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Quantum Communication Limits
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❑Quantum Communication Protocols and Capacities

❑Holography -> Repeaterless PLOB bound

❑ Limits of quantum comms (e.g., max QKD rates)

❑ Limits of repeater chains 

❑ Limits of quantum communication networks

❑ Limits of free-space quantum comms

❑ Satellite quantum comms



Main Quantum Communication Protocols

*These are forms of Quantum 
  Information Transmission (QIT)

❑Quantum key distribution (QKD)

❑Entanglement distribution (ED)

❑Quantum teleportation (QT)*

❑QEC-based Transmission (QEC)*

secret bits

ebits

qubits

qubits



Generic Quantum Communication Protocol

❑ Alice performs a quantum local 
operation (LO) at the input

❑ She sends a quantum system 
through the channel

❑ Bob performs a LO on the output

❑ They use a side channel for 2-way 
classical communication (CC)

❑ They optimize their LO adaptively 
using the classical info exchanged

secret bits
ebits

qubits



Quantum Communication Capacities

Given a quantum channel between Alice and Bob, we optimize over all 
possible communication protocols to establish the maximum rates for:

❑ QKD (secret bits/channel use) – Secret Key Capacity

❑ ED (ebits/channel use) – Entanglement Distribution Capacity*

❑ QIT (qubits/channel use) – Quantum Capacity* 

*Technically, these are called the 2-way assisted capacities

To simplify, let us use a compact notation and define a generic quantum 
communication capacity K. Depending on the specific task of the protocol 
(QKD, ED, QIT), it can be specified to one of the capacities listed above.  



Quantum Communication Capacities

𝜂
Alice Bob a b

1 − 𝜂
Environment

In particular, consider a “lossy” quantum channel with transmissivity 𝜂

𝐾 = 𝐾(𝜂)Quantum Communication Capacity

To find this, we need upper bound and lower bound



Holographic Upper bound

Spherical Entropy Bound

𝐾

N signals sent

𝜂

Pirandola, Holographic Limitations and Corrections to Quantum Information Protocols, Phys. Rev. Res. 6, 013157 (2024) 
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Pirandola, Holographic Limitations and Corrections to Quantum Information Protocols, Phys. Rev. Res. 6, 013157 (2024) 

Holographic Upper bound



𝜂
Alice Bob a b

1 − 𝜂
Environment

[2] Pirandola, Laurenza, Ottaviani, Banchi, Nature Comm 8, 15043 (2017)

𝐾 ≤ − log2(1 − 𝜂) Upper bound (converse part) [1,2]

[1] Pirandola, Holographic Limitations and Corrections to Quantum Information Protocols, Phys. Rev. Res. 6, 013157 (2024) 

Holographic Upper bound



Lower bound

𝜂
Alice Bob a b

1 − 𝜂
Environment

[2] Pirandola, Laurenza, Ottaviani, Banchi, Nature Comm 8, 15043 (2017)

𝐾 ≤ − log2(1 − 𝜂) Upper bound (converse part) [1,2]

[1] Pirandola, Holographic Limitations and Corrections to Quantum Information Protocols, Phys. Rev. Res. 6, 013157 (2024) 

[3] Pirandola, Patron, Braunstein, Lloyd, PRL  102, 050503 (2009)

𝐾 ≥ − log2(1 − 𝜂) Achievability (direct part) [3]



Exact Capacity

𝜂
Alice Bob a b

1 − 𝜂
Environment

[2] Pirandola, Laurenza, Ottaviani, Banchi, Nature Comm 8, 15043 (2017)

𝐾 ≤ − log2(1 − 𝜂) Upper bound (converse part) [1,2]

[1] Pirandola, Holographic Limitations and Corrections to Quantum Information Protocols, Phys. Rev. Res. 6, 013157 (2024) 

[3] Pirandola, Patron, Braunstein, Lloyd, PRL  102, 050503 (2009)

𝐾 ≥ − log2(1 − 𝜂) Achievability (direct part) [3]

𝐾 = − log2(1 − 𝜂)
➢ Quantum/entanglement distribution capacity
➢ Secret-key capacity
➢ Known as PLOB bound



Fundamental limits of quantum communications

𝐾 = − log2(1 − 𝜂)

PLOB bound is the fundamental benchmark for quantum communications:

