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Chapter

Information Theory Basics

1.1 Issues in Information Theory

The ultimate aim of telecommunications is to communicafermation between two geo-
graphically separated locations via a communicationsmblamith adequate quality. The the-
oretical foundations of information theory accrue from &fan’s pioneering work [24-27],
and hence most tutorial interpretations of his work ove pi fifty years rely fundamentally
on [24-27]. This chapter is no exception in this respect.olighout this chapter we make
frequent references to Shannon’s seminal papers and todatkeofvvarious authors offering
further insights into Shannonian information theory. ®ititis monograph aims to provide
an all-encompassing coverage of video compression and coications, we begin by ad-
dressing the underlying theoretical principles using htligearted approach, often relying on
worked examples.

Early forms of human telecommunications were based on spusken or light signals,
bonfires, semaphores, and the like. Praclici&irmation sourcesan be classified as analog
and digital. The output of an analog source is a continuouastfon of time, such as, for
example, the air pressure variation at the membrane of aoptione due to someone talk-
ing. The roots of Nyquist's sampling theorem are based owolg&rvation of the maximum
achievable telegraph transmission rate over bandlimitaticels [28]. In order to be able to
satisfy Nyquist's sampling theorem the analogue sourasasigas to bédandlimitedbefore
sampling. The analog source signal has to be transformedhidtgital representation with
the aid of time- and amplitude-discretization usgampling and quantization

The output of a digital source is one of a finite set of orderisigrete symbols often
referred to as an alphabet. Digital sources are usuallyritbescby a range of characteristics,
such aghe source alphabet, the symbol rate, the symbol probagsjiand the probabilistic
interdependence of symbol§or example, the probability af following ¢ in the English
language i = 1, as in the word “equation.” Similarly, the joint probabyjliof all pairs of
consecutive symbols can be evaluated.

In recent years, electronic telecommunications have becoravalent, although most
information sources provide information in other formsr Etectronic telecommunications,



12 1.1. Issues in Information Theory

the source information must be converted to electronicadigioy atransducer For example,
a microphone converts the air pressure wavefpfthinto voltage variatiorn(t), where

o(t) = c-p(t—T1), (1.1)

and the constantrepresents a scaling factor, whités a delay parameter. Similarly, a video
camera scans the natural three-dimensional scene usiicg aptl converts it into electronic
waveforms for transmission.

The electronic signal is then transmitted over¢benmunications channahd converted
back to the required form, which may be carried out, for extantpy a loudspeaker. Itis im-
portant to ensure that the channel conveys the transmitiedlsvith adequate quality to the
receiver in order to enable information recovery. Commaiidms channels can be classified
according to their ability to support analog or digital tsarission of the source signals in a
simplex, duplex, or half-dupldashion oveffixed or mobilgphysical channels constituted by
pairs of wires, Time Division Multiple Access (TDMA) timédeds, or a Frequency Division
Multiple Access (FDMA) frequency slot.

The channel impairmentsiay include superimposed, unwanted random signals, such as
thermal noise, crosstalk via multiplex systems from ottsars, man-made interference from
car ignition, fluorescent lighting, and other natural sesrsuch as lightning. Just as the
natural sound pressure wave between two conversing persibbe impaired by the acous-
tic background noise at a busy railway station, similarly thception quality of electronic
signals will be affected by the above unwanted electrogieas. In contrast, distortion man-
ifests itself differently from additive noise sources,cg&mo impairment is explicitly added.
Distortion is more akin to the phenomenon of reverberatiglspeaker announcementsin a
large, vacant hall, where no noise sources are present.

Some of the channel impairments can be mitigated or cowttstaothers cannot. For ex-
ample, the effects of unpredictable additive random naasmot be removed or “subtracted”
at the receiver. Its effects can be mitigated by increagiegransmitted signal’s power, but
the transmitted power cannot be increased without pesakiace the system’s nonlinear
distortion rapidly becomes dominant at higher signal levarhis process is similar to the
phenomenon of increasing the music volume in a car parketartaasy road to a level where
the amplifier’'s distortion becomes annoyingly dominant.

In practical systems, th8ignal-to-Noise RatigSNR) quantifying the wanted and un-
wanted signal powers at the channel’s output is a prime aflgarameter. Other important
channel parameterare itsamplitude and phase responsketermining its usable bandwidth
(B), over which the signal can be transmitted without excegdistortion. Among the most
frequently used statistical noise properties arepitodability density functioiPDF),cumu-
lative density functioCDF), andpower spectral densitfPSD).

The fundamentalommunications system design considerataasvhether a high-fidelity
(HI-FI) or just acceptable video or speech quality is reggifrom a system, which predeter-
mines, among other factors, its cost, bandwidth requirésnas well as the number of chan-
nels available, and has implementational complexity raaions. Equally important are
the issues of robustness against channel impairmentsnsyitlay, and so on. The required
transmission range and worldwide roaming capabilitiespiaximum available transmission
speed in terms of symbols/sec, information confidentiatégeption reliability, convenient
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Figure 1.1: Basic transmission model of information theory

lightweight, solar-charged design, are similarly salielvdracteristics of a communications
system.

Information theory deals with a variety of problems asseciavith the performance lim-
its of the information transmission system, such as thaictieghin Figure 1.1. The compo-
nents of this system constitute the subject of this mondgrapnce they will be treated in
greater depth later in this volume. Suffice it to say at thagetthat the transmitter seen in
Figure 1.1 incorporates a source encoder, a channel eneodieterleaver, and a modulator
and their inverse functions at the receiver. Tdeal source encodexrndeavors to remove as
much redundancy as possible from the information souraesigithout affecting its source
representation fidelity (i.e., distortionlessly), andeibrains oblivious of such practical con-
straints as a finite delay and limited signal processing dexity. In contrast, a practical
source encoder will have to retain a limited signal processiomplexity and delay while
attempting to reduce the source representation bit rats tovaa value as possible. This
operation seeks to achieve better transmission efficievitigh can be expressed in terms of
bit-rate economy or bandwidth conservation.

The channel encoder re-inserts redundancy or parity irdiion but in a controlled man-
ner in order to allow error correction at the receiver. Sitiie component is designed to
ensure the best exploitation of the re-inserted redund#nsyexpected to minimize the error
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probability over the most common channel, namely, the ded¢additive White Gaussian
Noise (AWGN) channel, which is characterized by a memorylessgdoan distribution of
channel errors. However, over wireless channels, whicke hesently become prevalent, the
errors tend to occur in bursts due to the presence of deepedcignal fades induced by the
distructively superimposed multipath phenomena. Thishy awur schematic of Figure 1.1
contains an interleaver block, which is included in orderaiodomize the bursty channel er-
rors. Finally, the modulator is designed to ensure the mastityidth-efficient transmission
of the source- and channel encoded, interleaved informati@am, while maintaining the
lowest possible bit error probability. The receiver simpdrries out the corresponding in-
verse functions of the transmitter. Observe in the figurelibaides the directinterconnection
of the adjacent system components there are a number ofaaddilinks in the schematic,
which will require further study before their role can beldighted. Thus, at the end of this
chapter we will return to this figure and guide the readerugtoits further intricate details.

Some fundamental problems transpiring from the schemétiigure 1.1, which were
addressed in depth by a range of references due to Shanne?/[2ANyquist [28], Hart-
ley [29], Abramson [30], Carlson [31], Raemer [32], and Femy [33] and others are as
follows:

e What is the true information generation rate of our inforimrasources? If we know
the answer, the efficiency of coding and transmission scherar be evaluated by
comparing the actual transmission rate used with the sBuirf@rmation emission
rate. The actual transmission rate used in practice is ajlgiciuch higher than the
average information delivered by the source, and the ctbese rates are, the better is
the coding efficiency.

e Given a noisy communications channel, what is the maximurahie information
transmission rate? The thermal noise induced by the randotiomof electrons is
present in all electronic devices, and if its power is highsan seriously affect the
quality of signal transmission, allowing information temission only at low-rates.

¢ |s the information emission rate the only important charastic of a source, or are
other message features, such as the probability of ocaareha message and the
joint probability of occurrence for various messages, atggortant?

e In a wider context, the topic of this whole monograph is wdato the blocks of Fig-
ure 1.1 and to their interactions, but in this chapter weli@theoretical foundations of
source and channel coding as well as transmission issuededing the characteristics
of an ideal Shannonian communications scheme.

Although numerous excellent treatises are available ogettapics, which treat the same
subjects with a different flavor [31, 33, 34], our approachiisilar to that of the above clas-
sic sources; since the roots are in Shannon’s work, refesefl—27, 35, 36] are the most
pertinent and authoritative sources.

In this chapter we consider mainly discrete sources, in wieigch source message is
associated with a certain probability of occurrence, winidght or might not be dependenton
previous source messages. Let us now give a rudimentaodunttion to the characteristics
of the AWGN channel, which is the predominant channel modéhformation theory due
to its simplicity. The analytically less tractable wiredeshannels will be modeled mainly by
simulations in this monograph
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1.2 Additive White Gaussian Noise Channel

1.2.1 Background

In this section, we consider the communications channeictwéxists between the trans-
mitter and the receiver, as shown in Figure 1.1. Accurateachearization of this channel
is essential if we are to remove the impairments imposed bycttannel using signal pro-
cessing at the receiver. Here we initially consider onlydigemmunications links whereby
both terminals are stationary, although mobile radio comications channels, which change
significantly with time, are becoming more prevalent.

We define fixed communications channels to be those betwegadtfansmitter and a
fixed receiver. These channels are exemplified by twisted pedbles, wave guides, optical
fiber and point-to-point microwave radio channels. Whatdkie nature of the channel, its
output signal differs from the input signal. The differemaight be deterministic or random,
but it is typically unknown to the receiver. Examples of chahimpairments are dispersion,
nonlinear distortions, delay, and random noise.

Fixed communications channels can often be modeled byarlirensfer function, which
describes the channel dispersion. The ubiquitous addiagssian noise (AWGN) is a fun-
damental limiting factor in communications via linear thimgariant (LTI) channels. Al-
though the channel characteristics might change due torfastich as aging, temperature
changes, and channel switching, these variations will moafparent over the course of a
typical communication session. It is this inherent timeam&nce that characterizes fixed
channels.

An ideal, distortion-free communications channel wouldéha flat frequency response
and linear phase response over the frequency range®f. . + oo, although in practice it is
sufficient to satisfy this condition over the bandwid#) of the signals to be transmitted, as
seen in Figure 1.2. In this figurel(w) represents the magnitude of the channel response
frequencyw, and¢(w) = wT represents the phase shift at frequencglue to the circuit
delayT.

