [31,2,10], [31,21,4], [31,26,2], [32,1,11], [32,16,6], [32,22,4],
[32,25,3], [32,30,2]

C[n, k, d] for n = 63 and n = 64

QBCH [?] [63,27,7], [63,39,5], [63,45,4], [63,51,3], [63,57,2]

QRM [?] [64,35,6], [64,56,3]

QGF(4) [?] [63,51,4], [63,55,3], [63,60,2], [64,44,6], [64,48,5], [64,52,4], [64,56,3],
[64,62,2]

C[n, k, d] for n = 127 and n = 128

QBCH [?] [127,1,19], [127,15,16], [127,29,15], [127,43,13], [127,57,11],
[127,71,9], [127,85,7], [127,99,5], [127,113,3]

QRM [?] [128,35,12], [128,91,6], [128,119,3]

QGF(4) [?] [127,114,4], [127,118,3], [127,124,2], [128,105,6], [128,110,5],
[128,114,4], [128,119,3], [128,126,2]

Using the three definitive points from the constructions given in Eq. (6.20), (6.21) and (6.22), we arrive at

a system of three linear equations, which have a unique value of a, b and c for an arbitrary value of n. More

explicitly, we have

r1 = aϱ
2

1
+ bϱ1 + c, (6.23)

r2 = aϱ
2

2
+ bϱ2 + c, (6.24)

r3 = aϱ
2

3
+ bϱ3 + c. (6.25)

148 6. Quantum Coding Bounds

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
or
m
al
iz
ed

m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[32,1,11]

[32,16,6]

[32,22,4]

[32,30,2]

[31,1,11]

[31,2,10]

[31,21,4]

[31,24,3]

[31,26,2]

[32,10,6]

[32,25,3]

[31,1,7]

[31,11,5]

[31,21,3]

Quantum Singleton Bound

Quantum Hamming Bound

Quantum Griesmer-Rain Bound

Quantum GV Bound stabilizer codes

Quantum GV Bound dual CSS codes

Closed Form Approximation

Practical Quantum Codes

(a) n = 31 and n = 32.

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
or
m
al
iz
ed

m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[64,35,6]
[63,27,7]

[63,39,5]
[63,45,4]

[63,51,3]

[63,51,4]

[63,55,3]

[64,44,6]

[64,48,5]

[64,52,4]

[64,56,3]

Quantum Singleton Bound

Quantum Hamming Bound

Quantum Griesmer-Rain Bound

Quantum GV Bound stabilizer codes

Quantum GV Bound dual CSS codes

Closed Form Approximation

Practical Quantum Codes

(b) n = 63 and n = 64.

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
or
m
al
iz
ed

m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[127,1,19]

[127,15,16]

[127,29,15][127,43,13]
[127,57,11]

[127,71,9]
[127,85,7]

[127,99,5]

[127,113,3]

[128,119,3]

[128,91,6]

[128,35,12]

[128,105,6]

[128,110,5]

[128,114,4]

Quantum Singleton Bound

Quantum Hamming Bound

Quantum Griesmer-Rain Bound

Quantum GV Bound stabilizer codes

Quantum GV Bound dual CSS codes

Closed Form Approximation

Practical Quantum Codes

(c) n = 127 and n = 128.

Figure 6.4: Quantum coding rate rQ versus normalized minimum distance ⇁ for finite-length
QSCs. The points for portraying the practical QSCs are taken from QBCH
codes [?], QRM codes [?] and quantum codes from GF (4) formulation [?].

Chandra et al. [?]

The analytical solution of Eq. (6.23), (6.24), and (6.25) is based on the following unique parameter values:

a =
(r3 ↑ r2) ϱ1 + (r1 ↑ r3) ϱ2 + (r2 ↑ r1) ϱ3

(ϱ2 ↑ ϱ1) (ϱ3 ↑ ϱ2) (ϱ1 ↑ ϱ3)
, (6.26)

b =
(r2 ↑ r3) ϱ

2

1
+ (r3 ↑ r1) ϱ

2

2
+ (r1 ↑ r2) ϱ

2

3

(ϱ2 ↑ ϱ1) (ϱ3 ↑ ϱ2) (ϱ1 ↑ ϱ3)
, (6.27)

c =
(r3ϱ2 ↑ r2ϱ3) ϱ

2

1
+ (r1ϱ3 ↑ r3ϱ1) ϱ

2

2
+ (r2ϱ1 ↑ r1ϱ2) ϱ

2

3

(ϱ2 ↑ ϱ1) (ϱ3 ↑ ϱ2) (ϱ1 ↑ ϱ3)
. (6.28)

Despite the cluttered appearance of the analytical solution, it contains a simple closed-form approximation,

because the value of r1, r2, r3, ϱ1, ϱ2 and ϱ3 may be readily calculated using Eq. (6.20), (6.21) and (6.22).

Furthermore, the closed-form approximation derived for finite-length codewords has an inverse function of

ϱ(n, rQ) =
↑b ↑

√
b2 ↑ 4a(c ↑ rQ)

2a
. (6.29)

6.4. Quantum Coding Bounds on Finite-Length Codes 149

The accuracy of the proposed method is now tested for QSCs having codeword lengths of n = {31, 32, 63,
64, 127, 128} as shown in Fig. 6.4. The list of practical QSC constructions which are used in these plots can

be seen in Table. 6.41. The closed-form approximation lies entirely between the upper and the lower quantum

coding bounds. The practical QSCs are also plotted in the same figure to show the relative position with

respect to the quantum coding bounds. The QSCs based on [?,?] lay perfectly on the approximate curves, but

it has been observed in [?] that as the codeword length increases and the quantum coding rate is reduced, the

exact value of the minimum distance becomes unclear. As depicted in Fig. 6.4(b) and 6.4(c), we can hardly

find definitive points associated with actual codes to plot in the low quantum coding-rate region constructed

from quantum GF(4). However, the QBCH code constructions lie quite close to the GV lower bound for dual-

containing CSS codes. As predicted, since the constructions of QBCH codes rely on dual-containing CSS type

constructions, which employ two separate PCMs for their stabilizer operators, we expect a lower coding rate

compared to their non-CSS relatives.

The proposed closed-form approximation o!ers substantial benefits for the development of QSCs. We can

readily find an approximation of the realistically achievable minimum distance for given code parameters. For

instance, for half-rate quantum stabilizer codes of length 128, the minimum distance is bounded by 11 < d < 22.

By using our formulation, we obtain d(n = 128, rQ = 1/2) = 17 from our finite-length approximation. Likewise,

for half-rate quantum stabilizer codes of length 1024, the minimum distance is bounded by 78 < d < 157. Using

our method, we can obtain d(n = 1024, rQ = 1/2) = 103 from our asymptotic bound approximation. One of

the logical questions that may arise is concerned with the existence of the corresponding codes. For example,

does a half-rate QSCs relying on n = 128 physical qubits and a minimum distance of d = 16 exist? The answer

to this question is not definitive. Let us refer to the code table given in [?], which is mainly based on the QSC

constructions of [?]. Due to space limitations, we are unable to capture the entire table and the associated

PCM formulation. However, it is shown in [?] that a half-rate QSC relying on n = 128 physical qubits indeed

exists, although the minimum distance is only loosely specified by the bounds of 11 < d < 20. The bound is

similar to the quantum GV bound and to the quantum Hamming bound of the minimum distance given by

11 < d < 22. By contrast, upon using our approximation, we have a minimum distance of d = 17, which is

again only an approximation and it does not imply the existence of a quantum code having a similar minimum

distance. Nonetheless, we believe that our approximation is beneficial for approximating the attainable QBER

performance of QSCs based on hard-decision syndrome decoding for short to moderate codeword length as

follows (without considering degeneracy):

QBER(n, d, p) = 1 ↑
t=↘ d→1

2
≃∑

i=0


n

i


p
i(1 ↑ p)n→i

, (6.30)

where the realistically achievable value of d is obtained from our approximation. In our view, the combination

of our closed-form approximation and the QBER of Eq. (6.30) constitutes a useful benchmarker for the future

development of QSCs, since it quantifies the realistically achievable QBER performance based on hard-decision

syndrome-based decoding.

The evolution of our closed-form approximation as the codeword length increases for n = {31, 32, 63, 64,
127, 128} can be seen in Fig. 6.5. By using our example, it can be clearly observed that as the codeword length

increases, the approximation derived for finite-length codes slowly approaches the closed-form approximation

of the asymptotic bound. However, inaccuracies emerge as the codeword length increases. This phenomenon

emerges because we do not have definitive QSC constructions to rely on in the low coding rate region. In our

approximation example, we are using the QSCs from quadratic residues based construction for the low coding

rate region and the number of QSC constructions is limited to a handful codeword lengths. By contrast, in

the low coding rate region of classical codes, we have the simple repetition codes relying on the construction

C(n, 1) having a normalized minimum distance of ϱ(n, r) = ϱ(n, 1

n
) = 1.

Albeit the finite and infinite-length-based approximation curves start to deviate for a very long codeword

n ∞ 100, the minimum distance still grows with the codeword length, as portrayed in Fig. 6.6. Both the finite-

1A comprehensive list of practical quantum stabilizer codes can be found online at [?]. In this treatise,
we only consider quantum stabilizer codes with a definitive minimum distance in the list.

150 6. Quantum Coding Bounds

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

asymptotic closed-form

approximation

n = 16

n = 32

n = 64

n = 512

n = 128

n = 256

Figure 6.5: The evolution of our closed-form approximation for finite-length codewords pa-
rameterized by the codeword length n. Chandra et al. [?]

length approximation and asymptotic approximation follow the same trend. For n ∞ 100, we can simply utilize

the asymptotic formulation given in Eq. (6.17) for calculating the quantum coding rate for a certain desired

minimum distance, or the inverse of the asymptotic formulation in Eq. (6.18) to determine the realistically

achievable minimum distance, given the quantum coding rate. We may conclude from this figure that it is

indeed possible to have a QSC construction associated with a growing minimum distance, as the codeword

length increases.

6.5 The Bounds on Entanglement-Assisted Quantum

Stabilizer Codes

One of the distinctive characteristics of quantum systems, which does not bear any resemblance with the

classical domain is the ability of creating entanglement. This unique property can be exploited for increasing

the achievable minimum distance of quantum codes, hence increasing the error correction capability of QSCs.

The EA-QSC constructions are denoted by C(n, k, d; c), where c denotes the number of preshared entangled

qubits. It is important to note that even though the EA-QSCs expand the Pauli group operators from Pn into

P(n+c), we only consider the error operators in Pn. This is because the paradigm of EA-QSCs assumes that

the preshared entangled qubits are not subjected to transmission error. Hence, for EA-QSCs, the quantum

Hamming bound of Eq. (6.6) can be modified to

2k ⇔
2n+c

t=↘ dea→1

2
≃∑

j=0


n

j


3j

, (6.31)

where the notation dea denotes the minimum distance of EA-QSCs. Equation (6.31), can be rewritten to show

explicitly the trade-o! between the quantum coding rate rQ and the minimum distance dea of EA-QSCs as

6.5. The Bounds on Entanglement-Assisted Quantum Stabilizer Codes 151

Codelength (n)
200 400 600 800 1000 1200 1400 1600 1800 2000

A
p
p
ro
x.

m
in
im

u
m

d
is
ta
n
ce

(d
)

0

50

100

150

200

250

300

Closed-form approximation for finite length code

Closed form approximation for asymptotic bound

r = 2/3

r = 1/2

r = 1/3

Figure 6.6: The growth of achievable minimum distance for short block QSCs versus the code-
word length. Chandra et al. [?]

follows:

k

n
⇔ 1 ↑

1

n
log

2




t=↘ dea→1

2
≃∑

j=0


n

j


3j



 +


c

n


. (6.32)

When n tends to ′, we have

k

n
⇔ 1 ↑


dea

2n


log

2
3 ↑ H


dea

2n


+


c

n


. (6.33)

As encapsulated in Eq. (6.33), an additional conflicting parameter is involved in determining the quantum

coding bounds, namely the entanglement consumption rate. The entanglement consumption rate E is the

ratio between the number of preshared maximally entangled qubits c to the number of physical qubits n as

encapsulated below:

E =
c

n
. (6.34)

A maximally entangled2 QSCs requires c = n↑k preshared qubit pairs. Hence, for a maximally entangled

QSCs, the quantum Hamming bound of Eq. (6.33) can be reformulated as follows by substituting c = n ↑ k

into Eq. (6.33), yielding:
k

n
⇔ 1 ↑

1

2


dea

2n


log

2
3 ↑ H


dea

2n


. (6.35)

Let us now consider the more general cases, where we may have a range of di!erent entanglement ratios

0 ⇔ ς ⇔ 1. The entanglement ratio is defined as the ratio of the number of preshared qubits c to that of the

maximally-entangled preshared qubits (n ↑ k), yielding:

ς =
c

n ↑ k
. (6.36)

2For maximally-entangled QSCs, all of the auxiliary qubits required to generate the encoded state
are already preshared using maximally entangled qubit paies. Hence, the maximal number of entangled
qubits that can be shared beforehand is equal to the total number of auxiliary qubits, which is equal to
(n↑ k)

152 6. Quantum Coding Bounds

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Quantum Singleton Bound

Quantum Hamming Bound

Quantum Linear Programming Bound

Quantum GV Bound

Closed Form Approximation

Figure 6.7: The asymptotic quantum coding bounds on EA-QSCs for maximally-entangled
constructions. A simple quadratic function r(⇁) = 16

9
⇁
2
↔

8

3
⇁+1 satisfies all of the

quantum coding bounds. Chandra et al. [?]