➢ Provides the ultimate performance of quantum communication protocols 
     over a quantum channel, in the absence of repeaters (repeaterless bound)

➢ Establishes if a quantum repeater effectively repeats  

𝜂
Alice Bob a b

1 − 𝜂
Environment



QKD limits before PLOB

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)] 

− log2(1 − 𝜂)

PLOB (repeaterless) bound



QKD limits before PLOB

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)] 

− log2(1 − 𝜂)

PLOB (repeaterless) bound

- GG02 
- Het protocol,
- CV-MDI-QKD
[Pirandola et al, Nature 
Photonics 9, 397 (2015)]

[Braunstein, Pirandola PRL 108, 130502 (2012)]
[Lo, Curty, Qi, PRL 108, 130503 (2012)]

MDI-QKD



Repeater-assisted protocols introduced after PLOB

− log2(1 − 𝜂)

PLOB (repeaterless) bound

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)] 



− log2(1 − 𝜂)

PLOB (repeaterless) bound

Repeater-assisted protocols introduced after PLOB

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)] 

Wang et al, PRA 98, 062323 (2018) 

Jiang et al, PRApp 12, 024061 (2019) 

Xu et al., PRA 101, 042330 (2020) 

❑ Sending or not sending (SNS)

❑ Active odd-parity pair (AOPP)

Cui et al., PRApp 11, 034053 (2019)

❑ No-phase-postselected (NPPTF)

Grasselli, NJP 21, 073001 (2019)

❑ Phase-matching (PM)

PRX 8, 031043 (2018)



Limits of repeater-assisted quantum communications

𝐾 = − log2(1 − 𝜂)PLOB bound

only beaten by effective repeaters

Alice Bob a b
Optical link with transmissivity 𝜂

Next question: what are the optimal rates achievable by repeater-assisted protocols? 



Limits of repeater-assisted quantum communications

𝐾 = − log2(1 − 𝜂)PLOB bound

[Pirandola, End-to-end capacities of a quantum communication network, Communications Physics 2, 51 (2019)]

only beaten by effective repeaters

𝐾 = −log2(1 − min𝑖{𝜂𝑖})

Alice Bob a b
Optical link with transmissivity 𝜂

Alice Bob r1 rNr2
a b

The capacity of the chain is given by the min transmissivity

𝜂0 𝜂1 𝜂𝑁

Techniques:
-Lower bound (simple, by composition)
-Upper bound (difficult, via REE and teleportation simulation) 

Consider a chain of M ideal repeaters between Alice and Bob 



Limits of repeater-assisted quantum communications

[Pirandola et al., Advances in Quantum Cryptography, AOP 12, 1012-1236 (2020)] 

𝐾1rep = − log2(1 − 𝜂)



Limits of network quantum communications

Can we beat repeater chains? Yes: quantum networks



Limits of network quantum communications
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Alice and Bob can communicated following two basic routing strategies:
Single-path or Multi-path (flooding)

Can we beat repeater chains? Yes: quantum networks



Limits of network quantum communications
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𝜂23

𝜂13
𝜂12

𝜂01

𝜂02

p0 p3
a =

Alice and Bob can communicated following two basic routing strategies:
Single-path or Multi-path (flooding)

Corresponds to a good 
repeater-chain in the network 

More powerful

Can we beat repeater chains? Yes: quantum networks



Limits of network quantum communications
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𝜂23
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a =

Single-path routing

❑ Transmissivity of a path ω Ω = {ω}

෤𝜂 = max
ω∈Ω

𝜂ω

❑ Maximize over all paths                       

Single-path capacity is 𝐾s−path = − log2(1 − ෤𝜂)

[Pirandola, End-to-end capacities of a quantum communication network, Communications Physics 2, 51 (2019)]

𝜂ω = min
(𝐱,𝐲)∈ω

𝜂𝐱𝐲

Can we beat repeater chains? Yes: quantum networks
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To compute capacity we extend max-flow/min-cut 
theorem from classical to quantum communications
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Limits of network quantum communications
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To compute capacity we extend max-flow/min-cut 
theorem from classical to quantum communications

Can we beat repeater chains? Yes: quantum networks

Multi-path routing
(flooding)