Practical channels always have some linear distortiongdtigeir bandlimited, nonflat
frequency response and nonlinear phase response. Inaagdite group-delay response of
the channel, which is the derivative of the phase respossdtean given.

1.2.2 Practical Gaussian Channels

Conventional telephony uses twisted copper wire pairs tmeot subscribers to the local ex-
change. The bandwidth is approximately 3.4 kHz, and the feavedistortions are relatively
benign.

For applications requiring a higher bandwidth, coaxiallealtan be used. Their atten-
uation increases approximately with the square root of thguency. Hence, for wideband,
long-distance operation, they require channel equatinafiypically, coaxial cables can pro-
vide a bandwidth of about 50 MHz, and the transmission radg tan support is limited by
the so-called skin effect.

Point-to-point microwave radio channels typically udihigh-gain directional transmit
and receive antennas in a line-of-sight scenario, wheeedpace propagation conditions may
be applicable.

at
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Figure 1.2: Ideal, distortion-free channel model havinghadr phase and a flat magnitude
response.

1.2.3 Gaussian Noise

Regardless of the communications channel used, randora iscadways present. Noise can
be broadly classified as natural or man-made. Examples ofmeate noise are those due to
electrical appliances, and fluorescent lighting, and tfecef of these sources can usually be
mitigated at the source. Natural noise sources affectidip tBansmissions include galactic
star radiations and atmospheric noise. There exists a @wgerfrequency window in the
range of 1-10 GHz, where the effects of these sources arenmil.

Natural thermal noise is ubiquitous. This is due to the ramdaootion of electrons, and
it can be reduced by reducing the temperature. Since tharoisé contains practically all
frequency components up to som@&? Hz with equal power, it is often referred to as white
noise (WN) in an analogy to white light containing all colevgh equal intensity. This WN
process can be characterized by its uniform power speatradity (PSD)N (w) = Ny/2
shown together with its autocorrelation function (ACF) igute 1.3.

The power spectral density of any signal can be conveniendgsured by the help of
a selective narrowband power meter tuned across the batidefidhe signal. The power
measured at any frequency is then plotted against the mexaeut frequency. The autocor-
relation functionR(7) of the signalz(t) gives an average indication of how predictable the
signalz(t) is after a period of seconds from its present value. Accordingly, it is defined as
follows: -

R(7) = lim i/ z(t)z(t + 7)dt. (1.2)
For a periodic signak(t), it is sufficient to evaluate the above equation for a singleqa
To, yielding:

1 [To/2

R(7) x(t)x(t + 7)dt. (1.3)

Ty ) my e
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Figure 1.3: Power spectral density and autocorrelation Nt W

The basic properties of the ACF are:

The ACF is symmetricR(7) = R(—7).

e The ACF is monotonously decreasing(7) < R(0).

e Forr = 0we haveR(0) = z2(t), which is the signal’s power.

e The ACF and the PSD form a Fourier transform pair, which isnfally stated as the
Wiener-Khintchine theorem, as follows:

1 [ :
RG) = o / N (w)e?*" dw
1 [ Ngel*T
LN [ e, N
= 5 /7006 dw = 2(5(7’)7 (1.4)

whered(7) is the Dirac delta function. Clearly, for any timed-domahifisT > 0, the noise
is uncorrelated.

Bandlimited communications systems bandlimit not onlygigmal but the noise as well,
and this filtering limits the rate of change of the time-domadise signal, introducing some
correlation over the interval of1/2B. The stylized PSD and ACF of bandlimited white
noise are displayed in Figure 1.4.
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Nz(f) R(7)=N,B.sinc(27B7)

=z
S

Figure 1.4: Power spectral density and autocorrelatioraaflbmited WN.

After bandlimiting, the autocorrelation function becomes

1 BNy . No (B .
R = el = = ,727rf7'd
(1) 5 /_B 5 ¢ w 5 / e If

—-B
NO |:ej27rfr ] B
2 B

12T

1
= o [cos 2 BT + jsin 2n BT — cos 2n BT + j sin 27 BT|

sin(27 BT)

= NoyB————~
0 2rBr

(1.5)
which is the well-known sinc-function seen in Figure 1.4.

In the time-domain, the amplitude distribution of the whitermal noise has a normal
or Gaussian distribution, and since it is inevitably addethe received signal, it is usually
referred to as additive white Gaussian noise (AWGN). Notd BWWGN is therefore the
noise generated in the receiver. The probability densitetion (PDF) is the well-known
bell-shaped curve of the Gaussian distribution, given by

1 2
_ - _—(z—m)/20 1.6
T) = e , .
p(x) o (1.6)

wherem is the mean and? is the variance. The effects of AWGN can be mitigated by
increasing the transmitted signal power and thereby redube relative effects of noise. The
signal-to-noise ratio (SNR) at the receiver’s input pregaé good measure of the received
signal quality. This SNR is often referred to as the chanhRS

1.3 Information of a Source

Based on Shannon’s work [24-27, 35, 36], let us introducebtigic terms and definitions
of information theory by considering a few simple exampléssume that a simple 8-bit
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analog-to-digital (ADC) converter emits a sequence of ralljundependent source symbols
that can take the valugs = 1,2,...256 with equal probability. One may wonder, how
much information can be inferred upon receiving one of ttsageples? It is intuitively clear
that this inferred information is definitely proportional the “uncertainty” resolved by the
reception of one such symbol, which in turn implies that tifeimation conveyed is related
to the number of levels in the ADC. More explicitly, the highbe number of legitimate
quantization levels, the lower the relative frequency abability of receiving any one of
them and hence the more “surprising,” when any one of theredsived. Therefore, less
probable quantized samples carry more information thain there frequent, more likely
counterparts.

Not suprisingly, one could resolve this uncertainty by dimgsking a maximum of 256
questions, such as “Is the level 1?” “Is it 22." “Is it 256?" Following Hartley’s ap-
proach [29], a more efficient strategy would be to ask eiglestions, such as: “Is the level
larger than 128?” No. “Is it larger than 64?” No. . “Is it larger than 2?” No. “Is it
larger than 1?” No. Clearly, the source symbol emitted wasadnitude one, provided that
the zero level was not used. We could therefore infer igf256 = 8 “Yes/No” binary
answers were needed to resolve any uncertainty as regardsiince symbol’s level.

In more general terms, the information carried by any onel®jirof a g-level source,
where all the levels are equiprobable with probabilitieg,0t= 1/¢,i = 1...¢, is defined
as

I =log,g. 2.7)

Rewriting Equation 1.7 using the message probabiljlies= % yields a more convenient
form: )
I =log,— = —log,p;, (1.8)
i

3

which now is also applicable in case of arbitrary, unequassage probabilitieg;, again,
implying the plausible fact that the lower the probabilitiyacertain source symbol, the
higher the information conveyed by its occurrence. Obsdrawever, that for unquantized
analog sources, where as regards to the number of possilieessymbols we have — oo
and hence the probability of any analog sample becomestadimally low, these definitions
become meaningless.

Let us now consider a sequenceldfconsecutive-ary symbols. This sequence can take
¢~ number of different values, delivering’ different messages. Therefore, the information
carried by one such sequence is:

In = log,(¢") = Nlog,gq, (1.9)

which is in perfect harmony with our expectation, delivgriN' times the information of a
single symbol, which was quantified by Equation 1.7. Doubtime sequence length fav
carries twice the information, as suggested by:

Iy =100, (¢*") = 2N - log,q. (1.10)

Before we proceed, let us briefly summarize the bpgiperties of informatioffiollowing
Shannon’s work [24-27, 35, 36]:
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o If for the probability of occurrences of the symbglsindk we havep; < py, then as
regards the information carried by them we halg:) < I(j).

e If in the limit we havep, — 1, then for the information carried by the symbolve
havel (k) — 0, implying that symbols, whose probability of occurrenaed®gto unity,
carry no information.

o If the symbol probability is in the range 6f< p;, < 1, then as regards the information
carried by it we havd (k) > 0.

e For independent messageandy, their joint information is given by the sum of their
information: I(k,j) = I(k) + I(j). For example, the information carried by the
statement “My son is 14 years old and my daughter is 12" isvedgmt to that of the
sum of these statements: “My son is 14 years old” and “My d&rgh 12 years old.”

¢ In harmony with our expectation, if we have two equiprobabkssages 0 and 1 with
probabilities,p; = ps = % then from Equation 1.8 we hav¢0) = I(1) = 1 bit.

1.4 Average Information of Discrete
Memoryless Sources

Following Shannon’s approach [24-27, 35, 36], let us nowsim®er a source emitting one of
g possible symbols from the alphabet= s, s2,...s;...sq having symbol probabilities
of p;, 1 = 1,2,...q. Suppose that a long messageNdfsymbols constituted by symbols
from the alphabet = s1,s2,...s, having symbol probabilities gf; is to be transmitted.
Then the symbok; appears in everyW-symbol message on the average N number of
times, provided the message length is sufficiently long. iff@emation carried by symbol
s; islog,1/p; and itsp; - N occurrences yield an information contribution of

I(i)=p;-N - Ioggi. (1.11)
b

Upon summing the contributions of all thesymbols, we acquire the total information carried
by the N-symbol sequence:

q
I=> piN- |og% [bits]. (1.12)

i=1
Averaging this over the&v symbols of the sequence yields the average informationymer s
bol, which is referred to as the sourcelstropy[25] :

I ! 1 1 .
H=+= ; pi - IogQE = ; pilog,p; [bit/symbol] (1.13)

Then theaverage source information ratean be defined as the product of the information
carried by a source symbol, given by the entrépynd the source emission rafg:

R = R, - H [bits/sec]. (1.14)
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Observe that Equation 1.13 is analogous to the discrete dbtire first moment or in other
words the mean of a random process with a probability defisitgtion (PDF) ofp(z), as in

T = / x - p(x)de, (1.15)
where the averaging corresponds to the integration, ands$kentaneous value of the random
variablez represents the informatidng, p; carried by message which is weighted by its
probability of occurrence; quantified for a continuous variahbieby p(x).

1.4.1 Maximum Entropy of a Binary Source

Let us assume that a binary source, for which 2, emits two symbols with probabilities
p1 = pandps = (1 — p), where the sum of the symbol probabilities must be unity.
In order to quantify the maximum average information of a bgihrfrom this source as a
function of the symbol probabilities, we note from Equatioh3 that the entropy is given by:

H(p) = —p-logyp — (1 —p) - 10gy(1 — p). (1.16)

As in any maximization problem, we sef{ (p)/dp = 0, and upon using the differentiation
chainrule of(u-v)’ = u'-v+u-v’ aswell as exploiting thalog,z)’ = 1log,e we arrive
at:

81;[1()17) = —log,p — g -logye + log, (1 — p) + 8 :i; log,e =0
log,p = logy(1—p)
p = (1-p)
p = 0.5.