The quantum Hamming bound for EA-QSCs with arbitrary entanglement ratios of ς is given by

k

n
⇔ 1 ↑

1

1 + ς


dea

2n


log

2
3 ↑ H


dea

2n


. (6.37)

Table 6.5: The entanglement-assisted quantum coding bounds found in the literature.

Quantum

Bound

Finite-Length Asymptotic Notes

Singleton

[?]

k

n

⇐ 1 → 2


dea → 1

n


+


c

n


k

n

⇐ 1 → 2


dea

n


+


c

n


very loose

upper

bound

Hamming

[?]

k

n

⇐ 1 →
1

n

log2





t=↘ dea→1

2
≃

∑

j=0


n

j


3
j




+


c

n


k

n

⇐ 1 →


dea

2n


log2 3 → H


dea

2n


+


c

n


tight upper

bound

Linear

k

n

⇐ H (ϑ) + ϑ log2 3 → 1 +


c

n


strengthen

the

Progr.

[?]

ϑ =

3

4

→
1

2

ε →
1

2

√
3ε (1 → ε) upper

bound

Plotkin

[?,?]

dea

n

⇐
3


4
k


8


4k → 1



1 +


k

n


+


c

n


dea

n

⇐
3

8


1 +


k

n


+


c

n


upper

bound for

minimum

distance

GV [?]

k

n

⇒ 1 →
1

n

log2




dea→1∑

j=0


n

j


3
j



 +


c

n


k

n

⇒ 1 →


dea

n


log2 3 → H


dea

n


+


c

n


tight lower

bound

The rest of the quantum coding bounds can be readily derived using similar procedures. The resultant

6.5. The Bounds on Entanglement-Assisted Quantum Stabilizer Codes 153

Table 6.6: The asymptotic quantum coding bounds for EA-QSCs given the arbitrary entan-
glement ratios of ϑ. Chandra et al. [?]

Quantum Bound Entanglement Ratio = ϖ Maximally Entangled (ϖ = 1)

Singleton [?]

k

n

⇐ 1 →


2

1 + ϖ


dea

n


k

n

⇐ 1 →


dea

n



Hamming [?]

k

n

⇐ 1 →
1

1 + ϖ


dea

2n


log2 3 → H


dea

2n


k

n

⇐ 1 →
1

2


dea

2n


log2 3 → H


dea

2n



Linear Programming [?]

k

n

⇐
1

1 + ϖ

(H (ϑ) + ϑ log2 3 → 1 + ϖ)

k

n

⇐
1

2

(H (ϑ) + ϑ log2 3)

Plotkin [?, ?]

dea

n

⇐
3

8


1 + ϖ +

k

n

(1 → ϖ)


dea

n

⇐
3

4

GV [?]

k

n

⇒ 1 →
1

1 + ϖ


dea

n


log2 3 → H


dea

n


k

n

⇒ 1 →
1

2


dea

n


log2 3 → H


dea

n



entanglement-assisted quantum coding bounds are portrayed in Fig. 6.7 and 6.8. By substituting the entangle-

ment ratio of ς = 0, we arrive again at the quantum coding bounds derived for unassisted QSCs. By contrast,

upon substituting the entanglement ratio of ς = 1 into Eq. (6.37), we arrive at the quantum coding bounds

of maximally-entangled QSCs. Figure 6.7 portrays the bounds on maximally-entangled QSCs. It is observed

in Fig. 6.7 that at the point (ϱ = 0.75), the quantum GV bound (lower bound) intersects the quantum linear

programming bound (upper bound). Indeed, it is confirmed by the quantum Plotkin bound of the maximally-

entangled QSC constructions shown in Table 6.6 that for asymptotical maximally-entangled QSCs the highest

normalized minimum distance that can be achieved is ϱ = 0.75. Hence, based on this observation, we pro-

pose a simple quadratic function as the closed-form approximation of entanglement-assisted quantum stabilizer

codes that will satisfy all of the well-known bounds. A quadratic function associated with a symmetry line at

(ϱ = 0.75) and crossing the point of (ϱ, r) = (0, 1) is given by

rQ(ϱ) =
16

9
ϱ
2 ↑

8

3
ϱ + 1 for 0 ⇔ ϱ ⇔ 0.75. (6.38)

The simple quadratic approximaton given in Eq. (6.38), can also be inverted, yielding

ϱ(rQ) =
3

4
(1 ↑ ↓

rQ) for 0 ⇔ rQ ⇔ 1. (6.39)

From the simple quadratic function in Eq. (6.38), we can also derive a simple closed-form approximation for a

given arbitrary entanglement ratio of 0 ⇔ ς ⇔ 1, as shown below:

rQ(ϱ) =
1

1 + ς


32

9
ϱ
2 ↑

16

3
ϱ + 1 + ς


, (6.40)

for 0 ⇔ ϱ ⇔ 3

4


1 ↑

√
1→ϖ

2


and 0 ⇔ ς ⇔ 1. The expression given in Eq. (6.40) may be inverted to arrive at

the following equation:

ϱ(rQ) =
3(

↓
2 ↑

√
rQ(1 + ς) + (1 ↑ ς)

4
↓
2

, (6.41)

for 0 ⇔ rQ ⇔ 1 and 0 ⇔ ς ⇔ 1.

The simple closed-form approximation given in Eq. (6.40) and (6.41) satisfies all entanglement-assisted

quantum coding bounds for arbitrary entanglement ratios, as confirmed by Fig. 6.8. We should point out

at this stage that as we substitute the value of ς = 0 into Eq. (6.40) and (6.41), we arrive at the closed-

form approximation presented in the Eq. (6.17) and (6.18) for unassisted asymptotic quantum coding bounds.

Hence, we completed our closed-form approximations conceived for all of the di!erent constructions of quantum

stabilizer codes.

154 6. Quantum Coding Bounds

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Quantum Singleton Bound

Quantum Hamming Bound

Quantum Linear Programming Bound

Quantum GV Bound

Closed Form Approximation

(a) ς = 0.25.

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Quantum Singleton Bound

Quantum Hamming Bound

Quantum Linear Programming Bound

Quantum GV Bound

Closed Form Approximation

(b) ς = 0.50.

Quantum coding rate = rQ = k
n

0 0.2 0.4 0.6 0.8 1

N
o
rm

a
li
ze
d
m
in
im

u
m

d
is
ta
n
ce

δ
=

d n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Quantum Singleton Bound

Quantum Hamming Bound

Quantum Linear Programming Bound

Quantum GV Bound

Closed Form Approximation

(c) ς = 0.75.

Figure 6.8: The asymptotic quantum coding bounds on EA-QSCs for entanglement ratios
ϑ = {0.25, 0.50, 0.75}. Chandra et al. [?]

6.6 Summary and Conclusions

We have conducted a survey of quantum coding bounds, which describe the trade-o! between the quantum

coding rate and the error correction capability of a wide range of QSC constructions. Furthermore, we provided

insights into their relationships with their classical counterparts. For the family of unassisted QSCs, we have

provided both lower and upper bounds for both CSS and non-CSS code constructions. For the EA-QSCs,

we have presented the quantum coding bounds for maximally-entangled constructions and also for arbitrary

entanglement ratios.

We have also proposed a closed-form approximation as a beneficial tool for analyzing the performance of

QSCs. The resultant closed-form approximation may indeed be used as a simple benchmark for developing

QSCs, because the resultant minimum distance ϱ and quantum coding rate rQ values from our approximations

are unambiguous. For instance, for a half-rate quantum stabilizer code having a given codeword length of

n = 128, the minimum distance is bounded by 11 < d < 22. Upon using our approximation, we arrive

at d(n = 128, rQ = 1/2) = 16 from our finite-length approximation. Likewise, for a half-rate quantum

stabilizer code having the codeword length of 1024, the minimum distance is bounded by 78 < d < 157. By

using our proposal, we have an approximate minimum distance of d(n = 1024, rQ = 1/2) = 103 from our

asymptotic bound approximation. Ultimately, the proposed method can be utilized as an e”cient tool for the

6.6. Summary and Conclusions 155

characterization of quantum stabilizer codes.

156 6. Quantum Coding Bounds

Chapter 7
Quantum Topological Error

Correction Codes: The

Classical-to-Quantum

Isomorphism Perspective

7.1 Introduction

In Chapter 3 and Chapter 6, we have demonstrated that classical error correction codes can be transformed

into their quantum domain counterparts and we can readily characterize their associated QBER performances

by exploiting the classical-to-quantum isomorphism as a function of their code parameters. However, the real

physical implementations of quantum computers impose additional challenges that prevent us from directly

transplanting QSCs. Let us observe the layout of the physical qubits in some of IBM’s quantum computers in

Fig. 7.1. In these figures, the circles represent the qubits and the lines with the arrows represent the interactions

among the qubits. Observe that any quantum computation task performed by the quantum computers is

designed based on local qubit interactions. However, most of the QSCs derived from potent classical error

correction codes may require interactions between distant qubits of a codeword, but arranging for this remains

unrealistic at the current state-of-the-art. This particular constraint motivated the invention of new families

of short QSCs, which were specifically designed for circumventing the above-mentioned limitation of local

interactions. These codes belong to the family of QTECCs. The stabilizer operators of QTECCs can be

explicitly defined by the underlying lattice structure accommodating the qubits. Following the same line of

investigation as in Chapter 6, we will characterize the QBER performance of diverse QTECCs versus the code

parameters given a certain lattice structure by exploiting the classical-to-quantum isomorphism.

The rest of this chapter is organized as follows. In Section 7.2, we commence with design examples of

classical TECCs to pave the way for delving into the quantum domain. In Section 7.3, we detail our QSC design

examples for QTECCs. We will continue by characterizing the QBER performance of QTECCs subjected to

157

158 7. Quantum Topological Error Correction Codes

(a) 5 qubits (ibmqx2). (b) 5 qubits (ibmqx4).

(c) 16 qubits (ibmqx5).

Figure 7.1: The qubit arrangement of IBM’s superconducting quantum computers. The circles
represent the qubits, while the arrows represent the possible qubit interactions
within the computers [?].

the quantum depolarizing channel, their distance from the hashing bound, and fidelity in Section 7.4. Finally,

we conclude our discussions in Section 7.5.

7.2 Classical Topological Error Correction Codes: De-

sign Examples

Classical error correction codes can be developed relying on diverse approaches [?]. We can find in the literature

various family of codes based on algebraic formalisms, such as BCH codes and RS codes, codes based on

conventional trellis structures, such as convolutional codes and turbo codes, codes based on bipartite graphs

such as LDPC codes, and codes based on channel polarization, such as polar codes. Another approach that can

be adopted to formulate a classical error correction code is by exploiting the topological or lattice structure.

By mapping the bits of a codeword to a lattice structure we can create an error correction scheme [?]. For

instance, let us assume that a codeword of classical bits is arranged on the square lattice given in Fig. 7.2.

The black circles on the edges of the lattice define the encoded information bits, namely the codeword. The

red squares laying on the vertices of the lattice define the PCM of the code, which also directly defines the

syndrome values of the received codeword. The number of black circles is associated with the codeword length

of n bits and the number of red squares is associated with the length of the syndrome vector or the number of

rows in the PCM, which is equal to (n↑k) bits. For this particular square lattice seen in Fig. 7.2, the codeword

length n is equal to 13 bits and the length (n↑k) of the redundant part is 6. Hence, the number of information

bits k is equal to 7. Therefore, this code has 27 = 128 legitimate codewords out of the theoretically possible

213 = 8192 received words. In conceptually simple terms one could construct a look-up table for implementing

the corresponding decoder, which has to find the specific legitimate codeword that has the lowest Hamming

distance from the corrupted word.

For the sake of comparison, we could consider a classical BCH code having n=15, k=7 and d=5, which

is capable of correcting two classical bit errors in a 15-bit codeword. In general, BCH codes do not have

to satisfy the above-mentioned topological constraint of only having localized interactions and this design

flexibility typically results in a higher error correction capability. This classical BCH code has 27=128 legitimate

codewords and 215=32 768 possible words. With the aid of its 8 parity bits we would be able to distinguish

7.2. Classical Topological Error Correction Codes: Design Examples 159

2(15→7) = 28 = 256 distinct error patterns (including the error-free scenario) and correct two arbitrary bit

errors.

The coding rate r is defined by the ratio between the information bits k and the codeword length n,

yielding:

r =
k

n
(7.1)

Hence, the coding rate of the square lattice code of Fig. 7.2 is r = 7/13.