Limits of network quantum communications

(Alice)

p1

p2

= b (Bob)
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𝜂12

𝜂02

p0 p3
a =

cut-set ෨𝐂

❑ Loss of the cut ❑ Loss of network

𝐾m−path = −log2𝑙(𝒩loss)Multi-path (flooding) capacity

[Pirandola, End-to-end capacities of a quantum communication network, Communications Physics 2, 51 (2019)]

Can we beat repeater chains? Yes: quantum networks

Multi-path routing
(flooding)



Limits of network quantum communications

𝐾m−path = −log2𝑙(𝒩loss)Multi-path (flooding) capacity

[Pirandola, End-to-end capacities of a quantum communication network, Communications Physics 2, 51 (2019)]

Can we beat repeater chains? Yes: quantum networks

𝐾m−path ≥ 𝐾s−path

Idea exploited in an experimental work

[N. R. Solomons, A. I. Fletcher, D. Aktas, N. Venkatachalam, S. Wengerowsky, M. 
Lončarić, S. P. Neumann, B. Liu, Ž. Samec, M. Stipčević, R. Ursin, S. Pirandola, J. G. 
Rarity, S. K. Joshi, arXiv:2101.12225; PRX Quantum (2022)]



Quantum network architecture

Theory well developed for wired connections (optical fibres) 

Need to integrate free-space links 

Local wireless sub-networks with mobile devices

Satellite links (global quantum network)

Sensors (IoT)



Limits and security of free-space quantum communications

Alice

Bob

[Pirandola, Limits and security of free-space quantum communications, Physical Review Research 3, 013279 (2021)]

Various issues to consider:
o Free-space diffraction
o Atmospheric extinction (Beer-Lambert model)
o Beam deflection and pointing errors
o Weak turbulence (beam spreading and wandering; H-V model)
o Background thermal noise (sky brightness)
o Setup imperfections (<1 efficiency, electronic noise etc.)

Basic free-space link



Limits and security of free-space quantum communications

Alice

Bob

𝐾free ≤ −Δ(𝜂, 𝜎) log2(1 − 𝜂)

Free-space limit for q. comms

[Pirandola, Limits and security of free-space quantum communications, Physical Review Research 3, 013279 (2021)]

fading correction

𝜂

𝜎2 variance due to fading

max transmissivity

ത𝑛 total noise

Basic free-space link



Limits and security of free-space quantum communications

Alice

Bob

𝐾free ≤ −Δ(𝜂, 𝜎) log2(1 − 𝜂)

Free-space limit for q. comms

[Pirandola, Limits and security of free-space quantum communications, Physical Review Research 3, 013279 (2021)]

𝐾free ≤ −Δ 𝜂, 𝜎 log2 1 − 𝜂 − 𝒯(ത𝑛, 𝜂, 𝜎)

thermal correction

𝜂

𝜎2 variance due to fading
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ത𝑛 total noise

Basic free-space link



Limits and security of free-space quantum communications

Alice

Bob

𝐾free ≤ −Δ(𝜂, 𝜎) log2(1 − 𝜂)

Free-space limit for q. comms

[Pirandola, Limits and security of free-space quantum communications, Physical Review Research 3, 013279 (2021)]

𝐾free ≤ −Δ 𝜂, 𝜎 log2 1 − 𝜂 − 𝒯(ത𝑛, 𝜂, 𝜎)

thermal correction

Basic free-space link

Limits



Consider a sun-synchronous satellite (almost circular orbit) which crosses the zenith points of two remote ground stations

Night Day

Downlink (530 km) ≈ 6.13 × 107 ≈ 6.08 × 107

Uplink (103 km) ≈ 1.69 × 107 ≈ 1.09 × 107
*Clock 10 MHz

Comparison with a ground chain of repeaters

Satellite versus repeater chain

Daily rate of secret bits that the satellite can distribute between the two stations 

[Pirandola, Satellite Quantum Communications: Fundamental Bounds and Practical Security, Phys. Rev. Res. 3, 023130 (2021)]



Consider a sun-synchronous satellite (almost circular orbit) which crosses the zenith points of two remote ground stations

Comparison with a ground chain of repeaters

Satellite versus repeater chain

[Pirandola, Satellite Quantum Communications: Fundamental Bounds and Practical Security, Phys. Rev. Res. 3, 023130 (2021)]



Thx for your attention
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