This result suggests that the entropy is maximum for eqbiglote binary messages. Plotting
Equation 1.16 for arbitrary values yields Figure 1.5, in which Shannon suggested tleat th
average information carried by a symbol of a binary sourdevisif one of the symbols has

a high probability, while the other a low probability.

Example: Let us compute the entropy of the binary source having megsadpabili-

tiesofpy = 3,p2 = 2.

The entropy is expressed as:

1 17 7
H = —§|092§ — gIogzg.
Exploiting the following equivalence:
logy(z) = log,o(x) - 109,(10) ~ 3.322 - log,,(z) (1.17)

we have:

=
Q
0l w
®l ~3

-3.322 - |091o£ ~ 0.54 [bit/symbol],
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Figure 1.5: Entropy versus message probabjlityr a binary sourcef)Shannon [25], BSTJ,
1948.

again implying that if the symbol probabilities are rathifedent, the entropy becomes
significantly lower than the achievable 1 bit/symbol. Tlsibecause the probability of
encountering the more likely symbol is so close to unity thearries hardly any infor-
mation, which cannot be compensated by the more “inforraasymbol’s reception.
For the even more unbalanced situatioppf= 0.1 andp, = 0.9 we have:

H = -0.1log,0.1 -0.9-log,0.9

—(0.3322 - log;7 0.1 + 0.9 - 3.322 - log;, 0.9)
0.3322 + 0.1368

0.47 [bit/symbol].

%

In the extreme case g@ff, = Oorp, = 1we haveH = 0. As stated before, the
average source information raie defined as the product of the information carried
by a source symbol, given by the entrofiyand the source emission raig, yielding

R = Ry-H [bits/sec]. Transmitting the source symbols via a perfeit@less channel
yields the same received sequence without loss of infoomati

1.4.2 Maximum Entropy of a g-ary Source
For ag-ary source the entropy is given by:

q
H=- Zpi logy pi, (1.18)
i=1
where, again, the constraidf p; = 1 must be satisfied. When determining the extreme

value of the above expression for the entrdyunder the constraint of_p; = 1, the
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following term has to be maximized:

q
D = Z—pilongi—i-X

=1

1— Xq:pi] , (1.19)

i=1

where is the so-called Lagrange multiplier. Following the stamidarocedure of maximiz-
ing an expression, we set:

oD
Opi

:_10g2pi—%'10g2€_/\20

leading to
log, p; = —(logy e + A) = Constantfori = 1...q,

which implies that the maximum entropy ofgaary source is maintained, if all message
probabilities are identical, although at this stage theealf this constant probability is not
explicit. Note, however, that the message probabilitestiswrs to unity, and hence:

q

Y pi=1=gq-a, (1.20)

=1

wherea is a constant, leading @ = 1/¢ = p;, implying that the entropy of any-ary
source is maximum for equiprobable messages. Furtherflasealways bounded according
to:

0 < H <logyq. (1.22)

1.5 Source Coding for a Discrete
Memoryless Source

Interpreting Shannon’s work [24—27, 35, 36] further, we thext source coding is the process
by which the output of a-ary information source is converted to a binary sequence fo
transmission via binary channels, as seen in Figure 1.1.nvdldscrete memoryless source
generateg-ary equiprobable symbols with an average informationodt®2 = R, log, g,

all symbols convey the same amount of information, and efiicsignaling takes the form
of binary transmissions at a rate Bfbps. When the symbol probabilities are unequal, the
minimum required source rate for distortionless transimiss reduced to

R=Rs-H < Rslog,q. (1.22)

Then the transmission of a highly probable symbol carrile linformation and hence as-
signinglog, ¢ number of bits to it does not use the channel efficiently. Wiaatbe done to

improve transmission efficiency8hannon’s source coding theoresmggests that by using
a source encodebefore transmission the efficiency of the system with eaqlipble source

symbols can be arbitrarily approached.
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Algorithm 1 (Shannon-Fano Coding) This algorithm summarizes the Shannon-Fano cod-
ing steps. (See also Figure 1.6 and Table 1.1.)

1. The source synbols Sy...S; are first sorted in descendi ng
order of probability of occurrence.

2. Then the synbols are divided into two subgroups so that
the subgroup probabilities are as close to each other as
possible. This is synbolized by the horizontal divisions
in Table 1. 1.

3. Wien allocating codewords to represent the source
synbols, we assign a logical zero to the top subgroup
and | ogical one to the bottom subgroup in the appropriate
col umm under ‘‘coding steps.’

4. |f there is nore than one synmbol in the subgroup, this
met hod is continued until no further divisions are
possi bl e.

5. Finally, the variable-length codewords are output to the
channel

Coding efficiencyan be defined as the ratio of the source information rate tzendv-
erage output bit rate of the source encoder. If this ratior@gghes unity, implying that
the source encoder’s output rate is close to the sourceniafioon rate, the source encoder is
highly efficient. There are many source encoding algorithasthe most powerful approach
suggested was Shannon’s method [24], which is best illiegtray means of the following
example, portrayed in Table 1.1, Algorithm 1, and Figure 1.6

1.5.1 Shannon-Fano Coding

The Shannon-Fano coding algorithm is based on the simpleepbrof encoding frequent
messages using short codewords and infrequent ones by tareyvords, while reducing
the average message length. This algorithm is part of Viytadl treatises dealing with

information theory, such as, for example, Carlson’s wot [3 he formal coding steps listed
in Algorithm 1 and in the flowchart of Figure 1.6 can be readliljowed in the context of a

simple example in Table 1.1. The average codeword lengtivésadpy weighting the length
of any codeword by its probability, yielding:

(0.27+0.2) - 2+ (0.17+ 0.16) - 342 - 0.06- 4 + 2 - 0.04- 4 ~ 2.73 [bit].
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Sort source symbols in
descending order of probabilitie
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Derive subgroups of
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Y

Assign zero & one to top and
bottom branches, respectively

:

ore tha
one symbols are i
subgroups ?

Stop, output encoded symbols

Figure 1.6: Shannon-Fano Coding Algorithm (see also Taldl@dd Algorithm 1).

Symb. | Prob.| Coding Steps| Codeword
11234

So 027|01|0 00

S1 020 0| 1] 01

So 017]1|0]O0 100
Ss3 016 | 1|0 | 1] 101
Sy 0o6|1(1(0fO0 1100
Ss 006 |1|1(0[1] 1101
Se 004 |1(1(1|0 1110
Sy 004 |1|1(1[1] 1111

Table 1.1: Shannon-Fano Coding Example Based on AlgoritamdiFigure 1.6
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Algorithm 2 (Huffman Coding) This algorithm summarizes the Huffman coding steps.

1. Arrange the synbol probabilities p;, i n decreasing order
and consider themas ‘‘leaf-nodes,’’ as suggested by
Table 1.2.

2. Wiile there is nore than one node, nerge the two nodes
havi ng the | owest probability and assign 0/1 to the
upper/ | ower branches, respectively.

3. Read the assigned ‘‘transition bits’’ on the branches
fromtop to bottomin order to derive the codewords.

The entropy of the source is:
H = =) pilogp (1.23)

= —(log,10) Z pilogg pi

K2

Q

—3.322-[0.27 - log; 0.27 + 0.2 - log;, 0.2
+0.17 - 1og;, 0.17 + 0.16 - log; 0.16
+2-0.06 - log;;0.06 + 2 - 0.04 - log;, 0.04]
~ 2.691 [bit/symbol].

Since the average codeword length of 2.73 bit/symbol is etge to the entropy of 2.691
bit/symbol, a high coding efficiency is predicted, which tencomputed as:

2.691
F~—— ~98. .
2.73 98.6%

The straightforward bit/symbol binary coded decimal (BCD) assignment gives fin e
ciency of:

2.691
Ex % ~ 89.69 %.

In summary, Shannon-Fano coding allowed us to create a seigdely invertible mappings
to a set of codewords, which facilitate a more efficient traigsion of the source symbols,
than straightforward BCD representations would. This wassible with no coding impair-
ment (i.e., losslessly). Having highlighted the philosppfithe Shannon-Fano noiseless or
distortionless coding technique, let us now concentrateéeglosely related Huffman coding
principle.

1.5.2 Huffman Coding

The Huffman Coding (HC) algorithm is best understood by nréfg to the flowchart of
Figure 1.7 and to the formal coding description of Algoritlmwhile a simple practical
example is portrayed in Table 1.2, which leads to the Huffowtes summarized in Table 1.3.
Note that we used the same symbol probabilities as in ourr&mkano coding example,
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Symb. | Prob. Stepl &2 Step3&4 || Group| Code
Code | Prob. || Code| Prob.
So 0.27 So -
S1 0.20 S -
So 0.17 0 0.33 Sz 0
Ss3 0.16 1 1
Sy 0.06 0 0.12 0 00
Ss 0.06 1 0 0.20 || Sus67 01
Se 0.04 0 0.08 1 10
Sy 0.04 1 1 11
Symb. | Prob. Step5&6 Step 7 Codeword
Code| Prob. || Code] Prob.
Sos 0.33 0 0.6 0 00
So 0.27 1 1.0 01
S1 0.20 0 0.4 1 10
Sise7 | 0.20 1 11

Table 1.2: Huffman Coding Example Based on Algorithm 2 argliFé 1.7 (for final code
assignment see Table 1.3)

| Symbol | Probability | BCD

Huffman Code]

So 0.27 000 | 01
St 0.20 001 | 10
Sa 0.17 010 | 00O
Ss 0.16 011 | 001
Sy 0.06 100 | 1100
Ss 0.06 101 | 1101
Se 0.04 110 | 1110
Sy 0.04 111 | 1111

Table 1.3: Huffman Coding Example Summary of Table 1.2
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Arrange source symbols in
descending order of probabilitie

l*2)

Y

Merge two of the lowest prob.
symbols into one subgroup

Y

Assign zero & one to top and
bottom branches, respectively

:

Is there
more than one un-
merged node %

Stop, read transition bits on the branches
from top to bottom to generate codewords

Figure 1.7: Huffman coding algorithm (see also Algorithnm2 &able 1.2).

but the Huffman algorithm leads to a different codewordgssient. Nonetheless, the code’s
efficiency is identical to that of the Shannon-Fano alganith

The symbol-merging procedure can also be convenientlyadeusing the example of
Figure 1.8, where the Huffman codewords are derived by neatlie associated 1 and 0
symbols from the end of the tree backward, that is, towardsthece symbols, ... S;.
Again, these codewords are summarized in Table 1.3.