1 2 3

4 5

6 7 8

9 10

11 12 135 6

43

21

Figure 7.2: Example of a classical bit arrangement on a square lattice structure. The black
circles laying on the edges of the lattice denote the bits of the codeword, while
the vertices of the lattice denoted by red squares define the PCM and also the
syndrome values. Chandra et al. [?]

Now, let us delve deeper into how the error correction works. Let us revisit the square lattice of Fig. 7.2.

The k information bits are encoded to n-bit codewords, where n > k. Noise or decoherence imposed by the

channel corrupts the legitimate codeword. The syndrome computation is invoked to generate the (n ↑ k)-bit

syndrome vector, which tells us both the predicted number and the position of the errors. In Fig. 7.2, each of

the red squares indicates a syndrome bit of si. Hence, the syndrome vector s is a 6-bit vector, which is given

by

s = [s1 s2 s3 s4 s5 s6]. (7.2)

In the case of an error-free received codeword, the resultant syndrome vector is s = [0 0 0 0 0 0]. By contrast,

if an error is imposed on the codeword, it triggers a syndrome bit value of 1 at the adjacent syndrome bit

positions. For example, if an error occurs at the bit index 4 of Fig. 7.2, it triggers the syndrome values of

s1 = 1 and s3 = 1. The rest of the syndrome values remain equal to 0. Therefore, an error corrupting the bit

index 4 generates a syndrome vector of s = [1 0 1 0 0 0]. Hence, the decoder flips the value of bit index 4.

Similarly, if an error occurs at bit number 3, it only triggers the syndrome value of s2 = 1. Hence, it generates

the syndrome vector of s = [0 1 0 0 0 0] and the error recovery procedure proceeds accordingly.

Now let us consider the ocurrence of two bit errors in the codeword. For instance, let us assume that

errors occur at bit indices of 6 and 7 of Fig. 7.2. Note that both these errors a!ect s3, therefore they cancel

each other’s e!ect on s3, hence generating a syndrome bit value of s3 = 0. However, we still do not receive

an all-zero syndrome vector, because the bit index 7 results in the syndrome bit value of s4 = 1 in Fig. 7.2.

Therefore, the resultant syndrome vector due to a bit error in both bit 6 and 7 is s = [0 0 0 1 0 0]. Since

the syndrome vector of s = [0 0 0 1 0 0] is also associated with the error incident upon bit index 8, the error

recovery procedure decides to flip bit 8 instead, because for the error probability less than 1/2, a single error

occurance is more likely to happen than a double-error. As a result, we end up having three errors. This

example is an illustration that the occurence of two bit errors in the codeword is beyond the error correction

capability of the code given in Fig. 7.2. We conclude that the code based on the square lattice illustrated in

Fig. 7.2 is capable of correcting only a single bit error. The error correction capability of t bits for a given code

160 7. Quantum Topological Error Correction Codes

construction is defined by the minimum distance d of the code as formulated by

t =

⌊
d ↑ 1

2

⌋
. (7.3)

Hence, a code that is only capable of correcting a single error has a minimum distance of d = 3, as exemplified

by the square lattice code given in Fig. 7.2. Moreover, the minimum distance of a square lattice code is

defined by dimension of the lattice. Therefore, to increase the error correction capability of the code, we can

simply increase the dimension of the lattice, which directly translates into increasing the minimum distance.

The square lattice considered in our example can be generalized to a rectangular lattice structure having a

dimension of (l ⇑ h), where l is the length of the lattice and h is the height of the lattice. In the case of a

rectangular structure, the minimum distance is defined by

d = min(l, h). (7.4)

The codeword length is also uniquely defined by the dimension of the lattice. More explicitly, for a rectangular

lattice of dimension (l⇑ h), the codeword length is equal to the number of the lattice edges, which is given by

n-edges = nsquare = 2lh ↑ l ↑ h + 1. (7.5)

The number of rows in the PCM of a square lattice is defined by the number of faces or plaquettes of the

rectangular lattice, which is formulated as follows:

n-vertices = nsquare ↑ ksquare = h(l ↑ 1). (7.6)

Hence, from Eq. (7.5) and (7.6), the number of information bits k encoded by the rectangular lattice codes is

ksquare = nsquare ↑ (nsquare ↑ ksquare)

= lh ↑ l + 1. (7.7)

The most e”cient code can be constructed by a square lattice, where d = l = h. Therefore, the expression

given in Eq. (7.5) and (7.7) can be simplified to

nsquare = 2d2 ↑ 2d + 1 (7.8)

ksquare = d
2 ↑ d + 1. (7.9)

Hence, the coding rate of square lattice based codes can be formulated as follows:

rsquare =
ksquare

nsquare

=
d
2 ↑ d + 1

2d2 ↑ 2d + 1
. (7.10)

The PCM can be readily constructed in a similar fashion. Each red square of Fig. 7.2 represents the row

of the PCM, where the adjacent black circles denote the index of the column containing a value of 1. For

example, the first red square is adjacent to the black circles numbered 1, 2, and 4. Therefore, in the first row

of the PCM, there are only three elements containing a value of 1 and those are marked by the index 1, 2, and

4. The remaining rows of the PCM are generated using the same principle. Explicitly, each row of the PCM

of the square lattice code of Fig. 7.2 is portrayed in Table 7.1. Finally, the PCM H of the square lattice code

of Fig. 7.2 is given by

H =

[
h1 h2 h3 h4 h5 h6


T

. (7.11)

The code construction based on the general lattice structure is not limited to a rectangular lattice. Let

us consider, for instance, the triangular lattice of Fig. 7.3. The black circles laying on the vertex of the lattice

7.2. Classical Topological Error Correction Codes: Design Examples 161

Table 7.1: Constructing the PCM of the square lattice code of Fig. 7.2 with minimum distance
of d = 3. Each row is associated with the syndrome operators denoted by red squares
in Fig. 7.2

1 2 3 4 5 6 7 8 9 10 11 12 13

h1 1 1 0 1 0 0 0 0 0 0 0 0 0

h2 0 1 1 0 1 0 0 0 0 0 0 0 0

h3 0 0 0 1 0 1 1 0 1 0 0 0 0

h4 0 0 0 0 1 0 1 1 0 1 1 0 0

h5 0 0 0 0 0 0 0 0 1 0 1 1 0

h6 0 0 0 0 0 0 0 1 0 1 0 0 1

Table 7.2: Constructing the PCM of the triangular lattice code with minimum distance of
d = 3. Each row is associated with the syndrome operators denoted by blue circles
in Fig. 7.3

1 2 3 4 5 6 7

h1 1 1 1 1 0 0 0

h2 0 0 1 1 1 1 0

h3 0 1 0 1 0 1 1

Figure 7.3: Example of a classical bit arrangement constructed over a triangular lattice struc-
ture. The black circles laying on the vertices of the lattice represent the codeword
bits, while the faces or the plaquettes of the lattice denoted by red squares de-
fine the parity-check matrix and the syndrome bits of the error correction code.
This configuration bears a resemblance to the C(7, 4) classical Hamming code.

Chandra et al. [?]

define the codeword and the red squares on the faces of the lattice define the syndrome vector. The error

correction principle of the triangular lattice code is similar to that of its square counterpart. Hence, the PCM

of the triangular lattice code is readily derived using the following equation:

H =

[
h1 h2 h3


T

, (7.12)

where h1, h2, and h3 correspond to the syndrome bits given in Table 7.2. It is important to point out

that the resultant triangular lattice code bears a strong resemblance to the classical C(7, 4, 3) Hamming code.

Specifically, both codes have a codeword length of n = 7 and the number of information bits is k = 4. Hence,

162 7. Quantum Topological Error Correction Codes

the length of the syndrome vector is 3 bits. Consequently, the codes have 24 legitimate codewords out of the

27 possible received words. Based on the sphere packing bound, the codes are capable of distinguishing 23 = 8

distinct error patterns including the error-free scenario. Therefore, both constructions are capable of correcting

exactly a single error with an identical coding rate of r = 4/7.

Similar to its rectangular counterpart, increasing the error correction capability of a triangular lattice

code is achieved by expanding the underlying lattice configuration. However, increasing the number of vertices

of the triangular lattice structure is not as straightforward as that of its rectangular counterpart because it

can be carried out in several di!erent ways. In this example, we use the construction proposed in [?] and

Fig. 7.4 illustrates how to increase the number of encoded bits of the triangular lattice code of Fig. 7.3 by using

hexagonal tiles.

Figure 7.4: Extending the length of the triangular lattice code, which directly increases the
numbers of error corrected. Chandra et al. [?]

Following the pattern of Fig. 7.4, the codeword length, which is also given by the number of vertices of

the given lattices, is explicitly formulated as follows:

n-vertices = ntriangular =
1

4
(3d2 + 1). (7.13)

Hence for d=3 we have 7 and for d=5 we have 19 verticies. The number of faces in the triangular lattice, which

corresponds to the number of rows of the PCM and also to the syndrome vector length, can be expressed as

n-faces = ntriangular ↑ ktriangular =
1

8
(3d2 ↑ 3). (7.14)

Hence, the number of information bits can be expressed as

ktriangular = ntriangular ↑ (n ↑ k)triangular

=
1

8
(3d2 + 5). (7.15)

Finally, the coding rate of the triangular lattice codes of Fig. 7.4 is formulated as follows:

rtriangular =
ktriangular

ntriangular

=
3d2 + 5

2(3d2 + 1)
. (7.16)

Then, the normalized minimum distance, which directly correponds to the error correction capability per-bit

of a code may be defined as:

ϱ =
d

n
(7.17)

7.2. Classical Topological Error Correction Codes: Design Examples 163

Table 7.3: Code parameters of classical Hamming code having a single error correction capa-
bility, which is used in Fig. 7.6 and 7.7. The coding rate r and normalized mnimum
distance ⇁ is calculated using Eq. (7.1) and (7.17), respectively.

n k d n k d

3 1 3 127 120 3

7 4 3 255 247 3

15 11 3 511 502 3

31 26 3 1023 1013 3

63 57 3

For square lattice and triangular lattice codes, the normalized minimum distances are given by

ϱsquare =
d

2d2 ↑ 2d + 1

ϱtriangular =
4d

3d2 + 1
. (7.18)

(b)(a)

check node ci

variable node vi
1 2 3

4 5

6 7 8

9 10

11 12 13

21 3 4 5 6 7 8 9 10 11 12 13

5 6

3 4

21

1 2 3 4 5 6

Figure 7.5: Example of how to represent the square lattice code. (a) The representation in
lattice structure. (b) The representation in Tanner or bipartite graph. Chandra
et al. [?]

In the rest of this treatise, we will consider the family of error correction codes based on lattice structures

as a prominent representative of classical topological error correction codes (TECC). The lattice structures

given in Fig. 7.2 and 7.3 can be transformed to Tanner graphs [?]. The dual representation of TECCs in the

rectangular lattice domain and in the Tanner graph domain is given in Fig. 7.5 as exemplified by the square

lattice code. We can observe that TECCs based on square lattices have a maximum row weight of φmax = 4

and a maximum column weight of ↼max = 2. By contrast, the codes based on triangular lattices have φmax = 6

and ↼max = 3. For a very long codeword, these properties lead to sparse PCMs. Hence, classical TECCs can be

viewed as a specific family of LDPC codes. The asymptotical limit of the coding rate for LDPC codes based on

TECCs can be directly derived from Eq. (7.10) and (7.16). As the codeword length tends to infinity (n ↔ ′),

the minimum distance d is also expected to tend to infinity. Hence, for the asymptotical limit we have

r
⇑
square

= lim
d↓⇑

d
2 ↑ d + 1

2d2 ↑ 2d + 1
=

1

2
, (7.19)

r
⇑
triangular

= lim
d↓⇑

3d2 + 5

2(3d2 + 1)
=

1

2
. (7.20)

164 7. Quantum Topological Error Correction Codes

Coding rate (r)
0 0.2 0.4 0.6 0.8 1

M
in
im

u
m

d
is
ta
n
ce

(d
)

0

5

10

15

20

25

30

35

40

45

50
Code on square lattices
Code on triangular lattices
Hamming codes
BCH codes (n = 255)

Increasing minimum distance

S2

S1

Increasing codeword length
and minimum distance

H1

H2

Increasing codeword length

T1
T2

BCH2
BCH1

Code type, label = C(n, k, d)
Square code, S1 = C(13, 7, 3)
Square code, S2 = C(41, 21, 5)
Triangular code, T1 = C(7, 4, 3)
Triangular code, T2 = C(19, 10, 5)
Hamming code, H1 = C(7, 4, 3)
Hamming code, H2 = C(15, 11, 3)
BCH code, BCH1 = C(255, 247, 3)
BCH code, BCH2 = C(255, 239, 5)

Figure 7.6: The coding rate versus minimum distance of TECCs. For asymptotical limit, the
TECCs may be categorized into LPDC codes and the coding rates converge to r =
1

2
. We also include the BCH codes and Hamming codes for the sake of comparison.