In order to arrive at a fixed average channel bit rate, whiawois/enient in many com-
munications systems, a long buffer might be needed, cawstorgge and delay problems.
Observe from Table 1.3 that the Huffman coding algorithmegicodewords that can be
uniquely decoded, which is a crucial prerequisite for itagtical employment. This is be-
cause no codeword can be a prefix of any longer one. For exafopike following sequence



Sp=0.27

S,=0.20

S,=0.17

S,=0.16

S,=0.06

S5=0.06

86:0-04

S7:0.04

rlo

0.27 0.27 0.27 0.33 0.40 0.60
0.20 0.20 0.20 0.27 0.33 0.40
0.17 0.17 0.20 0.20 0.27
10|
0.16 0.16 0.17 0.20 | 1
1 0|
0.08 0.12 016 | T
10|
1
0.06 0.08
0.06

Figure 1.8: Tree-based Huffman coding example.
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of codewords ..., 00, 10, 010, 110, 1111, ...the source segus. . . Sy, S1, 52, 53, Ss . . .
can be uniquely inferred from Table 1.3.

In our discussions so far, we have assumed that the sourdeotymere completely in-
dependent of each other. Such a source is usually referragl @omemoryless source. By
contrast, sources where the probability of a certain syralsoldepends on what the previous
symbol was are often termesburces exhibiting memaryrhese sources are typically ban-
dlimited sample sequences, such as, for example, a setrelated or “similar-magnitude”
speech samples or adjacent video pixels. Let us now corsideces that exhibit memory.

1.6 Entropy of Discrete Sources Exhibiting Memory

Let us invoke Shannon’s approach [24—-27, 35, 36] in orddlustiate sources with and with-
out memory. Let us therefore consider an uncorrelated randoite Gaussian noise (WGN)
process, which was passed through a low-pass filter. Thesmwnding autocorrelation func-
tions (ACF) and power spectral density (PSD) functions wardrayed in Figures 1.3 and
1.4. Observe in the figures that through low-pass filtering@N\process introduces corre-
lation by limiting the rate at which amplitude changes aregitlde, smoothing the amplitude
of abrupt noise peaks. This example suggests that all miteld signals are correlated over
a finite interval. Most analog source signals, such as spaedlvideo, are inherently corre-
lated, owing to physical restrictions imposed on the anatagce. Hence all practical analog
sources possess some grade of memory, a property that iretaswed after sampling and
quantization. An important feature of sources with memsrthiat they are predictable to a
certain extent, hence, they can usually be more efficienttpded than unpredictable sources
having no memory.

1.6.1 Two-State Markov Model for Discrete
Sources Exhibiting Memory

Let us now introduce a simple analytically tractable moaeltfeating sources that exhibit
memory. Predictable sources that have memory can be camtBnmodeled byMarkov
processes A source having a memory of one symbol interval directlyniembers” only
the previously emitted source symbol and depending on ttegigus symbol it emits one
of its legitimate symbols with a certain probability, whidepends explicitly on the state
associated with this previous symbol. A one-symbol-memmooglel is often referred to as

a first-order model. For example, if in a first-order model the previous symbol taite
only two different values, we have two different states, #risl simple two-state first-order
Markov model is characterized by the state transition @diagof Figure 1.9. Previously, in
the context of Shannon-Fano and Huffman coding of memasyildermation sources, we
used the notation of;,7 = 0,1,... for the various symbols to be encoded. In this section,
we are dealing with sources exhibiting memory and henceéhstke of distinction we use
the symbol notation of;,i = 1,2,.... If, for the sake of illustration, the previous emitted
symbol wasX, the state machine of Figure 1.9 is in stafg, and in the current signaling
interval it can generate one of two symbols, nam&ly,and X, whose probability depends
explicitly on the previous stat&,. However, not all two-state Markov models are as simple
as that of Figure 1.9, since the transitions from sfatgo X, are not necessarily associated
with emitting the same symbol as the transitions from skatd¢o X;. Thus more elaborate
example will be considered later in this chapter.
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Observe in Figure 1.9 that the corresponding transitiomaldities from stateX; are
given by the conditional probabilitiess = P(X2/X;) andp;; = P(X1/X;) = 1—
P(X,/X1). Similar findings can be observed as regards skateThese dependencies can
also be stated from a different point of view as follows. Thehability of occurrence of
a particular symbol depends not only on the symbol itself atso on the previous symbol
emitted. Thus, the symbol entropy for stéfe andX > will now be characterized by means of
the conditional probabilities associated with the traosi merging in these states. Explicitly,
the symbol entropy for stat&;,« = 1,2 is given by:

2
1
H; = Zpij-logb; i=1,2
ij

Jj=1
1 1
= pi1-10g,— + pi2 - log, —, (1.24)
Dbi1 Pi2

yielding the symbol entropies, that is, the average infdiwnacarried by the symbols emitted
in statesX; and X, respectively, as:

1 1
Hy = p1-logy— +pi2-log,—
P11 P12
1 1
Hy = po1-10g,— + p22 - log,—. (1.25)
D21 D22

Both symbol entropiesti; and H», are characteristic of the average information conveyed
by a symbol emitted in stat&; and X5, respectively. In order to compute the overall entropy
H of this source, they must be weighted by the probability @wence P, and P, of these
states:

2
H = ) PRH,
i=1

2 2
1

E P; E pi;l0g, —. (1.26)

i=1  j=1 Pij

Assuming a highly predictable source having high adjacamtse correlation, it is plau-
sible that once the source is in a given state, it is moreylikeremain in that state than to
traverse into the other state. For example, assuming thagttie machine of Figure 1.9 is
in stateX; and the source is a highly correlated, predictable souregre likely to observe
long runs ofX;. Conversely, once in stat&¥,, long strings ofX> symbols will typically
follow.

1.6.2 N-State Markov Model for Discrete Sources

Exhibiting Memory

In general, assumingy legitimate states, (i.e/V possible source symbols) and following
similar arguments, Markov models are characterised by $tegie probabilitie® (X;),i = 1... N,
whereN is the number of states, as well as by the transition proiiebib;; = P(X,/X;),
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p12 = P(X2/X4)

po1 = P(X1/X5)

pin = P(X1/Xq) = 1= P(Xa/Xn)
paa =1 — P(X1/X3) = P(Xa/Xs)

Figure 1.9: Two-state first-order Markov model.

wherep;; explicitly indicates the probability of traversing fromast X ; to stateX;. Their
further basic feature is that they emit a source symbol atyestate transition, as will be
shown in the context of an example presented in Section limila8ly to the two-state
model, we define the entropy of a source having memory as tighteel average of the en-
tropy of the individual symbols emitted from each state, kghveeighting is carried out taking
into account the probability of occurrence of the indivitlstates, namely?;. In analytical
terms , the symbol entropy for stalg,i = 1... N is given by:

N
1
H = pmlogQ? i=1...N. (1.27)
¥}

j=1

The averaged, weighted symbol entropies give the sourcemnt

N
H = > PH,
z;l N 1
= >R pylog,—. (1.28)
i=1  j=1 Dij

Finally, assuming a source symbol ratevgf the average information emission rdteof the
source is given by:

R =vs- H [bps]. (1.29)
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/ p12:0.1

p21=0.9

P =0.8 d P, =0.2

Figure 1.10: Two-state Markov model example.

1.7 Examples

1.7.1 Two-State Markov Model Example

As mentioned in the previous section, we now consider athjigiore sophisticated Markov
model, where the symbols emitted upon traversing from statéo X, are different from
those when traversing from stat& to X;. More explicitly:
e Consider a discrete source that was described by the twed@kov model of Fig-
ure 1.9, where the transition probabilities are

pi1 = P(X1/X1) =09 pp=P(X2/X2)=0.1
p12 = P(X1/X2) = 0.1 pa = P(X2/X1) =09,

while the state probabilities are
P(X;) =0.8andP(X53) =0.2. (1.30)

The source emits one of four symbols, namelyb, ¢, andd, upon every state transi-
tion, as seen in Figure 1.10. Let us find

(@) the source entropy and

(b) the average information content per symbol in messafyese

two, and three symbols.
¢ Message Probabilities

Let us consider two sample sequenees andaab. As shown in Figure 1.10, the
transitions leading tachb are (1 ~ 1), (1 ~ 2), and(2 ~ 2). The probability
of encountering this sequencels$ - 0.9 - 0.1 - 0.1 = 0.0072. The sequenceab
has a probability of zero because the transition froito b is illegal. Further path
(i.e., message) probabilities are tabulated in Table JoAglith the information of
I = —log, P of all the legitimate messages.



34 1.7.1. Two-State Markov Model Example

Information conveyed
(bitymessage)

P,=09x08=0.72 I, =0.474
P,=0.1x0.2=0.02 I, = 5.644
P.=0.1x0.8=0.08 I. = 3.644
P;=09x%x0.2=0.18 I; =2.474

Puo =0.72 x 0.9 =0.648 | I,, = 0.626
P,.=0.72x01=0.072 | I,. =3.796

P, =0.08 x 0.1 =0.008 | I, = 6.966

P.; =0.08 x0.9=0.072 | I.q4 =3.796

Py =0.02 x 0.1 =0.002 | I, = 8.966

Pyy =0.02x0.9=0.018 | I,y =5.796

P, =0.18 x0.9=0.162 | I;, = 2.626

P; . =0.18 x 0.1 =0.018 | Iz, =5.796

Message Probabilities

Table 1.4: Message Probabilities of Example

e Source Entropy
— According to Equation 1.27, the entropy of symbdalg and X, is computed as
follows:

Hy = —pi2-10gyp12 — p11 - 10gyp11
1
= 0.1-1 10+0.9-1 —
08> 104091082 g

0.469 bit/symbol (1.32)
Hy = —po1-10g,po1 — p22 - 10g,p20
0.469 bit/symbol (1.32)

— Then their weighted average is calculated using the prtityabi occurrence of
each state in order to derive the average information pesagesfor this source:

H ~0.8-0.469 4 0.2 - 0.469 ~ 0.469 bit/symbol

— The average information per symbf in two-symbol messages is computed
from the entropy:, of the two-symbol messages as follows:

8
h2 = § Psymbol ' Isymbol
1

= Paa'Iaa+Pac'Iac+---+Pdc'Idc
1.66 bits/2 symbols, (1.33)

Q

giving I = h2/2 ~ 0.83 bits/symbol information on average upon receiving a
two-symbol message.
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— There are eight two-symbol messages; hence, the maximwsibfmmformation
conveyed idog, 8 = 3 bits/2 symbols, od.5 bits/symbol. However, since the
symbol probabilities of?, = 0.8 and P, = 0.2 are fairly different, this scheme
has a significantly lower conveyed information per symbalnely, I ~ 0.83
bits/symbol.

— Similarly, one can find the average information content gertsol for arbitrarily
long messages of concatenated source symbols. For oneskymeksages we
have:

4
Il = hl = § Psymbol ' Isymbol
1

= P, I,+...+P;- 1

0.72x 0474+ ... +0.18 x 2.474

0.341 4+ 0.113 4 0.292 4 0.445

1.191 bit/symbol. (1.34)

Q

We note that the maximum possible information carried by-syrabol messages
iS himaz = logy 4 = 2 bit/symbol, since there are four one-symbol messages in
Table 1.4.

e Observe the importanttendency, in which, when sendingdongessages of dependent
sources, the average information content per symbol iscextiu This is due to the
source’s memory, since consecutive symbol emissions gendient on previous ones
and hence do not carry as much information as independenteseymbols. This
becomes explicit by comparing =~ 1.191 andl; = 0.83 bits/symbol.

e Therefore, expanding the message length to be encoded yrelce efficient coding
schemes, requiring a lower number of bits, if the source haseaory. This is the
essence of Shannon’s source coding theorem.

1.7.2 Four-State Markov Model for a 2-Bit Quantizer

Let us now augment the previously introduced two-state khatiwodel concepts with the

aid of a four-state example. Let us assume that we have aethssource constituted by a
2-bit quantizer, which is characterized by Figure 1.11.ukss further that due to bandlimi-

tation only transitions to adjacent quantization intes\ake possible, since the bandlimitation
restricts the input signal’s rate of change. The probahiftthe signal samples residing in

intervals 1-4 is given by:

The associated state transition probabilities are showigare 1.11, along with the quan-
tized samples, b, ¢, andd, which are transmitted when a state transition takes plaagig,
when taking a new sample from the analog source signal atthelgg-ratef,.

Although we have stipulated a number of simplifying assuoms, this example attempts
to illustrate the construction of Markov models in the camtef a simple practical problem.
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pfO.ZE@ b p22:0.4
P(1)=0.1 p,=02
0.4
p44:O.2 d Cc p33:O_4

p(4)=0.1 p,=0.2 P(3)=0.4

Figure 1.11: Four-state Markov model for a 2-bit quantizer.

Next we construct a simpler example for augmenting the uyidgrconcepts and set aside
the above four-state Markov-model example as a potent@akéese for the reader.

1.8 Generating Model Sources

1.8.1 Autoregressive Model

In evaluating the performance of information processirgjeays, such as encoders and pre-
dictors, it is necessary to have “standardized” or easigcdbed model sources. Although
a set of semistandardized speech and images test sequendgegly used by researchers
in codec performance testing, in contrast to analytical ehedurces, real speech or image
sources cannot be used in analytical studies. A widely usatytical model source is the
Autoregressive (AR) modeA zero mean random sequeng@:) is calledan AR process of
order p if it is generated as follows:

y(n) = Z ary(n — k) + &(n), Vn, (1.35)
k=1
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wheree(n) is an uncorrelated zero-mean, random input sequence witimeao?; that is,

E{e(n)} =0
E{*(n)} = o?
E{e(n)-y(m)} =0. (1.36)

From Equation 1.35 we surmise that an AR system recursivatgtes the present output
from p number of previous output samples givengiy. — k) and the present random input
samples(n).

1.8.2 AR Model Properties

AR models are very useful in studying information procegsipstems, such as speech and
image codecs, predictors, and quantizers. They have tlogvfoh basic properties:

1. The first term of Equation 1.35, which is repeated here dowenience,

gn) =" ay(n — k)

k=1

defines a predictor, giving an estimdte:) of y(n), which is associated with the min-
imum mean squared error between the two quantities.

2. Althoughy(n) andy(n) depend explicitly only on the pagtnumber of samples of
y(n), through the recursive relationship of Equation 1.35 thisiés the entire past of
y(n). This is because each of the previgusamples depends on their predecessors.

3. Then Equation 1.35 can be written in the form of:

y(n) = g4(n) +(n), (1.37)

wheree(n) is theprediction errorandg(n) is the minimum variance prediction esti-
mate ofy(n).

4. Without proof, we state that for a random Gaussian disteith prediction error se-
quence:(n) these properties are characteristic pf’aorder Markov procesportrayed
in Figure 1.12. When this model is simplified for the case e 1, we arrive at the
schematic diagram shown in Figure 1.13.

5. The power spectral density (PSD) of the prediction eremuence:(n) is that of a
random “white-noise” sequence, containing all possibégjfiency components with
the same energy. Hence, its autocorrelation function (AGREhe Kronecker delta
function, given by the Wiener-Khintchine theorem:

E{e(n)-e(m)} = 0*6(n —m). (1.38)

1.8.3 First-Order Markov Model

A variety of practical information sources are adequatedgieied by the analytically tractable
first-order Markov model depicted in Figure 1.13, where tredfrtion order i = 1. With
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e(n)m y(n)

y(n —p) y(n—1)
T T T

az

¢ G

Figure 1.12: Markov model of ordex

e(n)

Figure 1.13: First-order Markov model.

the aid of Equation 1.35 we have
y(n) = e(n) +ay(n — 1),
whereq is the adjacent sample correlation of the proggss. Using the following recursion:

yn—1) = e —1)+ay(n—2)

yln—k) = en—k)+ayn—k—-1) (1.39)
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Q-ary Binary RL |
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Figure 1.14: Predictive run-length codec sche@&arlson [31].

we arrive at:

y(n) = e(n)+afe(n—1)+ay(n - 2)]
e(n) + are(n — 1) + a’y(n — 2),

which can be generalized to:

y(n) = Z ale(n — j). (1.40)

j=0

Clearly, Equation 1.40 describes the first-order Markowpss by the help of the adjacent
sample correlation; and the uncorrelated zero-mean random Gaussian pre@ess

1.9 Run-Length Coding for Discrete Sources Exhibiting Memoy

1.9.1 Run-Length Coding Principle [31]

For discrete sources having memory, (i.e., possessingart®le correlation), the coding ef-
ficiency can be significantly improved by predictive codialipwing the required transmis-
sion rate and hence the channel bandwidth to be reducedtPany amenable to run-length
coding are binary sources with inherent memory, such asklalad white documents, where
the predominance of white pixels suggests that a Run-Le@gtting (RLC) scheme, which
encodes the length of zero runs, rather than repeating loimys of zeros, provides high
coding efficiency.
Following Carlson’s interpretation [31], a predictive RisCheme can be constructed ac-

cording to Figure 1.14. The g-ary source messages are fingeded to binary bit format.
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Length of 0-run| Encoder Output| Decoder Output
I (n-bit codeword)
0 00--- 000 1
1 00--- 001 01
2 00--- 010 001
3 00--- 011 0001
N-1 11--- 110 00--- 01
>N=2"-1 11-.- 111 00--- 00

Table 1.5: Run-length Coding Tahi@ Carlson, 1975 [31]

For example, if an 8-bit analog-digital converter (ADC) &ed, the 8-bit digital samples are
converted to binary format. This bit-streans), is then compared with the output signal
of the predictor,z(¢), which is fed with the prediction error signali). The comparator
is a simple mod-2 gate, outputting a logical 1, whenever tregiption fails; that is, the
predictor’s output is different from the incoming bi:). If, howeverz(:) = (i), the com-
parator indicates this by outputting a logical 0. For higbdyrrelated signals from sources
with significant memory the predictions are usually corraod hence long strings of O runs
are emitted, interspersed with an occasional 1. Thus, thdigiion error signat(:) can be
efficiently run-length encoded by noting and transmittimg length of zero runs.

The corresponding binary run-length coding principle lmees explicit from Table 1.5
and from our forthcoming coding efficiency analysis.

1.9.2 Run-Length Coding Compression Ratio [37]

Following Jain’s interpretation [37], let us now investigdahe RLC efficiency by assuming
that a run ofr successive logical Os is followed by a 1. Instead of direitiypsmitting these
strings, we represent such a string asabit word giving the length of the 0-run between
successive logical ones. When a 0-run longer tNa 2™ — 1 bits occurs, this is signaled as
the all 1 codeword, informing the decoder to wait for the ieix€ codeword before releasing
the decoded sequence. Again, the scheme’s operation isatbdazed by Table 1.5. Clearly,
data compression is achieved if the average number of O datpdy rund is higher than the
number of bitsp, required to encode the O-run length. Let us therefore coepe average
number of bits per run without RLC. If a run oflogical zeros are followed by a 1, the run-
length is(r 4 1). The expected or mean value(@f+ 1), namelyd = (r + 1), is calculated
by weighting each specifig: + 1) with its probability of occurrence that is, with its disaet
PDFc¢(r) and then averaging the weighted components, in:

N—
d=(r+1)=> (r+1)-c(r) + Ne(N). (1.41)
r=0

—
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Figure 1.15: CDF and PDF of the geometric distribution of-keimgth!.

The PDF of a run of zeros followed by a 1 is given by:

) ={ PP DR (1.42)

since the probability ofV consecutive zeros i’ if » = N, while for shorter runs the
joint probability of r zeros followed by a 1 is given by - (1 — p). The PDF and CDF of
this distribution are shown in Figure 1.15 fpr= 0.9 andp = 0.1, wherep represents the
probability of a logical zero bit. Substituting Equatiod2.in Equation 1.41 gives:

N-1
d = N-pY+> (r+1)-p - (1-p)
r=0
N-p¥+1-p° (1=p)+2-p-(1=p)+...+N-p" - (1-p)
= N-pV 414204302 +. . +N-pN 1 —p—2p2. .. —N-pV
Ldptpt-pVL (1.43)

Equation 1.43 is a simple geometric progression, givenasead form as:

1—pN

d= .
1-p

(1.44)

RLC Example: Using a run-length coding memory 8f = 31 and a zero symbol
probability ofp = 0.95, characterize the RLC efficiency.
SubstitutingV andp into Equation 1.44 for the average run-length we have:

C1-095% 1-0.204

R~ ~ 15.92. 1.45
1-0.95 0.05 59 ( )
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Thecompression rati@ achieved by RLC is given by:

C = ~ 3.18. (1.46)

d 1-pN 1592
n n(l—p) 5

The achieved average bit rate is
n . .
B = p ~ 0.314 bit/pixel,

and the coding efficiency is computed as the ratio of the pwttioe., the lowest possi-
ble bit rate and the actual bit rate). The source entropywisrgby:

H =~ -0.95-3.322-log;;0.95— 0.05-3.322 - log;,0.05
0.286 bit/symbol (1.47)

Q

giving a coding efficiency of:
E=H/B ~0.286/0.314 =~ 91%.

This concludes our RLC example.

1.10 Information Transmission via
Discrete Channels

Let us now return to Shannon'’s classic references [24—2388%nd assume that both the
channel and the source are discrete, and let us evaluatsmthendof information transmitted

via the channel. We define the channel capacity charactgrihe channel and show that
according to Shannon nearly error-free information traesion is possible at rates below
the channel capacity via the binary symmetric channel (B&€) us begin our discourse
with a simple introductory example.