The coding rate for the square lattice based codes and the triangular lattice based
codes are defined in Eq. (7.10) and (7.16), respectively. The code parameters for
classical Hamming and BCH codes are described in Table 7.3 and 7.4, respectively.
We put labels only for several codes as examples on how to convert the given code
parameters into the figure. Chandra et al. [?]

Let us observe Fig. 7.6, where we plot the minimum distance (d) versus coding rate (r) of TECCs based

on Eq. (7.10) and (7.16). We also include the classical codes based on the sphere packing concept, namely

the Hamming codes and the BCH codes, whose parameters are portrayed in Table 7.3 and 7.4, respectively.

Additionally, we also include some labels for several codes in the figure, in order to show how to convert the

code parameters into constellation points in the figure. More explicitly, let us consider the specific triangular

codes T1 and T2, where T1 represents the triangular code having a minimum distance of 3, which we have

already used in the example in Fig. 7.3. As it has been elaborated on earlier, the resultant code T1 is C(7, 4, 3).
Hence, the coding rate is r = 4/7 ⇐ 0.57. Again, the triangular code T1 has identical code parameters to

the Hamming code C(7, 4, 3), which is labelled H1. Hence, the same point in Fig. 7.6 represents both T1 and

H1. Next, the code parameters of the triangular code T2 having a minimum distance of d = 5 are obtained

using Eq. (7.13) and (7.15) for determining the codeword length n and the information length k, respectively.

Explicitly, by substituting d = 5 into Eq. (7.13) and (7.15), we have n = 19 and k = 10. Finally, we arrive at

the coding rate of r = k/n = 10/19 ⇐ 0.53 for the triangular code T2. The rest of the code parameters for

square codes, triangular codes, Hamming codes and BCH codes are portrayed in the same way in Fig. 7.6.

In general, increasing the minimum distance of the codes while maintaining the codeword length can be

achieved at the expense of reducing the coding rate. This phenomenon is perfectly reflected by the behaviour

of classical BCH codes in Fig. 7.6. Explicitly, in Fig. 7.6 we portray BCH codes having a constant codeword

length of n = 255, which are described in Table 7.4. As seen, upon increasing the minimum distance of BCH

codes, the coding rate is gradually reduced. Next, increasing the coding rate while maintaining the minimum

distance of the code can indeed be achieved by increasing the codeword length. In this case, the Hamming

codes, whose code parameters are described in Table 7.3, perfectly reflect this phenomenon. Observe in Fig. 7.6,

7.2. Classical Topological Error Correction Codes: Design Examples 165

Coding rate (r)
0 0.2 0.4 0.6 0.8 1

N
or
m
al
iz
ed

m
in
im

u
m

d
is
ta
n
ce

(δ
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Code on square lattices
Code on triangular lattices
Hamming codes
BCH codes (n = 255)
Hamming bound
GV bound

Increasing codeword length

T1
H1

H2

T2

S1

Increasing codeword length
and minimum distance

BCH1BCH2

Increasing
minimum distance

S2

Code type, label = C(n, k, d)
Square code, S1 = C(13, 7, 3)
Square code, S2 = C(41, 21, 5)
Triangular code, T1 = C(7, 4, 3)
Triangular code, T2 = C(19, 10, 5]
Hamming code, H1 = C(7, 4, 3]
Hamming code, H2 = C(15, 11, 3)
BCH code, BCH1 = C(255, 247, 3)
BCH code, BCH2 = C(255, 239, 5)

Figure 7.7: The coding rate versus normalized minimum distance of TECCs. For asymptoti-
cal limit, the TECCs may be categorized into LPDC codes and the coding rates
converge to r = 1

2
, while the normalized minimum distances (⇁) vanish to zero. In

addition, we also include the classical Hamming and BCH codes, which constructed
based on sphere packing bound, for the sake of comparison. The code parameters
for classical Hamming and BCH codes are portrayed in Table 7.3 and 7.4, respec-
tively. We put labels only for several codes as examples on how to convert the
given code parameters into the figure. Chandra et al. [?]

that for the Hamming codes exhibiting a constant minimum distance of d = 3, we can see the gradual increase

of coding rate upon increasing the codeword length. However, the behaviour of the BCH and Hamming codes

is not reflected by the TECCs. Let us elaborate on the TECCs behaviour in Fig. 7.6. The increase of the

minimum distance of TECCs upon increasing the codeword length looks very impressive since they do not

seem to require much sacrifice in terms of coding rate reduction. In fact, the coding rate is saturated at

approximately r = 1/2 for long codewords. This is indeed a rather di!erent behaviour compared to that of the

classical BCH codes. However, it is of pivotal importance to mention again that the increasing error correction

capability per codeword does not necessarily imply the improvement of error correction capability per bit.

Therefore, we have to normalize the performance to the codeword length for a fair comparison.

Let us now observe Fig. 7.7, where we plot the normalized minimum distance (ϱ) versus the coding rate (r)

of TECCs based on Eq. (7.18). We include both the BCH codes as well as the Hamming codes for the sake of

comparison. We also plot the classical Hamming bound [?] and GV bound [?] in this figure to portray the upper

bound and lower bound of the normalized minimum distance, which correspond directly to the normalized error

correction capability, given the coding rate. The classical Hamming bound is formulated as follows [?]:

k

n
⇔ 1 ↑ H


d

2n


, (7.21)

where H(x) is the binary entropy of x defined by H(x) = ↑x log
2
x ↑ (1 ↑ x) log

2
(1 ↑ x), while the classical

GV bound is expressed as [?]
k

n
↖ 1 ↑ H


d

n


. (7.22)

166 7. Quantum Topological Error Correction Codes

Table 7.4: Code parameters of classical BCH codes having codeword length of n = 255, which
is used in Fig. 7.6 and 7.7. The coding rate r and normalized mnimum distance ⇁

is calculated using Eq. (7.1) and (7.17), respectively.

n k d n k d n k d

255 1 255 255 87 53 255 171 23

255 9 127 255 91 51 255 179 21

255 13 119 255 99 47 255 187 19

255 21 111 255 107 45 255 191 17

255 29 95 255 115 43 255 199 15

255 37 91 255 123 39 255 207 13

255 45 87 255 131 37 255 215 11

255 47 85 255 139 31 255 223 9

255 55 63 255 147 29 255 231 7

255 63 61 255 155 27 255 239 5

255 71 59 255 163 25 255 247 3

255 79 55

The classical Hamming bound and GV bound defined in Eq. (7.21) and (7.22) are valid for asymptotical limit

where n ↔ ′.

The classical Hamming codes constitute the so-called perfect codes for a finite-length, since they always

achieve the Hamming bound for finite-length codes1. Therefore, the Hamming codes also mark the upper bound

of normalized minimum distance, given the coding rate of finite-length codewords. Secondly, the classical BCH

codes having a codeword length of n = 255 lay perfectly - as expected - between the Hamming and GV bound

in the asymptotical limit, as shown in Fig. 7.7. However, we observe an unusual behaviour for the family

of TECCs, since the normalized minimum distance drops to zero upon increasing the codeword length, while

the coding rate saturates at r = 1/2. We hypothesize that since these codes were not designed using the

sphere packing concept - which the Hamming and BCH codes are based on - the Hamming distance radius

of the associated decoding sphere in the TECCs codespace is most likely to be non-identical for the di!erent

codewords. Also, the minimum distance of TECCs is only on the order of O(
↓
n), which implies that the

codeword length of TECCs is proportional to the factor of O(d2). By contrast, for classical BCH and Hamming

codes the growth of the minimum distance is approximately linear, i.e. of order O(n). It can be seen that even

though the growth of minimum distance per codeword of the TECCs appears to be impressive in Fig. 7.6, it is

not fast enough to compensate for the undesired e!ect of the increasing codeword length. Hence, the TECC

error correction capability per bit tends to zero in the asymptotical limit. Nevertheless, we leave the definitive

answer for this peculiar phenomenon open for future research, since our focus in this treatise is on finding the

classical-to-quantum isomorphism of TECCs.

Since the TECCs associated with the asymptotical limit of n ↔ ′ belong to the family of LDPC codes,

an e”cient LDPC decoder such as the belief propagation (BP) technique [?] can be invoked for these code

constructions. However, the normalized minimum distance of the LDPC codes based on topological order tends

to zero, as the codeword length increases. Nevertheless, TECC-based LDPC codes exhibit several desirable

code properties, such as an attractive coding rate (r ⇐ 1/2), structured construction and unbounded minimum

distance. However, another aspect worth considering for TECC-based LDPC codes is the fact that we can find

numerous cycles of length 4 in triangular constructions and cycles of length 6 in square constructions, which

potentially degrades the performances of the codes. A summary of the specific code parameters of TECC-based

LDPC codes is given in Table 7.5.

1The Hamming bound for finite length codes has a di”erent formulation from that of asymptotical
limit. Therefore, we refer to [?] for further explanations.

7.3. Quantum Topological Error Correction Codes: Design Examples 167

Table 7.5: The code parameters of TECC-based LDPC codes.

Parameter Square lattice Triangular lattice

r ⇓
1

2
⇓

1

2

d O(
≃
n) O(

≃
n)

⇁
d

2d2→2d+1

4d

3d2+1

ρmax 4 6

φmax 2 3

Girth 6 4

7.3 Quantum Topological Error Correction Codes: De-

sign Examples

Let us now delve deeper into the TECC concept in the quantum domain. The quantum version of TECCs,

namely the QTECCs, constitute a member of the QSC family, whose stabilizer operators are defined by the un-

derlying lattice structure. This formalism o!ers several benefits for the implementation of quantum computers.

Firstly, it explicitly accommodates the physical implementation of quantum memory by mapping the qubits

to the lattice arrangement exemplified by Fig. 7.2 and 7.3. Secondly, the localized nature of the stabilizer

measurements confines the interaction amongst qubits and also eliminates the interaction of qubits associated

with specific quantum gates that are physically far from each other within the topology. Thirdly, the number

of errors corrected can be increased simply by extending the size of the lattice. For now, let us assume having

a square-shaped lattice structure similar to Fig. 7.2 for defining the stabilizer operators of a surface code illus-

trated in Fig. 7.8 [?]. Explicitly, surface codes represent the quantum equivalent of classical TECCs defined on

rectangular lattice structures. The physical qubits are portrayed by the black circles laying on the edge of the

lattice, the X stabilizer operators are defined by the red squares on the lattice vertices, while the Z stabilizers

are defined by the blue triangles on the lattice plaquettes (faces). The stabilizer operators of QTECCs are

defined as follows:

Av =
∏

i⇓vertex(v)

Xi , Bp =
∏

i⇓plaquette(p)

Zi, (7.23)

where i indicates the index of stabilizer operators containing the Pauli matrix X as well as Z and the rest

of the stabilizer operators are given by the Pauli identity matrix I. Hence, the encoded state of the physical

qubits of QTECCs is constrained within a code space C satisfying

C = {|ω→ ↘ H|Av|ω→ = |ω→, Bp|ω→ = |ω→; ⇓v, p}. (7.24)

More specifically, let us revisit Fig. 7.8 for exemplifying the construction of the stabilizer operators of a QTECC,

namely of a surface code, which is one of the QTECC constructions whose stabilizer operators are defined by

a rectangular lattice structure [?]. For instance, the red square on the vertex number 3 of Fig. 7.8 represents

the X stabilizer operator of A3 = X4X6X7X9, as seen in the row S3 of Table 7.6. Similarly, the blue triangle

on the plaquette number 5 of Fig. 7.8 defines the Z stabilizer operator of B5 = Z7Z9Z10Z12, as seen in the

line B5 of Table 7.6. By performing the same evaluation for all of the red squares and blue triangles, we arrive

at the stabilizer operators for the quantum surface codes, as listed in Table 7.6.

by revisiting

Let us now consider an example of how the error correction procedure works by revisiting Fig. 7.8 using

QTECCs, which are similar to classical TECCs. For instance, let us assume that the quantum decoherence

168 7. Quantum Topological Error Correction Codes

Table 7.6: The stabilizer operators (Si) of the quantum surface code having the lattice con-
struction of Fig. 7.8. The code has a minimum distance of 3 (d = 3), which means
that it is only capable of correcting a single qubit error.

Si Av Si Bp

S1 X1X2X4 S7 Z1Z4Z6

S2 X2X3X5 S8 Z2Z4Z5Z7

S3 X4X6X7X9 S9 Z3Z5Z8

S4 X5X7X8X10 S10 Z6Z9Z11

S5 X9X11X12 S11 Z7Z9Z10Z12

S6 X10X12X13 S12 Z8Z10Z13

654

1 2

3 4

5 6

1 2 3

1 2 3

4 5

6 7 8

9 10

11 12 13

X

Z

Figure 7.8: Example of qubit arrangement on a rectangular lattice structure. The black circle-
based qubits on the edges of the lattice represent the physical qubits or the encoded
state, the red square-based qubits lying on the vertices of the lattice act as the X
stabilizer operators, while the blue triangle-based qubits lying on the plaquettes
(faces) of the lattice constitute the Z stabilizer operators. Chandra et al. [?]

imposes a bit-flip (X) error on the physical qubit index 7. Since, the X-type error commutes with the Z

stabilizer operators, which are represented by the blue triangles, the adjacent Z stabilizer operators return the

eigenstate values of ↑1 upon measurement. Consequently, the Z stabilizer measurements yield a syndrome

vector of sz = [0 1 0 0 1 0], where only the vector elements of i = 2, 5 have the value of 1. For the a short

block code considered in Fig. 7.8, the error recovery operators R to be detailed later in Fig. ?? are determined

based on hard-decision maximum-likelihood (ML) decoding, which is translated into a simple look-up table

(LUT) decoder. Therefore, based on the syndrome vector of sz , the error recovery operator R of Fig. ?? is

given by R = X7. Likewise, let us now assume that the qubit on index 7 also su!ers from a Z-type error

imposed by the quantum channel. The associated syndrome vector gleaned from the X stabilizer operators is

sx = [0 0 1 1 0 0], where only the vector elements of i = 3, 4 have the value of 1. Thus, based on the syndrome

vector of sx, the decoder applies the error recovery operator of R = Z7.

The error correction capability t of a QSC C[n, k, d] can be determined by its minimum distance d as

follows:

t =

⌊
d ↑ 1

2

⌋
. (7.25)

Therefore, in order to verify the error correction capability of a QSC C, first, we have to evaluate the minimum

distance d based on the stabilizer operators Si ↘ S. Let the normalizer N (S) ↘ Pn be the set of operators

Pi ↘ Pn so that PSiP
† = Sj ↘ S for all Si ↘ S and i is not necessarily equal to j. It is clear that all

the stabilizer operators Si ↘ S are automatically in N (S). Now, we are interested in the set of operators in

7.3. Quantum Topological Error Correction Codes: Design Examples 169

the normalizer N (S) that does not belong to the stabilizer operators S, which is denoted by N (S) ↑ S. The

minimum distance of a QSC C is equal to d if and only if N (S)↑S contains no elements with weight less than

d, where the weight of a Pauli operator Pi ↘ Pn is the number of non-identity Pauli operators. In other words,

the minimum distance of a QSC C can be defined by the minimum weight of the operators Pi, which commute

with all stabilizer operators Si ↘ S, but are not an element of S.

In case of the rectangular lattice structure of Fig. 7.8, a good example of such an operator Pi is represented

by the specific chain connecting the two boundaries of the lattice. To elaborate a little further, let us take a

Pauli operator P represented by the shortened version P = X2X7X12 connecting the boundaries of the lattice

given in Fig. 7.8. It can be readily checked that this specific Pauli operator P commutes with all the stabilizer

generators Gi ↘ S, but it cannot be represented as the product of any stabilizer generators Gi ↘ S. Since Pi

represents the lowest weight Pauli operator Pi commuting with all the stabilizer operators Si ↘ S, but not an

element of S, the weight of Pi determines the minimum distance of the QSC defined by the rectangular lattice

of Fig. 7.8. Therefore, we conclude that based on the stabilizer generators given in Table 7.6, the minimum

distance of the QSC defined by the rectangular lattice of Fig 7.8 is d = 3. Furthermore, the dimension of the

lattices defining the stabilizer operators Gi ↘ S can be used to calculate the minimum distance d, the number

of logical qubits and physical qubits, as well as the quantum coding rate rQ.

Figure 7.9: Example of a qubit arrangement for a colour code, which is a type of QTECCs
whose stabilizer operators are defined by a triangular lattice structure. The black
circle-based qubits on the vertices of the lattice represent the physical qubits, while
the faces or the plaquettes of the lattice denoted by red squares define stabilizer
operators of the colour code. The resultant code has a minimum distance of
d = 3 and hence becomes capable of correcting a single qubit error. This specific
configuration bears resemblance to Steane’s 7-qubit code C[7, 1, 3]. Chandra et
al. [?]

Again, similar to the classical TECCs, the construction of QTECCs is not limited to the square lattice

structure. In this spirit, let us now elaborate on another construction inspired by [?] using a triangular lattice

based on the classic example of Fig. 7.3. In the proposal of [?], this specific code construction is often referred

to as the (triangular) colour code, since the underlying triangular lattice may be composed by three distinct

coloured tiles, each representing a non-overlapping topological region of interaction and protection. However,

constructing the stabilizer operators of colour codes slightly di!ers from that of the surface codes. Explicitly,

the colour codes use the lattice plaquettes to define both the Z and X stabilizer operators, rather than having

separate stabilizers. Consequently, the resultant colour codes belong to the family of dual-containing CSS codes,

which is in contrast to the rectangular-shaped surface codes constellation that belong to the class of non-dual-

containing CSS codes. For colour codes, defining both the Z and X stabilizer operators using the same plaquette

always guarantees to satisfy the symplectic criterion of Eq. (??). However, for the rectangular-shaped surface

code constellations, we cannot always satisfy the symplectic criterion by using the same procedure. Therefore,

the dual pair of the lattice is used for defining half of the stabilizer operators of the surface codes to satisfy

the symplectic criterion.2

2The dual pair of a lattice or a graph G is the graph that has a vertex for each plaquette of the

170 7. Quantum Topological Error Correction Codes

Let us consider Fig. 7.9 for constructing the stabilizer operators of distance-3 colour codes, which are only

capable of correcting a single qubit error. The plaquette denoted by red square at index 3 is used to define

both the Z and X stabilizer operators. Thus, the resultant X stabilizer operator is A3 = X2X4X6X7 and the

resultant of Z stabilizer operator is B3 = Z2Z4Z6Z7. The stabilizer operators for the colour code having the

minimum distance 3 in Fig. 7.9 are listed in Table 7.7. We can observe that the colour code of Fig. 7.3 exhibits

a strong resemblance to Steane’s 7-qubit code.

To draw on the parallelism between classical TECCs and QTECCs, let us consider the stabilizer operators

of the colour code having a minimum distance of d = 3, as seen in Table 7.7. Since the distance-3 colour code

belongs to the family of quantum CSS codes, the PCM H obtained by using Eq. (3.18) and (3.21) as well as

Table 7.7 may be formulated as follows:

H =





1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 1 1 0 0 0 0 0 0 0 0

0 1 0 1 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0

0 0 0 0 0 0 0 0 1 0 1 0 1 1





. (7.26)

A CSS stabilizer code C[n, k, d] having (n ↑ k) stabilizer operators can be portrayed as a classical code

having a PCM H containing (n↑k)⇑2n elements. Therefore, the coding rate of the classical dual of a quantum

CSS code can be expressed as follows [?]:

rC =
2n ↑ (n ↑ k)

2n
,

=
n + k

2n
,

=
1

2


1 +

k

n


,

=
1

2
(1 + rQ) , (7.27)

where rC is the coding rate of the classical dual of the stabilizer code C[n, k, d] exhibiting a quantum coding

rate of rQ. The relationship between the classical and quantum coding rate in Eq. (7.27) can be rewritten as

rQ = 2rC ↑ 1. (7.28)

For instance, let us consider the distance-3 colour codes C[n, k, d] = C[7, 1, 3], as exemplified in Fig. 7.9,

and its classsical dual C(n, k, d) = C(7, 4, 3), as seen in Fig. 7.3. Explicitly, we have the classical coding rate

of rC = 4/7 for the C(7, 4, 3) code. By substituting rC = 4/7 into Eq. (7.28), we obtain the quantum coding

rate for its quantum counterpart as rQ = 1/7, which is the quantum coding rate of the distance-3 colour code

C[7, 1, 3]. The same goes for the classical square codes and their quantum counterpart, namely for the surface

codes. Let us consider the distance-5 classical square code, which is labeled by S2 in Fig. 7.6 and its quantum

pair, which is labeled by S2 in Fig. 7.10. We can readily determine the quantum coding rate of the surface

code S2 C[41, 1, 5], which is rQ = 1/41. Therefore, by substituting rQ = 1/41 into Eq. (7.27), we arrive at the

coding rate of its classical dual given by rC = 21/41, which is indeed the coding rate of the classical square

code S2 C(41, 21, 5).

Similar to their classical counterparts, the code parameters of QTECCs, such as the number of logical

qubits k, the number of physical qubits n, the minimum distance of the code d, as well as the quantum coding

graph.

7.3. Quantum Topological Error Correction Codes: Design Examples 171

Table 7.7: The stabilizer operators (Si) of the colour code seen in Fig. 7.9. The code has a
minimum distance of 3 (d = 3), which means that it is only capable of correcting a
single qubit error.

Si Ap Si Bp

S1 X1X2X3X4 S4 Z1Z2Z3Z4

S2 X3X4X5X6 S5 Z3Z4Z5Z6

S3 X2X4X6X7 S6 Z2Z4Z6Z7

Table 7.8: The code parameters for various QTECCs based on the minimum distance d of the
code.

Codes type Dimension Number
of physical
qubits

Number of
stabilizers

Number
of logical
qubits

Colour d
↑ 1

4


3d2 + 1


1

4


3d2 ↔ 3


1

Rotated-surface d⇐ d d
2

d
2
↔ 1 1

Surface d⇐ d 2d2 ↔ 2d+ 1 2d2 ↔ 2d 1

Toric d⇐ d 2d2 2d2 ↔ 2 2

↑ for triangular colour codes the dimension is defined by the side length of the equilateral
triangle

rate rQ, depend on the size of the lattices. Following the same line of investigation as for the classical TECCs,

in Table 7.8 we characterize the family of QTECCs.

Explicitly, we plot the minimum distance (d) versus quantum coding rate (rQ) of QTECCs in Fig. 7.10

for colour codes [?] for the family of rotated surface codes [?], for surface codes [?] and for toric codes [?]. We

also include the family of non-topological QBCH codes [?] having n = 127 physical qubits and the quantum

Hamming codes, which constitute the quantum-domain pair of the Hamming code constructions [?]. Similarly

to the classical domain, the behaviour of both the QBCH codes and the quantum Hamming codes is as ex-

pected, namely reminiscent of the behaviour inherited from their classical-domain counterparts. However, it

is interesting to observe that the quantum coding rate of QTECCs tends to zero for long codewords, which is

not unexpected, if we consider the classical to quantum isomorphism in the context of the coding rate given in

Table 7.9: Code parameters of quantum Hamming codes having a single error correction ca-
pability, which is used in Fig. 7.10 and 7.11. The quantum coding rate rQ and
normalized minimum distance ⇁ are calculated using Eq. (7.1) and (7.17), respec-
tively.

n k d n k d

8 3 3 256 246 3

16 10 3 512 501 3

32 25 3 1024 1012 3

64 56 3 2048 2035 3

128 119 3

172 7. Quantum Topological Error Correction Codes

Quantum coding rate (rQ)
0 0.2 0.4 0.6 0.8 1

M
in
im

u
m

d
is
ta
n
ce

(d
)

0

5

10

15

20

25
Toric codes
Suface codes
Rotated surface codes
Colour codes
Quantum Hamming codes
QBCH codes (n = 127)

QH1 QH2

S2
C1

C2

Increasing minimum distance

Code type, label = C[n, k, d]
Toric code, T1 = C[18, 2, 3]
Toric code, T2 = C[50, 2, 5]
Surface code, S1 = C[13, 1, 3]
Surface code, S2 = C[41, 1, 5]
Rotated surface code, R1 = C[9, 1, 3]
Rotated surface code, R2 = C[25, 1, 5]
Colour code, C1 = C[7, 1, 3]
Colour code, C2 = C[19, 1, 5]
Quantum Hamming code, QH1 = C[8, 3, 3]
Quantum Hamming code, QH2 = C[16, 10, 3]
QBCH code, QBCH1 = C[127, 113, 3]
QBCH code, QBCH2 = C[127, 99, 5]

S1

R1, T1
R2, T2

QBCH1

QBCH2

Increasing codeword length

Increasing codeword length
and minimum distance

Figure 7.10: The minimum distance (d) versus the quantum coding rate (rQ) of QTECCs
based on the parameter given in Table 7.8. For QTECCs, the quantum coding
rate tends to zero as we increase the minimum distance. We also include the
QBCH codes having the physical qubits of n = 127 and quantum Hamming
codes for the sake of comparing the QTECCs with the non-topological QSCs.

Chandra et al. [?]

Table 7.10: Code parameters of QBCH codes having codeword length of n = 127, which is
used in Fig. 7.10 and 7.11. The quantum coding rate rQ and normalized minimum
distance ⇁ are calculated using Eq. (7.1) and (7.17), respectively.

n k d n k d

127 1 19 127 71 9

127 15 16 127 85 7

127 29 15 127 99 5

127 43 13 127 113 3

127 57 11

Eq. (7.27) and (7.28). For the classical TECCs, the coding rate rC approaches the value of rC = 1/2 for long

codewords. Hence, by substituting rC = 1/2 into Eq. (7.28), we arrive at rQ = 0, which is the phenomenon

we observe in Fig. 7.10.

Next, we plot the normalized minimum distance (ϱ) versus the quantum coding rate (rQ) in Fig. 7.11.