1.10.1 Binary Symmetric Channel Example

Let us assume that a binary source is emitting a logical 1 wiirobability of P(1) =
0.7 and a logical 0 with a probability oP(0) = 0.3. The channel's error probability is
pe = 0.02. This scenario is characterized by the binary symmetrioucbb(BSC) model of
Figure 1.16. The probability of error-free reception iseagivby that of receiving 1, when a
logical 1 is transmitteghlus the probability of receiving a 0 when 0 is transmitted, whih
also plausible from Figure 1.16. For example, the first os¢hevo component probabilities
can be computed with the aid of Figure 1.16 as the producteptbbability P(1) of a
logical 1 being transmitted and tikenditional probabilityP(1/1) of receiving a 1, given the
condition that a 1 was transmitted:

P(Y1,X1) = P(Xy1) - P(Y1/X1) (1.48)

P(1,1) = P(1)- P(1/1) = 0.7 - 0.98 = 0.686.
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1— p.=0.98

P(1)=0.7

P(0)=0.3

Figure 1.16: The binary symmetric chann@€Shannon [26], BSTJ, 1948.

Similarly, the probability of the error-free reception ofiogical O is given by:

P(Yy,Xo) = P(Xo)-P(Yo/Xo)
P(0,0) = P(0)-P(0/0)=0.3-0.98 = 0.294,

giving the total probability of error-free reception as:
Pcorrect = P(l, 1) + P(O, O) = 0.98.

Following similar arguments, the probability of erroneagaseption is also given by two
components. For example, using Figure 1.16, the probwbiliteceiving a 1 when a 0 was
transmitted is computed by multiplying the probabiliey0) of a logical 0 being transmitted
by the conditional probability?(1/0) of receiving a logical 1, given the fact that a 0 is known
to have been transmitted:

P(Y1,X0) = P(Xo)-P(Y1/Xo)
P(1,0) = P(0)-P(1/0)=0.3-0.02 = 0.006.
Conversely,
P(Yo,X1) = P(X1)-P(Yo/X1)
P(0,1) = P(1)-P(0/1) = 0.7-0.02 = 0.014,

yielding a total error probability of:
Perror = P(l, O) + P(O, 1) = 002,

which is constituted by the above two possible error events.
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Viewing events from a different angle, we observe that total probability of receiving
1is that of receiving a transmitted 1 correctly plus a trantdiO incorrectly:

P = P(1) - (1-pe)+ P(0) - pe (1.49)
= 0.7-0.98+0.3-0.02 = 0.686 + 0.006 = 0.692.

On the same noté¢he probability of receiving @s that of receiving a transmitted O correctly
plus a transmitted 1 incorrectly:

Py = P0) (1-pe)+P(1)pe (1.50)
= 0.3-0.98+0.7-0.02 = 0.294 + 0.014 = 0.308.

In the next example, we further study the performance of t8€ Bor a range of different
parameters in order to gain a deeper insight into its behavio

Example: Repeat the above calculations 8(1) = 1,0.9, 0.5, andp. = 0,0.1,0.2,0.5
using the BSC model of Figure 1.16. Compute and tabulatetitgapilities P(1, 1),
P(0,0), P(1,0), P(0,1), Peorrect, Perror, P1, and Py for these parameter combina-
tions, including also their values for the previous examplemely, forP(1) = 0.7,
P(0) = 0.3 andp. = 0.02. Here we neglected the details of the calculations and sum-
marized the results in Table 1.6. Some of the above quanttie plotted for further
study in Figure 1.17, which reveals the interdependendyefarious probabilities for
the interested reader.

Having studied the performance of the BSC, the next questiaharises is, how much
information can be inferred upon reception of a 1 and a 0 avémperfect (i.e., error-prone)
channel. In order to answer this question, let us first gdizeréhe above intuitive findings in
the form ofBayes’ rule.

1.10.2 Bayes’' Rule

LetY; represent the received symbols akigthe transmitted symbols having probabilities of
P(Y;) and P(X;), respectively. Let us also characterize the forward ttenmsprobabilities
of the binary symmetric channel as suggested by Figure 1.18.

Then in general, following from the previous introductoraeple, the joint probability
P(Y;, X;) of receivingY;, when the transmitted source symbol wis is computed as the
probability P(X;) of transmittingX;, multiplied by the conditional probabiliti?(Y; / X;) of
receivingY;, whenX; is known to have been transmitted:

P, Xi) = P(Xi)- P(Y;/Xa), (1.51)
a result that we have already intuitively exploited in theyious example. Since for the joint
probabilitiesP (Y}, X;) = P(X;,Y;) holds, we have:
P(Xi,Y;) = P(Y;) - P(Xi/Y))
= P(X))- P(Y;/X)). (1.52)
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' 0.7 | 03 0.98 0.686 | 0.294 0.02 0.006 | 0.014 | 0.692| 0.308
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’ 0.7 0.3 0.5 0.35 0.15 0.5 0.15 0.35 0.5 0.5
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Figure 1.17: BSC performance fpg = 0, 0.125, 0.25, 0.375, and 0.5.

Figure 1.18: Forward transition probabilities of the na@a@tlbinary symmetric channel.
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Equation 1.52 is often presented in the form:

P(Xi/Y;) =

which is referred to aBayes’ rule

Logically, the probability of receiving a particulat; = Y}, is the sum of all joint proba-
bilities P(X;,Yj,) over the range oK. This corresponds to the probability of receiving the
transmittedX; correctly, giving rise to the channel outddy, plus the sum of the probabilities
of all other possible transmitted symbols giving risé’ig:

P(Y;) = Y P(X.,Y)) ZP P(Y;/X;). (1.54)
X
Similarly:

> P(X.,Y;) =Y P(Y;)P(Xi/Y;). (1.55)
Y Y

1.10.3 Mutual Information

In this section, we elaborate further on the ramificatiorSleinnon’s information theory [24—
27,35, 36]. Over nonideal channels impairments are inteduand the received informa-
tion might be different from the transmitted informatiom this section, we quantify the
amount of information that can be inferred from the receisyahbols over noisy channels.
In the spirit of Shannon’s fundamental work [24] and Carlsariassic reference [31], let
us continue our discourse with the definition of mutual infation. We have already used
the notationP(X;) to denote the probability that the source symhiglwas transmitted and
P(Y;) to denote the probability that the symtd| was received. The joint probability that
X, was transmitted antf; was received had been quantified ByX;,Y;), andP(X,;/Y;)
indicated the condmonal probability thaf; was transmitted, given thaft; was received,
while P(Y;/X;) was used for the conditional probability tHgt was received given tha¥;
was transmitted.

In case ofi = j, the conditional probabilitie®(Y;/X;)j = 1---q represent the error-
free transmission probabilities of the source symbais1 - - - q. For example, in Figure 1.18
the probabilitiesP (Y, / Xo) and P(Y:1/X1) are the probabilities of the error-free reception of
a transmittedX, and.X; source symbol, respectively. The probabilitegy; / X;);j # ¢, on
the other hand, give the individual error probabilitiesjethare characteristic of error events
that corrupted a transmitted symh¥b} to a received symbol df;. The corresponding error
probabilities in Figure 1.18 arB(Yy /X1 ) andP(Y1/ X)).

Let us define thenutual informatiorof X; andY; as:

POY) o PLY) | PYG/X)

I(X;,Y;) zlogzm TR Px,) - PY;) | 2T P(Y)

bits, (1.56)
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which quantifies the amount of information conveyed, wigris transmitted and’; is re-
ceived. Over a perfect, noiseless channel, each receivetdyy; uniquely |dent|f|es a
transmitted symbak; with a probability of P(X;/Y;) = 1. Substituting this probability in
Equation 1.56 yields a mutual information of:

I(X,,Y;) (1.57)

= 1089 P(X»L)’
which is identical to the self-information oX; and hence no information is lost over the
channel. If the channel is very noisy and the error probgthkcomes 0.5, then the received
symbolY; becomes unrelated to the transmitted symbglsince for a binary system upon
its reception there is a probability of 0.5 th¥} was transmitted and the probability &F is
also 0.5. Then formallyX; andY; are independent and hence

P(Xi,Y;) _ P(Xi)- P(Yj)

P(X;/Y;) = = = P(X;), (1.58)
D= ) P(Y)) o
giving a mutual information of:
_ P(Xi)
I(X;,Y;) = log, P(X,) =log, 1 =0, (1.59)

implying that no information is conveyed via the channead®ical communications channels
perform between these extreme values and are usually ¢bdrad by theaverage mutual
informationdefined as:

I(X,Y) = Y P(X.,Y;) I(X,,Y))
= ;P(Xi,}/j)-logg ;(;é)) [bit/symbol].

(1.60)

Clearly, the average mutual information in Equation 1.6@amputed by weighting each
component (X;,Y;) by its probability of occurrenc®(X;,Y;) and summing these contri-
butions for all combinations aX; andY;. The average mutual informatiai{ X, Y") defined
above gives the average amount of source information aeduier received symbol, as dis-
tinguished from that per source symbol, which was given byetitropyH (X ). Let us now
consolidate these definitions by working through the follawnumerical example.

1.10.4 Mutual Information Example

Using the same numeric values as in our introductory exaaptegards to the binary sym-
metric channel in Section 1.10.1, and exploiting that froay&s’ rule in Equation 1.53, we
have:

P(Xi,Y;)

POXG/Y) = 5
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The following probabilities can be derived, which will beedsat a later stage, in order to
determine the mutual information:

P(1,1)  0.686
and P(0,0)  0.294
P(Xy/Y,) = P(0/0) = P; = Saogg ~ 09545,

whereP; = 0.692 andP, = 0.3080 represent the total probability of receiving 1 and O,
respectively, which is the union of the respective evenesafr-free and erroneous receptions
yielding the specific logical value concernéithe mutual informatiofrom Equation 1.56 is
computed as:

P(X,1/Y;
I(X1,7h) = 10’52%
991 .
~ log,y 0.9913 ~ 0.502 bit (1.62)
.954 .
I(Xo,Yy) = log, 0.9543 ~ 1.67 bit. (1.62)

These figures must be contrasted with the amount of sourceniation conveyed by the
source symbolX, Xi:

1(0) = log, 5= ~ log, 3.33 ~ 1737 bit/symbol (1.63)

and
1(1) = log, % ~ log, 1.43 ~ 0.5146 bit/symbol (1.64)

The amount of information “lost” in the noisy channel is givky the difference between
the amount of information carried by the source symbols aedrutual information gained
upon inferring a particular symbol at the noisy channelpati Hence, the lost information
can be computed from Equations 1.61, 1.62, 1.63, and 1.6#liyg (1.737 - 1.67% 0.067
bit and (0.5146 - 0.502¥ 0.013 bit, respectively. These values may not seem capdstro
but in relative terms they are quite substantial and theiresrapidly escalate, as the channel
error probability is increased. For the sake of completeaes for future use, let us compute
the remaining mutual information terms, namél{X,, Y1) andI (X1, Yy), which necessitate
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the computation of:

PXanvl)
P(Xo/Y1) = (P(in)
P(0,1)  0.3-0.02
P(0O/1) = = ~ 0.
(0/1) 5 S~ 0.00867
PXl,Yb)
P(X1/Yo) = (P(T
P(1,0)  0.7-0.02
P(1/0) = = ~ 0.04545
(1/0) Py 0.308
P(Xy/Y; 0.00867 .
I1(Xo, Y1) = 1og2;(+/0)1) ~ log, o3~ —5.11 bit (1.65)
[(X0,Yy) = logy DY) o, 005 g0 bit (1.66)

P(Xy) %07

where the negative sign reflects the amount of “misinforamétias regards, for example,
Xo upon receivingY;. In this example we informally introduced the definition ofitmal
information. Let us now set out to formally exploit the betsefif our deeper insight into the
effects of the noisy channel.

1.10.5 Information Loss via Imperfect Channels
Upon rewriting the definition of mutual information in Eqiaat 1.56, we have:

P(X,/Y)

P(X;)

L
P(X)  BPXY)
— I(X:) — I(Xi/Y)). (1.67)

I(X’La }/j) = 10g2

= log,

Following Shannon's [24-27, 35, 36] and Ferenczy’s [33]rapph and rearranging Equa-
tion 1.67 yields:

I(X:) - I(X;,Y;) = 1(X:]Y;). (1.68)
Source Inf. Inf. conveyedto rec. Inf. loss

Briefly returning to figure 1.18 assists the interpretatibrPg.X;/Y;) as the probability or
certainty/uncertainty thakX; was transmitted, given thaf was received, which justifies the
above definition of the information loss. It is useful to obveefrom this figure that, as it
was stated before?(Y;/X;) represents the probability of erroneous or error-freeptoe.
Explicitly, if j = ¢, thenP(Y;/X,) = P(Y;/X,) is the probability of error-free reception,
while if j # 4, thenP(Y;/X,) is the probability of erroneous reception.
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With the probabilityP (Y, / X;) of erroneous reception in mind, we can actually associate
an error information term with it:

1

I(Y;/ X;) = log, W

(1.69)

Let us now concentrate on the average mutual informatioqpsassion in Equation 1.60 and
expand it as follows:

1

I(X)Y) = Y P(X.Y))- 1og2PX)

XY (

- XZ;P X;,Y;)log, W (1.70)

Considering the first term at the right-hand side (rhs) ofdbeve equation and invoking
Equation 1.55, we have:

1
DD PXLY))| logs ZP ) log; gy = H(X).
X Y
(1.71)
Then rearranging Equation 1.70 gives:
1
H(X Z P iy J 10g2 W (172)

whereH (X) is the average source information per symbol 208, Y) is the average con-
veyed information per received symbol.

Consequently, the rhs term must be the average informa&ipsymbol lost in the noisy
channel. As we have seen in Equation 1.67 and Equation hé&formation loss is given

by:

I(X:/Y;) = (1.73)

1
1 [
%82 P(X./Y;)

The average information log$(X/Y") equivocationwhich Shannon [26] terms is computed
as the weighted sum of these components:

1
H(X/Y) =YY P(X;Y;)-log, PRTY (1.74)
X Y
Following Shannon, this definition allowed us to expressdiigm 1.72 as:
H(X) - I(X,)Y) = H(X/Y) (1.75)
——

N—— N——
(av. source inf/sym.) (av. conveyed inf/sym.) (av. lost inf/sym.)
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1.10.6 Error Entropy via Imperfect Channels

Similarly to our previous approach and using the probabitY;/X;) of erroneous recep-
tion associated with the information term of:

1
1(Y;/X;) = log, P

7(1/7/)(1) (1.76)

we can define the average “error information” or error entréfence, the above error infor-
mation terms in Equation 1.76 are weighted using the prditiebiP (X;,Y;) and averaged
for all X andY values, defining therror entropy

H(Y/X) =YY P(X;,Y;)log, W (1.77)
X v Jr

Using Bayes' rule from Equation 1.52, we have

P(Xi/Y;)- P(Y;) = P(Yj/Xi)- P(X))
"R -
Following from this, for the average mutual information iqu&ation 1.56 we have:
I(X,Y) =I(Y, X), (1.79)
which, after interchanging” andY” in Equation 1.75, gives:
H(Y) - I(V,X) = H®{Y/X) . (1.80)

destination entropy conveyed inf error entropy

Subtracting the conveyed information from the destinadatropy gives the error entropy,
which is nonzero, if the destination entropy and conveyéarimation are not equal due to
channel errors. Let us now proceed following Ferenczy’'seagh [33] and summarize the
most important definitions for future reference in Table lefore we attempt to augment
their physical interpretations using the forthcoming ntics example.

Example Using the BSC model of Figure 1.16, as an extension of theagogkam-
ples of Subsections 1.10.1 and 1.10.4 and following Feyenazterpretation [33] of
Shannon'’s elaborations [24-27, 35, 36], let us compute dlleviing range of system
characteristics:

(a) Thejoint information , as distinct from the mutual information introduced ear-

lier, for all possible channel input/output combinations.

(b) The entropy, i.e., the average information of both tha@s®and the sink.

(c) The average joint informatioH (X,Y).

(d) The average mutual information per symbol conveyed.

(e) The average information loss and average error entropy.
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Quantity Definition

Source inf. I(X;) = —log, P(X;)

Received inf. 1(Y;) = —logy P(Y;)

Joint inf. Ix,y, = —log, P(X;,Y})

Mutual inf. I(X;,Y;) = logy Z500)

Av. Mut. inf. I(X,Y) = 3« 3y P(X,Y;) logy T

Source entropy | H(X) = —)_  P(X;) -log, P(X;)

Destination entr| H(Y) = -5 P(Y;)log, P(Y;)

Equivocation H(X)Y)=-> >y P(X;,Y;)log, P(X;/Y})
Error entropy HY/X)=-> >y P(X;Y;)log, P(Y;/X;)

Table 1.7: Summary of Definition§Ferenczy [33]

With reference to Figure 1.16 and to our introductory exanfpbm Section 1.10.1
we commence by computing further parameters of the BSC. IRibed the source
information was:

1 :
I(Xo) = log, 03~ 3.3221og;(3.333 ~ 1.737 bit
1 :
I(X1) = log, o7~ 0.515 bit.
The probability of receiving a logical O was 0.308 and thalogfical 1 was 0.692, of

whether 0 or 1 was transmitted. Hence, the information iefitupon the reception of
0 and 1, respectively, is given by:

1 .
I(Yo) = logy oz ~ 332208y 3.247 ~ 1.699 bit
1 .

Observe that because of the reduced probability of reagi@itogical 1 from0.7 —
0.692 as a consequence of channel-induced corruption, the pifitpalb receiving a
logical 0 is increased from.3 — 0.308. This is expected to increase the average
destination entropy, since the entropy maximum of unitycisieved, when the sym-
bols are equiprobable. We note, however, that this does iaetrgore information
about the source symbols, which must be maximized in an e&fticiommunications
system. In our example, the information conveyed increfigebe reduced probabil-
ity logical 1 from0.515 bit — 0.531 bit and decreases for the increased probability
0 from 1.737 bit — 1.699 bit. Furthermore, the average information conveyed is
reduced, since the reduction from 1.737 to 1.699 bit is miose the increment from
0.515 to 0.531. In the extreme case of an error probabilitp.6fwe would have
P(0) = P(1) =0.5,andI(1) = I(0) = 1 bit, associated with receiving equiprobable
random bits, which again would have a maximal destinatidropg, but a minimal in-
formation concerning the source symbols transmitted olalig the above interesting
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introductory calculations, let us now turn our attentiortte computation of the joint
information.

a/ The joint information as distinct from the mutual information introduced earlie
in Equation 1.56, of all possible channel input/output corations is computed from
Figure 1.16 as follows:

Ix,y, = -—log, P(X;Y)) (1.81)
Ioo = —logy(0.3-0.98) ~ —3.322 - log;, 0.294 ~ 1.766 bit
In = —log,y(0.3-0.02) ~ 7.381 bit
Iy = —1logy(0.7-0.02) ~ 6.159 bit
L1 = —log,(0.7-0.98) ~ 0.544 bit.

These information terms can be individually interpretedrfally as the information
carried by the simultaneous occurrence of the given syminobinations. For exam-
ple, as it accrues from their computatidp, andi;; correspond to the favorable event
of error-free reception of a transmitted 0 and 1, respelgtivehich hence were simply
computed by formally evaluating the information terms. Bg same token, in the
computation ofly; and I, the corresponding source probabilities were weighted by
the channel error probability rather than the error-fraagmission probability, leading
to the corresponding information terms. The latter ternasnely, /o; and g, repre-
sent low-probability, high-information events due to therlchannel error probability
of 0.02.

Lastly, a perfect channel with zero error probability woudthder the probability of
the error-events zero, which in turn would assign infinit®imation contents to the
corresponding terms dfy; and o, while Iy and;; would be identical to the self-
information of the 0 and 1 symbols. Then, if under zero errobpbility we evaluate
the effect of the individual symbol probabilities on the ®@ning joint information
terms, the less frequently a symbol is emitted by the sodheehigher its associated
joint information term becomes and vice versa, which is dgenomparinglyy and
I;1. Their difference can be equalized by assuming an idengpicabability of 0.5
for both, which would yieldlyy=1;,= 1-bit. The unweighted average &f, and I;;
would then be lower than in case of the previously used pritibab of 0.3 and 0.7,
respectively, since the maximum average would be assdoidtk the case of 0 and 1,
where the associatédg, terms would be 0 and oo, respectively. The appropriately
weighted average joint information terms will be evalutedier paragraphb/ during
our later calculations. Let us now move on to evaluate thesgeeinformation of the
source and sink.
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b/ Calculating the entropythat is, the average information for both the source and the
sink, is quite straightforward and ensues as follows:

2
1
H(X) = ZP(Xi)'lo&m
i=1 ¢
0.3 - logy 3.333 + 0.7 - log, 1.429
0.5211 + 0.3605

0.8816 bit/symbol (1.82)
For the computation of the sink’s entropy, we invoke Equatid.49 and 1.50, yielding:

1 1
H(Y) = 0.308-log, —— + 0.692log, ——
(¥) °82 308 T 82 ().692

0.5233 + 0.3676
~ 0.8909 bit/symbol (1.83)

Q

Again, the destination entrogy (Y") is higher than the source entroffy{ X' ) due to the
more random reception caused by channel errors, appr@peHiri) = 1 bit/symbol

for a channel bit error rate df.5. Note, however, that unfortunately this increased
destination entropy does not convey more information atfmusource itself.