Once again, for the sake of comparison, we also include the quantum Hamming bound [?] and the quantum

GV bound derived for CSS codes [?] in addition to the QBCH codes and the quantum Hamming codes. The

quantum Hamming bound is defined by [?]

k

n
⇔ 1 ↑


d

2n


log

2
3 ↑ H


d

2n


, (7.29)

7.3. Quantum Topological Error Correction Codes: Design Examples 173

Quantum coding rate (rQ)
0 0.2 0.4 0.6 0.8 1

N
or
m
al
iz
ed

m
in
im

u
m

d
is
ta
n
ce

(δ
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C1

C2

R1

R2
S1

S2
T1

T2

QH1

QH2 QBCH1QBCH2

Toric codes
Suface codes
Rotated surface codes
Colour codes
Quantum Hamming codes
QBCH codes (n = 127)
Quantum Hamming bound
n → ∞

Quantum GV bound
n → ∞

Increasing minimum distance

Increasing codeword length
and minimum distance

Code type, label = C[n, k, d]
Toric code, T1 = C[18, 2, 3]
Toric code, T2 = C[50, 2, 5]
Surface code, S1 = C[13, 1, 3]
Surface code, S2 = C[41, 1, 5]
Rotated surface code, R1 = C[9, 1, 3]
Rotated surface code, R2 = C[25, 1, 5]
Colour code, C1 = C[7, 1, 3]
Colour code, C2 = C[19, 1, 5]
Quantum Hamming code, QH1 = C[8, 3, 3]
Quantum Hamming code, QH2 = C[16, 10, 3]
QBCH code, QBCH1 = C[127, 113, 3]
QBCH code, QBCH2 = C[127, 99, 5]

Increasing codeword length

Figure 7.11: The normalized minimum distance (⇁) versus the quantum coding rate (rQ) of
QTECCs based on the parameter given in Table 7.8. For QTECCs, the nor-
malized minimum distance and quantum coding rate tend to zero as we increase
the minimum distance. We also include the QBCH codes having the physical
qubits of n = 127, quantum Hamming codes, quantum Hamming bound and also
quantum GV bound for CSS codes for the sake of comparing the QTECCs with
the non-topological QSCs. Chandra et al. [?]

while the quantum GV bound for CSS codes is given by [?]

k

n
↖ 1 ↑ 2H


d

n


. (7.30)

Both the quantum Hamming bound and the quantum GV bound of Fig. 7.11 serve the same purpose as the

classical Hamming bound and the GV bound seen in Fig. 7.7. Explicitly, they portray the upper bound and the

lower bound of normalized minimum distance versus quantum coding rate trade-o!. Once again, the puzzling

behaviour of classical TECCs resurfaces for the QTECCs, as observed in Fig. 7.11. Since all the QBCH codes,

quantum Hamming codes and QTECCs inherit the properties of their classical counterparts, their behaviour

is reminiscent of that of their classical counterparts. As for the QTECCs, the definitive interpretation of this

unusual behaviour is left for future exploration in our research. Nonetheless, for a relatively long codeword, the

QTECCs are reminiscent of QLDPC codes. Observe from Fig. 7.11 that both the normalized minimum distance

and the quantum coding rate of QTECCs tend to zero upon increasing the minimum distance by increasing the

codeword length. Therefore, the QTECCs are deemed to be more favourable for short to medium codeword

lengths.

174 7. Quantum Topological Error Correction Codes

7.4 Performance of Quantum Topological Error Cor-

rection Codes

In this section we consider the performance of QTECCs in the face of quantum depolarizing channels. Explicitly,

the quantum depolarizing channel is characterized by the quantum depolarizing probability p inflicting an

error pattern constituted by the Pauli operators P ↘ Pn upon the state of physical qubits. Each qubit

may independently experience a bit-flip error (X), a phase-flip error (Z), or both bit-flip and phase-flip error

(Y) with an equal probability of p/3. In order to get a more precise insight into the performance trends of

QTECCs, we have to distinguish how the di!erent error patterns a!ect the state representing the physical

qubits. Explicitly, the n-tuple Pauli error patterns exemplified in Fig. 7.12 and 7.13 may be classified as

follows:

(a) Harmful detected error pattern. This specific type of error pattern has a similarity to the conven-

tional bit errors experienced in the classical domain. The error pattern of P anti-commutes with the

stabilizer operators Si ↘ S, hence it triggers non-trivial syndrome values.

(b) Harmful undetected error pattern. The error pattern commutes with all of the stabilizer operators,

but it does not belong to the stabilizer group S. In the classical domain, this is similar to an error

pattern that returns an all-zero syndrome. The error pattern is harmful, since it does not result in a

non-trivial syndrome value, yet it corrupts the legitimate state of the physical qubits.

(c) Harmless undetected error pattern. This particular error pattern does not have any classical

counterpart. The error pattern is harmless because it belongs to the stabilizer group S. This is also

referred to as a degenerate error pattern. Consequently, the error pattern does not alter the legitimate

state of the physical qubits. By considering the phenomenong referred to as degeneracy, the actual

performances of QTECCs are potentially improved.

To illustrate both the harmless and harmful undetected error patterns, we refer to Fig. 7.12 and 7.13. We

commence by considering the harmless undetected error patterns, which are illustrated in Fig. 7.12. In this

example, we consider a surface code having a minimum distance of 5, which implies that it is only capable

of correcting two-qubit errors. Following the stabilizer formulation of QTECCs discussed in Section 7.3, the

physical qubits are arranged along the edges of the square lattice, while the X stabilizer operators are located

in the vertices. Therefore, the X stabilizer operators on the vertices are used for indicating the Z errors, which

will trigger eigenvalues of ↑1 if they anticommute with the X stabilizer operators. Let us assume that the

quantum depolarizing channel inflicts three Z errors on the physical qubits, which are denoted by the filled

black circles in Fig 7.12, while the hollow black circles represent the error-free physical qubits. All of the error

patterns given in Fig 7.12 (a), (b) and (c) trigger the eigenvalues of ↑1 for the stabilizer operators denoted

by filled red squares, while the rest of the stabilizer operators are represented by hollow red squares, which

return eigenvalues of +1. Since the decoder relies on hard-decision ML decoding, all of the error patterns given

in Fig. 7.12 (a), (b) and (c) have the same probability of occurrence. Let us assume that the decoder always

decides to apply the error recovery pattern of Fig. 7.12 (a) for the specified values of stabilizer measurement.

When the actual error pattern is the one given in Fig. 7.12 (a), the states of the physical qubits are fully

recovered. By contrast, if the actual error pattern is the one seen in Fig. 7.12 (b), but it is corrected using

the error recovery operator of Fig. 7.12 (a), we arrive at the accumulated error pattern shown in Fig. 7.12 (d).

Lastly, when the actual error pattern is the one given by Fig. 7.12 (c), but we attempt to correct it using the

error recovery of Fig. 7.12 (a), we obtain the error pattern seen Fig. 7.12 (e). However, if we observe closely

the error pattern illustrated in Fig. 7.12 (d), it is reminiscent of a plaquette Z stabilizer operator denoted by

the filled blue triangle. Therefore, based on the definition of stabilizer operators, the error pattern given in

Fig. 7.12 (d) does not alter the legitimate state of physical qubits. Similarly, the error pattern of Fig. 7.12

(e) resembles the product of two adjacent plaquette stabilizer operators. Since the product between a pair of

stabilizer operators return another valid stabilizer operator, the error pattern given in Fig. 7.12 (e) belongs to

the stabilizer group S. Once again, by definition, the error pattern given in Fig. 7.12 (e) does not corrupt the

legitimate state of physical qubits. This is an example of harmless undetectable error patterns.

To elaborate a little further, a harmless undetected error can be directly generated by the quantum de-

7.4. Performance of Quantum Topological Error Correction Codes 175

Sz

Sx = 1 Sx = 1

Sz Sz

(a) (b) (c)

(d) (e)

Sx = 1

Sx = 1

Sx = 1Sx = 1

Figure 7.12: Illustration of how the error recovery operator R creates the degenerate error
patterns and how the degeneracy nature of QECCs may improve the performance
of QTECCs. All of the error patterns given in (a), (b) and (c) represent error
patterns generating an identical syndrome value. Without loss of generality, let us
assume that based on the generated syndrome value, the decoder always decides
to perform error recovery operator R of (a) on the corrupted state of physical
qubits. If the actual error pattern is (a), the corrupted state of physical qubits
will be fully recovered. By contrast, figure (d) shows the resultant error pattern if
the actual error pattern is (b), but it is corrected using the error pattern given in
(a). Moreover, figure (e) represents the resultant error pattern if the actual error
pattern is (c) and it is corrected using the error recovery pattern of (a). As a
result, the error pattern (d) represents a stabilizer operator of a plaquette, while
the error pattern (e) resembles the product of two adjacent stabilizer operators.
Both error patterns of (d) and (e) constitute the harmless undetectable error
patterns, since they belong to the stabilizer group S. Therefore, the state of
physical qubits is not altered after the recovery operator R of (a) is applied to
all error patterns of (a), (b) and (c). In classical setup, both error patterns (d)
and (e) are considered as error events. However, in the quantum domain, both
error patterns (d) and (e) are considered as error-free cases. This specific error-
type has no similarity in the classical domain and hence potentially improves the
performance of QTECCs. Chandra et al. [?]

coherence, where the Pauli operator P ↘ Pn imposed by the quantum depolarizing channel is identical to the

stabilizer operator Si. Another possibility is that it is generated by the associated error recovery procedure

when trying to recover an ambiguous error pattern, where there are more than one possible error patterns

associated with a specific syndrome value, as illustrated in Fig. 7.12. The degeneracy property, which is asso-

ciated with the harmless undetectable error patterns, does not have a classical analogue, because the resultant

error patterns illustrated in Fig. 7.12 (d) and (e) will always be considered as an error in the classical setup.

Ultimately, considering the degeneracy potentially improves the performance of QECCs.

Let us consider a range of di!erent scenarios for illustrating the presence of harmful undetected error

patterns, which is portrayed in Fig. 7.13. Similar to the previous example of Fig. 7.12, three Z errors are

imposed on the state of logical qubits by the quantum depolarizing channel. The error patterns given in

176 7. Quantum Topological Error Correction Codes

Sx = 1Sx = 1

Sx = 1 Sx = 1

(a) (b)

(c)

Figure 7.13: Illustration of the harmful undetectable error pattern in the quantum domain.
The actual error pattern inflicts the state of physical qubits is given in (b), while
the decoder always decides to perform a recovery operator given in (a). Instead of
recovering the legitimate state of the physical qubits, the specified error recovery
procedure generates a chain of error that commutes with all of the stabilizer
operators, as shown in (c). In the quantum domain, it constitutes the harmful
undetectable error patterns. In the classical domain, it resembles the error pattern
that generates all-zero syndrome values. Chandra et al. [?]

Fig. 7.13 (a) and (b) trigger the eigenvalues of ↑1 for the stabilizer operators denoted by filled red squares

in Fig. 7.13, while the rest of the stabilizer operators represented by hollow red squares return eigenvalues of

+1. Given the associated syndrome value, the decoder always decides to apply the error recovery operator of

Fig. 7.13 (a). In the specific scenario, where the actual error pattern is the one given by Fig. 7.13 (b), the

resultant error pattern is given in Fig. 7.13 (c). We can observe that the resultant error pattern of Fig. 7.13 (c)

commutes with all of the stabilizer operators in Fig. 7.13. However, this specific error pattern does not belong

to the stabilizer operator S, since we cannot represent a chain of errors by the product of stabilizer operators.

Consequently, this undetectable error pattern inevitably corrupts the legitimate state representing the physical

qubits. This is an example of the harmful undetectable error patterns. This error pattern is similar to that of

its counterpart in the classical domain, where the error pattern returns the all-zero syndrome.

Therefore, based on these conditions, by appropriately modifying the probabilty of correct decoding in the

classical domain [?], we can readily formulate the worst-case upper bound QBER performance of QTECCs as

QBER
upper

(n, d, p) =1 ↑
t=↘ d→1

2
≃∑

i=0


n

i


p
i(1 ↑ p)n→i ↑

|S|∑

i=1,⇔Si⇓S
p
w(Si)(1 ↑ p)n→w(Si), (7.31)

where w(Si) is the weight of the stabilizer operator Si, which is defined by the number of non-identity Pauli

operators within the stabilizer operators. The second term of Eq. (7.31) represents all the correctable error

patterns of QTECCs, while the last term of Eq. (7.31) represents the degenerate error patterns that belong to

7.4.1. QBER Versus Depolarizing Probability 177

the stabilizer operators. For example, let us revisit the construction of the surface codes of Fig. 7.8. There are

12 stabilizer generators for a distance-3 surface code, as seen in Table 7.6. Hence, we can potentially generate

212 unique stabilizer operators, since the product of the stabilizer operators returns another valid stabilizer

operator. However, in order to further simplify the expression given in Eq. (7.31), we only consider the specific

error patterns resembling the specified stabilizer operators given in Table 7.6, since they exhibit a lower weight

of non-identity Pauli matrices and hence have a higher probability of occurance. Therefore, for surface codes,

the last term of Eq. (7.31) can be approximated as (2d2 ↑2d)p4(1↑p)n→4. The term (2d2 ↑2d) represents the

number of stabilizer operators, which is given in Table 7.8, and we assume that all the weights of the stabilizer

operators w(Si) are equal to 4.

Depolarizing probability (p)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Q
B
E
R

10 -4

10 -3

10 -2

10 -1

10 0

Performance without considering degeneracy
Performance with considering degeneracy
Upper bound

(a) Colour codes.

Depolarizing probability (p)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Q
B
E
R

10 -4

10 -3

10 -2

10 -1

10 0

Performance without considering degeneracy
Performance with considering degeneracy
Upper bound

(b) Rotated-surface codes.

Depolarizing probability (p)
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Q
B
E
R

10 -4

10 -3

10 -2

10 -1

10 0

Performance without considering degeneracy
Performance with considering degeneracy
Upper bound

(c) Surface codes.

Figure 7.14: QBER performance of the distance-3 QTECCs over the quantum depolarizing
channel, which is capable of correcting a single qubit error. The code parameters
are given in Table 7.11. For this scenario, the decoder using hard-input ML
decoding approach for predicting the error pattern. Chandra et al. [?]

7.4.1 QBER Versus Depolarizing Probability

In order to characterize the performance of QTECCs by simulations, we exploit the fact that the QTECCs

belong to the family of CSS codes, which handle the bit-flips (X) and phase-flips (Z) separately. Hence, we

invoke two independent binary symmetric channels (BSC), one for the X channel and one for the Z channel,

where each channel is characterized by the flip probability of 2p/3, where p is the associated depolarizing prob-

ability of the quantum depolarizing channel [?,?]. The decoder utilizes hard-decision ML decoding relying on a

simple LUT decoder, as exemplified in Section 3.3. However, this classical-domain simulation only represents

the performance of QTECCs without considering the degenerate error patterns. To elaborate a little further,

178 7. Quantum Topological Error Correction Codes

Table 7.11: Code parameters for distance-3 colour code, rotated-surface code and surface code.

Code type n k d rQ

Colour code 7 1 3 1/7

Rotated-surface code 9 1 3 1/9

Surface code 13 1 3 1/13

we transmitted all-zero information bits. Therefore, we always consider the non-all-zero bits at the decoder

output as an error. In order to additionally consider several cases of degenerate error patterns, which is ex-

emplified in Fig. 7.12, we performed another evaluation step. We evaluate the non-all-zero corrected received

words and checked for the degenerate error patterns. If it satisfies to the degenerate error pattern criterion

that we have above, we conclude that this is an error-free case. However, we are not capable of providing a

complete list of all possible degenerate error patterns. Here we only consider the error patterns resembling

the stabilizer generators of Si, as exemplified in Table 7.6 and 7.7 for surface codes and triangular codes,

respectively. The QBER performance of distance-3 QTECCs versus the quantum depolarizing probability is

portrayed in Fig. 7.14, where the code parameters are given in Table 7.11. We also include the upper bound

of the QTECC performance of Eq. (7.31) in Fig. 7.14. It can be observed that the upper bounds match with

the QTECCs performance recorded without considering the degenerate error patterns.

As we mentioned earlier, there are two sources of degenerate error patterns at the output of the decoder.

Firstly, the degenerate error pattern that was imposed directly by the quantum channel, where the error

exhibits an identical pattern to the stabilizer operator Si. Secondly, the degenerate error pattern generated by

the recovery operator R, when it tries to recover the legitimate physical qubits, as illustrated in Fig. 7.12. The

second case is more dominant than the first one. The reason can be explained as follows. Let us consider the

Z stabilizer operators of the distance-3 surface code given in Table 7.6. There are six Z stabilizer operators

corresponding to the 26 = 64 possible syndrome vector, including the error-free scenario. Remember that the

distance-3 surface code can only correct a single qubit error within a block of 13 physical qubits, where each

of the single-qubit error patterns is associated with a single syndrome vector. In other words, amongst all

of the 64 possible syndrome vectors, there are only 13 syndrome vectors used for uniquely distinguishing the

correctable error patterns, while the rest of the syndrome vectors are associated with an error pattern ambiguity,

as exemplified in Fig. 7.12 and 7.13. For this reason, QTECCs are highly degenerate QSCs. Hence, the upper

bound of the QBER performance matches the simulation-based performance recorded without considering

the degeneracy, since it considers the first case of degeneracy, where we only consider a portion of all valid

stabilizer operators Si ↘ S in Eq. (7.31). As expected, by accommodating both of the degeneracy cases, the

QBER performance of QTECCs is improved, as portrayed in Fig. 7.14.

7.4.2 QBER Versus Distance from Hashing Bound

Increasing the minimum distance of a given QSC construction, which directly improves its per-codeword error

correction capability (t), is achieved by increasing the number of physical qubits (n) or by decreasing the

quantum coding rate. Specifically for QTECCs, increasing the minimum distance means increasing the number

of physical qubits (n) and decreasing the quantum coding rate (rQ) simultaneously. Naturally, the goal of

increasing the minimum distance of the QSC is to achieve a better QBER performance. However, a QBER

improvement can only be observed below a certain depolarizing probability (p), which may be referred to as

the threshold probability (pth). Using the QBER upper bound performance of Eq. (7.31), we plot the QBER

curves for colour, rotated-surface, surface and toric codes in Fig. 7.15. For each of the QTECC constructions,

we portray the upper bound QBER performance for the minimum distance values of d = {3, 5, 7, 9, 11}.
The threshold probability of each code is represented by the crossover points, which are marked by dashed

lines. Qunatitatively, the threshold probability of colour codes, rotated-surface, surface and toric codes are

1.83 ⇑ 10→2, 1.34 ⇑ 10→2, 6.28 ⇑ 10→3 and 6.77 ⇑ 10→3, respectively.

7.4.2. QBER Versus Distance from Hashing Bound 179

Depolarizing probability (p)
0 0.005 0.01 0.015 0.02

Q
B
E
R

10−8

10−6

10−4

10−2

100

Colour codes

d = {3, 5, 7, 9, 11}

rQ =
{

1
7 ,

1
19 ,

1
37 ,

1
61 ,

1
91

}

pth = 1.83× 10−2

(a) Colour codes.

Depolarizing probability (p)
0 0.005 0.01 0.015 0.02

Q
B
E
R

10−8

10−6

10−4

10−2

100

Rotated surface codes

d = {3, 5, 7, 9, 11}

rQ =
{

1
9 ,

1
25 ,

1
49 ,

1
81 ,

1
121

}

pth = 1.34× 10−2

(b) Rotated-surface codes.

Depolarizing probability (p)
0 0.005 0.01 0.015 0.02

Q
B
E
R

10−8

10−6

10−4

10−2

100

Surface codes

d = {3, 5, 7, 9, 11}

rQ =
{

1
13 ,

1
41 ,

1
85 ,

1
145 ,

1
221

}

pth = 6.28× 10−3

(c) Surface codes.

Depolarizing probability (p)
0 0.005 0.01 0.015 0.02

Q
B
E
R

10−8

10−6

10−4

10−2

100

Toric codes

d = {3, 5, 7, 9, 11}

rQ =
{

1
9 ,

1
25 ,

1
49 ,

1
81 ,

1
121

}

pth = 6.77× 10−3

(d) Toric codes.

Figure 7.15: Upper bound QBER performance of QTECCs for the minimum distance of d =
{3, 5, 7, 9, 11} based on Eq. (7.31) and code parameters given in Table 7.8. The
crossover amongst the QBER curves represents the threshold probability (pth),
which are portrayed in dashed line. Chandra et al. [?]

However, presenting the performance of QTECCs over quantum depolarizing channels by portraying the

QBER curves versus the depolarizing probability (p) does not take the quantum coding rate (rQ) into con-

sideration. As we mentioned earlier, we can simply decrease the quantum coding rate further and further to

increase the error correction capability of the QTECCs. Nonetheless, for the sake of depicting a fair comparison

upon reducing the quantum coding rate, we have to scrutinize how much performance improvement we obtain

upon decreasing the quantum coding rate. Therefore, to demonstrate how much performance improvement we

attain compared to how much we decrease the quantum coding rate, we normalize the QBER performance by

incorporating the quantum hashing bound. More explicitly, the quantum hashing bound can be expressed as

follows [?]:

CQ(p) = 1 ↑ H(p) ↑ p · log
2
(3), (7.32)

where H(p) is the binary entropy of p. More specifically, the quantum hashing bound of Eq. (7.32) dictates

that a random quantum code C having a su”ciently long codeword and a quantum coding rate rQ ⇔ CQ(p)

may yield an infinitesimally low QBER for a given depolarizing probability p. Alternatively, we can refer to

CQ(p) as the hashing limit for the quantum coding rate rQ associated with a given depolarizing probability p.

In terms of its classical dual pair, the value of CQ is similar to the capacity limit. Similarly, for a given coding

rate rQ, we can find a value of p↗ satisfying rQ = CQ(p↗), where p
↗ denotes the maximum value of depolarizing

probability p so that a quantum code C having quantum coding rate of rQ can operate at an infinitesimally low

QBER. The value of p↗ may be referred to as the hashing limit for the depolarizing probability of p associated

with a given quantum coding rate of rQ. In the classical domain, the value of p↗ is similar to the noise limit.

Therefore, in general, the aim is that of finding a QSC that is capable of performing as close as possible to

180 7. Quantum Topological Error Correction Codes

Distance from hashing bound (D)
0 0.05 0.1 0.15 0.2

Q
B
E
R

10−6

10−4

10−2

100

Colour codes

d = {3, 5, 7, 9, 11}

rQ =
{

1
7 ,

1
19 ,

1
37 ,

1
61 ,

1
91

}

D0 = 0.1893

(a) Colour codes.

Distance from hashing bound (D)
0 0.05 0.1 0.15 0.2

Q
B
E
R

10−6

10−4

10−2

100

Rotated surface codes

rQ =
{

1
9 ,

1
25 ,

1
49 ,

1
81 ,

1
121

}

d = {3, 5, 7, 9, 11}

D0 = 0.1893

(b) Rotated-surface codes.

Distance from hashing bound (D)
0 0.05 0.1 0.15 0.2

Q
B
E
R

10−6

10−4

10−2

100

Surface codes

rQ =
{

1
13 ,

1
41 ,

1
85 ,

1
145 ,

1
221

}

d = {3, 5, 7, 9, 11}

D0 = 0.1893

(c) Surface codes.

Distance from hashing bound (D)
0 0.05 0.1 0.15 0.2

Q
B
E
R

10−6

10−4

10−2

100

Toric codes

rQ =
{

1
9 ,

1
25 ,

1
49 ,

1
81 ,

1
121

}

d = {3, 5, 7, 9, 11}

D0 = 0.1893

(d) Toric codes.

Figure 7.16: Upper bound performance of QTECCs in term of the QBER versus the distance
D from the hashing bound. The dashed lines portray the ultimate distance to
the quantum hashing bound of D0 = 0.1893. Chandra et al. [?]

the quantum hashing bound. For example, let us consider the distance-3 and distance-5 rotated-surface codes

having quantum coding rates of rQ = 1/9 and rQ = 1/25, respectively. By substituting CQ = 1/9 and

CQ = 1/25 into the Eq. (7.32), we obtain the noise limits of p
↗ = 0.160 and p

↗ = 0.179, respectively. It can

be concluded that the noise limit is higher for the quantum code exhibiting a lower quantum coding rate. To

incorporate the quantum hashing bound into the QBER performances of QTECCs, we define the distance from

the hashing bound as follows:

D ↭ p(rQ) ↑ p. (7.33)

In other words, by changing the horizontal axis from the depolarizing probability p to the distance D from

the hashing bound, we shift all the QBER curves according to their hashing bounds, so that all the hashing

bounds are at the reference point of D = 0.

Several pertinent questions arise from the quantum hashing bound formulation. Firstly, is there a noise

limit, where no QSC constructions are capable of achieving a satisfactorily low QBER? Indeed, the answer

is yes. By substituting CQ = 0 into Eq. (7.32), which is the lowest possible value of achievable quantum

coding rate, we arrive at the ultimate hashing bound of p(0) ⇐ 0.1893. Secondly, what is the farthest possible

distance from the quantum hashing bound for any QSC construction? To answer this question, we have to

consider the worst-case scenario, where a QSC exhibiting a near-zero quantum coding rate (rQ ⇐ 0) achieves

an infinitesimally low QBER at near-zero quantum depolarizing probability (p ⇐ 0). By substituting the value

7.4.3. Fidelity 181

of rQ = 0 and p = 0 into Eq. (7.33), we define the ultimate distance D0 from the hashing bound as

D0 = p(0) ↑ p

= 0.1893 ↑ 0

= 0.1893. (7.34)

Therefore, the desirable performance of any QSCs quantified in terms of the QBER versus distance from the

quantum hashing bound is represented by the curves exhibiting a reasonably low QBER as close as possible

to the reference point of D = 0. Naturally, this implies having a low QBER as far as possible from the

ultimate distance of D0 = 0.1893 wrt the hashing bound. In simpler terms, any QSCs can only operate

at a reasonably low QBER withing the hashing bound range of 0 ⇔ D ⇔ D0. Furthermore, we should

only consider the quantum coding rate reduction of rQ to be beneficial, if the associated QBER performance

curve moves closer to the reference point of D = 0. Otherwise, it is more advisable to find a better code

construction exhibiting an identical quantum coding rate. Alternatively, we may invoke a more powerful

decoding scheme, for example by utilizing a soft-decision-aided decoder. The QBER performance of QTECCs

versus their distances from the quantum hashing bound are portrayed in Fig. 7.16. It can be observed in

Fig. 7.16 that increasing the minimum distance of the QTECCs yields a performance improvement in terms

of their QBER versus depolarizing probability p snd also in terms of their distance from the hashing bound

D. However, at low QBERs the curves become crowded in the vicinity of the ultimate hashing bound distance

of D0. Moreover, the results show an agreement with the quantum coding rate versus minimum distance

evolution of QTECCs seen in Fig. 7.11. The improvement of the minimum distance – which is directly linked

to the error correction capability – is not fast enough upon reducing the quantum coding rate to compensate

for the rapidly increasing number of physical qubits. Therefore the QTECCs may be recommended for short

to moderate codeword lengths.

7.4.3 Fidelity

From an implementational perspective, a quantum gate or quantum channel is often characterized by the so-

called fidelity, which represents the closeness of a pure quantum state of |ω→ compared to the mixed states

having the quantum density operator of φ. More explicitly, since the quantum channel imposes decoherence on

our legitimate quantum states representing the physical qubits |ω→, the decoder may not successfully recover

the legitimate state. Therefore, the ensemble of all the possible predicted legitimate states of physical qubits

|ω̂→ can be represented using the state of |ωi→ having a probability of pi. The fidelity can be formulated as

follows [?,?,?]:

F = ∈ω|φ|ω→, (7.35)

while φ, which portrays the statistical characteristics of a the mixed states, is defined by

φ =
N∑

i=1

pi|ωi→∈ωi|, (7.36)

where |ωi→ represents all the possible states in the ensemble and pi is the probability of having state |ωi→ in

the ensemble, which is subject to the unity constraint of
∑

N

i=1
pi = 1.

In order to demonstrate the benefit of QTECCs in the context of quantum depolarizing channels, we

compare the so-called initial fidelity Fin and final fidelity Fout. The initial fidelity is the fidelity of the pure

quantum state of |ω→ over the quantum depolarizing channel P unprotected by any QSCs scheme. Therefore,

the initial fidelity Fin can be expressed as follows:

Fin = 1 ↑ p. (7.37)

The final fidelity is that of the pure state of the desired output |ω↑→ protected by the a QSC scheme after the

recovery procedure R and inverse encoder V† of Fig. ??. Therefore, the final fidelity Fout of the quantum

182 7. Quantum Topological Error Correction Codes

Initial fidelity (Fin)
0.9 0.92 0.94 0.96 0.98 1

F
in
al

fi
d
el
it
y
(F

o
u
t
)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Colour codes
Colour codes (upper bound)
Rotated surface codes
Rotated surface codes (upper bound)
Surface codes
Surface codes (upper bound)

F = 0.938

F = 0.965

F = 0.985

Figure 7.17: The fidelity performance of QTECCs having a minimum distance of 3 in term
of fidelity of Eq. (7.35). The colour code reaches the fidelity threshold earlier
than the rotated-surface and surface code, since the colour code has the lowest
number of physical qubits compared to the rotated-surface code and the surface
code. The code parameters are given in Table 7.11. Chandra et al. [?]

system can be readily described as

Fout = 1 ↑ QBER. (7.38)

The fidelity performances of the distance-3 QTECCs are depicted in Fig. 7.17. The black solid line

represents the condition of Fin = Fout. The crossover point between the line of Fin = Fout and fidelity

performance curve of QTECCs is the break-even point, which we may refer to as the threshold fidelity Fth.

The break-even point denotes the minimal initial fidelity required for ensuring that we do acquire a fidelity

improvement upon the applicaton of the QSC scheme, which is invoked for protecting the state of the physical

qubits. The upper bound of threshold fidelity Fth for the di!erent types of QTECCs is depicted in Fig. 7.18.

It can be observed that di!erent code families having various minimum distances d result in di!erent threshold

fidelity Fth. For the QSCs utilizing hard-decision syndrome decoding, we derive the upper bound approximation

formula for Fth. First, from Eq. (7.31) and Eq. (7.38), we arrive at

Fout = 1 ↑ QBER
upper

= 1 ↑



1 ↑
t=↘ d→1

2
≃∑

i=0


n

i


p
i(1 ↑ p)n→i





= 1 ↑
n∑

↘ d→1

2
≃+1


n

i


p
i(1 ↑ p)n→i

. (7.39)

For a low depolarizing probability p, the expression given in Eq. (7.39) can be approximated in order to

7.4.3. Fidelity 183

Initial fidelity (Fin)
0.9 0.92 0.94 0.96 0.98 1

F
in
al

fi
d
el
it
y
(F

o
u
t)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Colour codes

F
in

 = F
out

F = 0.942

d = {3, 5, 7, 9, 11}

(a) Colour codes.

Initial fidelity (Fin)
0.9 0.92 0.94 0.96 0.98 1

F
in
al

fi
d
el
it
y
(F

o
u
t)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Rotated surface codes

F
in

 = F
out

F = 0.968

d = {3, 5, 7, 9, 11}

(b) Rotated-surface codes.

Initial fidelity (Fin)
0.9 0.92 0.94 0.96 0.98 1

F
in
al

fi
d
el
it
y
(F

o
u
t)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Surface codes

F
in

 = F
out

d = {3, 5, 7, 9, 11}

F = 0.986

(c) Surface codes.

Initial fidelity (Fin)
0.9 0.92 0.94 0.96 0.98 1

F
in
al

fi
d
el
it
y
(F

o
u
t)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

Toric codes

F
in

 = F
out

F = 0.993

d = {3, 5, 7, 9, 11}

(d) Toric codes.

Figure 7.18: Upper bound fidelity performance of QTECCs. Chandra et al. [?]

determine the upper bound of the output fidelity as follows:

Fout ⇐ 1 ↑


n

↙ d→1

2
∝ + 1


p
↘ d→1

2
≃+1

. (7.40)

Since the threshold fidelity satisfies the relationship of Fth = Fin = Fout, we can substitute Fout = Fth and

p = 1 ↑ Fth into Eq. (7.40). Finally, the upper bound of the threshold probability can be formulated as

Fth(n, d) = 1 ↑


n

↙ d→1

2
∝ + 1

→1/↘ d→1

2
≃
. (7.41)

For example, the threshold for a distance-3 colour code having a quantum coding rate of rQ = 1/7 based on

Fig. 7.18(a) is Fth = 0.942, while using the upper bound approximation of the fidelity threshold in Eq. (7.41)

we have Fth = 0.952. For the distance-3 rotated-surface code, surface code and toric code, the threshold fidelity

184 7. Quantum Topological Error Correction Codes

values based on Fig. 7.18(b), 7.18(c) and 7.18(d) are Fth = 0.968, Fth = 0.986 and Fth = 0.993, respectively.

By using the approximation of Eq. (7.41), the fidelity threshold upper bounds are given by Fth = 0.972,

Fth = 0.987 and Fth = 0.994, respectively for the distance-3 rotated-surface code, surface code and toric code.

Here, we used the family of QTECCs as our representative examples, while the threshold fidelity of Eq. (7.41)

is generically applicable for any QSCs using hard-decision syndrome decoding. Ultimately, the QTECCs are

capable of reducing the quantum decoherence, which is demonstrated both by the QBER reduction and the

fidelity improvement attained.

7.5 Summary and Conclusions

We portrayed the evolution of the topological error correction codes designed in the classical domain to that of

their quantum-domain dual pairs. We showed that by arranging the bits of the codeword on a lattice structure in

the classical domain provides a beneficial inherent error correction capability. Furthermore, for a long codeword,

the classical topological error correction codes correspond to the family of LDPC codes exhibiting attractive

properties, such as unbounded minimum distance as a function of the codeword length, structured construction

and a coding rate of r = 1/2. By contrast, the quantum topological error correction codes are more suitable for

applications requiring short to moderate codeword lengths, since the quantum coding rate of QTECCs tends to

zero for a long codeword. We characterized the performance of QTECCs in the face of the quantum depolarizing

channel in terms of the QBER attained. First, we showed that QTECCs are highly degenerate quantum codes,

therefore the classical simulation is only capable of portraying the performance of QTECCs without considering

the degeneracy property. Secondly, we demonstrated that increasing the minimum distance of the QTECCs

improves the QBER performance. Additionally, we normalized the performance by considering the coding

rate, which was achieved by defining the distance from the hashing bound. Explicitly, we have shown that the

growth of minimum distance of QTECCs upon increasing the codeword length is not fast enough to compensate

for the increased codeword length. Consequently, the QBER performance of QTECCs gradually tends to the

ultimate distance from the hashing bound. Finally, we determined the fidelity threshold for QSCs based on

hard-decision syndrome decoding, which represents the minimum fidelity value required for a quantum system

to glean benefits from QSCs. Ultimately, the employment of QSCs will improve the reliability of quantum

computers.

	Acknowledgments
	I From Classical to Quantum Codes
	List of Acronyms
	Introduction
	Motivation
	Historical Overview
	Quantum Stabilizer Codes
	Quantum Topological Error Correction Codes
	Quantum Convolutional Codes
	Quantum Low Density Parity Check Codes
	Quantum Turbo Codes
	Entanglement-Assisted Quantum Codes
	Protecting Quantum Gates

	Outline of the Book

	Preliminaries on Quantum Information
	Introduction
	A Brief Review of Quantum Information
	Quantum Information Processing
	Unitary Transformation
	Pauli Gates
	Hadamard Gate
	Phase Gate
	Controlled-NOT Gate
	Toffoli Gate

	Quantum Measurement

	Quantum Decoherence
	Symmetric Quantum Depolarizing Chanel
	Asymmetric Quantum Depolarizing Chanel
	Independent Binary-Symmetric Chanel

	No-Cloning Theorem
	Quantum Entanglement
	Quantum Channels
	Summary and Conclusions

	From Classical to Quantum Coding
	Introduction
	A Brief Review of Classical Syndrome-based Decoding
	A Brief Review of Quantum Stabilizer Codes
	Protecting A Single Qubit: Design Examples
	Classical and Quantum 1/3-rate Repetition Codes
	Shor's 9-Qubit Code
	Steane's 7-Qubit Code
	Laflamme's 5-Qubit Code - The Perfect Code

	Summary and Conclusions

	Revisiting Classical Syndrome Decoding
	Introduction
	Look-Up Table-Based Syndrome Decoding
	Trellis-Based Syndrome Decoding
	Linear Block Codes
	Convolutional Codes

	Block Syndrome Decoding
	General Formalism
	Block Syndrome Decoder for TTCM
	System Model
	Syndrome-Based MAP Decoder
	Error Estimation
	Syndrome-Based Blocking

	Results and Discussions
	Performance of BSD-TTCM over AWGN Channel
	Performance of BSD-TTCM over Uncorrelated Rayleigh Fading Channel
	Effect of Frame Length on the Performance of BSD-TTCM

	Summary and Conclusions

	Bibliography
	Subject Index
	Near-Capacity Codes for Entanglement-Aided Classical Communication
	Introduction
	Review of the Superdense Coding Protocol
	2-Qubit Superdense Coding
	N-Qubit Superdense Coding

	Entanglement-Assisted Classical Capacity
	Bit-Based Code Structure
	Near-Capacity Design
	EXIT Charts
	Near-Capacity IRCC-URC-SD Design

	Results and Discussions I
	Performance of IRCC-URC-2SD
	Performance of IRCC-URC-3SD

	Symbol-Based Code Structure
	Results and Discussions II
	Summary and Conclusions

	II Near-Term Quantum Codes
	Quantum Coding Bounds
	Introduction
	On Classical to Quantum Coding Bounds
	Singleton Bound
	Hamming Bound
	Gilbert-Varshamov Bound

	Quantum Coding Bounds in the Asymptotical Limit
	Quantum Coding Bounds on Finite-Length Codes
	The Bounds on Entanglement-Assisted Quantum Stabilizer Codes
	Summary and Conclusions

	Quantum Topological Error Correction Codes
	Introduction
	Classical Topological Error Correction Codes: Design Examples
	Quantum Topological Error Correction Codes: Design Examples
	Performance of Quantum Topological Error Correction Codes
	QBER Versus Depolarizing Probability
	QBER Versus Distance from Hashing Bound
	Fidelity

	Summary and Conclusions