¢/ Computing theaverage joint informatiorf (X, Y") gives:

2 2
H(X,Y) = =Y > P(X,,Y;)log, P(X;,Y))
i=1 j=1
2 2
=3 > P(Xi,Y))Ix, v, (1.84)

i=1 j=1

Upon substituting théx, vy, values calculated in Equation 1.81 into Equation 1.84, we
have:

Q

0.3-0.98-1.766 + 0.3 -0.02 - 7.381
+0.7-0.02-6.15940.7-0.98 - 0.544
~ 0.519+4 0.044 + 0.086 + 0.373

1.022 bit/symbol-combination

H(X,Y)

In order to interpretd (X,Y), let us again scrutinize the definition given in Equa-
tion 1.84, which weights the joint information terms of Etjoa 1.81 by their prob-
ability of occurence. We have argued before that the joifdgrimation terms corre-
sponding to erroneous events are high due to the low errdrapility of 0.02. Ob-
serve, therefore, that these high-information symbol doatibns are weighted by
their low-probability of occurrence, causing(X,Y’) to become relatively low. It
is also instructive to consider the above terms in EquatiB4 for the extreme cases of
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zero and 0.5 error probabilities and for different sourcéssian probabilities, which
are left for the reader to explore. Here we proceed consigehe average conveyed
mutual information per symbol.

d/ Theaverage conveyed mutual information per symbas defined in Equation 1.60
in order to quantify the average source information acguper received symbol,
which is repeated here for convenience as follows:

I(X,Y) = ZZP(Xi,E)logz%)gj)
X Y !

DD P(XLY) - I(X,Y)).
X Y

Using the individual mutual information terms from Equatsd. .61-1.66 in Section 1.10.4,

we get the average mutual information representing theageeamount of source in-
formation acquired from the received symbols, as follows:

I(X,)Y) ~ 03-098-1.67+0.3-0.02-(—5.11)
+0.7-0.02- (—3.945) + 0.7 - 0.98 - 0.502
0.491 — 0.03066 — 0.05523 + 0.3444
0.7495 bit/symbol (1.85)

In order to interpret the concept of mutual information, iecfon 1.10.4 we noted
that the amount of information “lost” owing to channel egevas given by the differ-
ence between the amount of information carried by the sayedols and the mutual
information gained upon inferring a particular symbol a tibisy channel’s output.
These were given in Equations 1.61-1.64, yielding (1.737)l~ 0.067 bit and
(0.5146 - 0.502% 0.013 hit, for the transmission of a 0 and 1, respectively.aige
noted that the negative sign of the terms correspondingdcettor-events reflected
the amount of misinformation as regards, for examplg,upon receivingt;. Over
a perfect channel, the cross-coupling transitions of Edufi 6 are eliminated, since
the associated error probabilities are 0, and hence thereirformation loss over the
channel. Consequently, the error-free mutual informatoms become identical to the
self-information of the source symbols, since exactly gn@es amount of information
can be inferred upon reception of a symbol, as much is caogiéts appearance at the
output of the source.

Itis also instructive to study the effect of different erppobabilities and source symbol
probabilities in the average mutual information definitafrEquation 1.84 in order to
acquire a better understanding of its physical interpieiand quantitative power as
regards the system’s performance. It is interesting to,rfoteexample, that assuming
an error probability of zero will therefore result in aveeagutual information, which
is identical to the source and destination entropy compalede under paragra.

It is also plausible thaf(X,Y") will be higher than the previously computed 0.7495
bits/symbol, if the symbol probabilities are closer to @bin general in case af-ary



1.10.6. Error Entropy via Imperfect Channels 57

sources closer tb/q. As expected, for a binary symbol probability of 0.5 and erro
probability of 0, we havd (X, Y)=1 bit/symbol.

e/ Lastly, let us determine thaverage information loss and average error entrppy
which were defined in Equations 1.74 and 1.80 and are repkatedor convenience.
Again, we will be using some of the previously computed philitzes from Sec-
tions 1.10.1 and 1.10.4, beginning with computation of therage information loss
of Equation 1.74:

H(X/Y) =D P(Xi,Y))logy P(Xi/Y))
X Y

—  _P(Xo,Yo)log, P(Xo/Yo) — P(Xo, Y1) log, P(Xo/ Y1)
_P(X1,Ys) logy P(X1/Yo) — P(X1,Y1)log, P(X1/Y1)

= P(0,0)-logy, P(0/0) + P(0,1) - logy, P(0/1)

P(1,0) -logy P(1/0) 4+ P(1,1) - logy P(1/1)

—0.3-0.98 - log, 0.9545 — 0.3 - 0.02 - log, 0.00867

—0.7-0.02 - log, 0.04545 — 0.7 - 0.98 - log, 0.9913

0.0198 + 0.0411 + 0.0624 4 0.0086

0.132 bit/symbol

%

In order to augment the physical interpretation of the akexerage information loss
expression, let us examine the main contributing factoits lhis expected to decrease
as the error probability decreases. Although it is not glrdiorward to infer the clear
effect of any individual parameter in the equation, experéeshows that as the error
probability increases, the two middle terms corresponthbrfpe error events become
more dominant. Again, the reader may find it instructive teradlome of the parameters
on a one-by-one basis and study the way its influence masitssif in terms of the
overall information loss.
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Moving on to the computation of the average error entropyfimebits definition equa-
tion is repeated below, and on inspecting Figure 1.16 we:have

H(Y/X) = = > P(X;,Y;)-log, P(Y;/X))
X Y

= —P(Xo, YQ) 1Og2 P(YQ/XQ) — P(Xo, }/1) 1Og2 P(Yl/XQ)
—P(Xl, Yo) 1Og2 P(Yo/Xl) — P(Xl, Yi) 1Og2 P(Yl/Xl)

P(Yo/Xo) = 0.98
P(Yo/X1) = 0.02
P(Y1/Xo) = 0.02
P(Y1/X1) = 0.98
H(Y/X) P(0,0) - log, P(0/0) + P(0,1) - log, P(0/1)

P(1,0) -logy P(1/0) 4+ P(1,1) - log, P(1/1)
= —0.294-log, 0.98 — 0.014 - log, 0.02
—0.006 - log, 0.02 — 0.686 - log, 0.98
~ 0.0086 + 0.079 + 0.034 + 0.02
~ 0.141 bit/symbol

The average error entropy in the above expression is exptxfall as the error proba-
bility is reduced and vice versa. Substituting differeritres into its definition equation
further augments its practical interpretation. Using a@vppus results in this section,
we see that thaverage loss of information per symbol or equivocatitemoted by
H(X/Y) is given by the difference between the source entropy of #qua.82 and
the average mutual information of Equation 1.85, yielding:

H(X/Y)=H(X)—I(X,Y) ~ 0.8816 — 0.7495 ~ 0.132 bit/symbol

which according to Equation 1.75, is identical to the valielfX/Y") computed
earlier. In harmony with Equation 1.80, the error entropy akso be computed as the
difference of the average entropf(Y") in Equation 1.83 of the received symbols and
the mutual informatiod (X, Y") of Equation 1.85, yielding:

H(Y)—-1(X,Y) =~ 0.8909 — 0.7495 ~ 0.141 bit/symbol

as seen above fdi (Y/X).

Having defined the fundamental parameters summarized ite Tal and used in the
information-theoretical characterization of communimas systems, let us now embark on
the definition of channel capacity. Initially, we considésatete noiseless channels, leading
to a brief discussion of noisy discrete channels, and theipneeed to analog channels,
before exploring the fundamental message of the Shannatteldaw.
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1.11 Capacity of Discrete Channels [26, 33]

Shannon [26] defined thehannel capacity”’ of a channel as the maximum achievable infor-
mation transmission rate at which error-free transmiss@onbe maintained over the channel.
Every practical channel is noisy, but transmitting at a sigfitly high power the channel

error probabilityp, can be kept arbitrarily low, providing us with a simple ialtchannel

model for our further elaborations. Following Ferenczygpmach [33], assume that the

transmission of symbaX; requires a time interval af, during which an average of
H(X)—zq:P(X-)lo _L bt (1.86)

= 7982 B X} “symbol '

information is transmitted, whergis the size of the source alphabet used. This approach
assumes that a variable-length coding algorithm, sucheapriviously described Shannon-
Fano or the Huffman coding algorithm may be used in orderdoce the transmission rate

to as low as the source entropy. Then the average time relgigirehe transmission of a
source symbol is computed by weightihgwith the probability of occurrence of symbol
Xi,i=1.. .q.

sec

symbol (1.87)

q
toy = Z P(Xz)tz
i=1
Now we can compute the average information transmissia@wraly dividing the average
information content of a symbol by the average time requioeds transmission:

_ H(X) bit

= . Tsec (1.88)

The maximum transmission rateas a function of the symbol probability (X;) must be
found. This is not always an easy task, but a simple case seduen the symbol duration
is constant; that is, we have = ¢, for all symbols. Then the maximum efis a function

of P(X;) only and we have shown earlier that the entrépyX ) is maximized by equiprob-
able source symbols, whefé(X;) = % Then from Equations 1.86 and 1.87 we have an
expression for the channel’s maximum capacity:

H(X) log,q bit
tew  to Sec

C = Umaz = (1.89)
Shannon [26] characterized the capacity of discrete ndiayigels using the previously
defined mutual information describing the amount of aveilagweyed information, given
by:
I(X,Y)=H(Y)-H(Y/X), (1.90)

whereH (Y) is the average amount of information per symbol at the cHanmatput, while
H(Y/X) is the error entropy. Here a unity symbol-rate wasiassd for the sake of simplicity.
Hence, useful information is transmitted only via the chdnhH (Y') > H(Y/X). Viaa
channel withp, = 0.5, where communication breaks down, we hd¥€Y) = H(Y/X),
and the information conveyed becom®&s(, Y) = 0. The amount of information conveyed
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Figure 1.19: BSC model.

is maximum if the error entrop¥? (Y/X) = 0. Therefore, Shannon [26] defined the noisy
channel’s capacity as the maximum value of the conveyedrimdton(X,Y):

C=I(X,Y)max = [HY) - HY/X)|max, (1.91)

where the maximization of Equation 1.91 is achieved by maiirg the first term and mini-
mizing the second term.

In general, the maximization of Equation 1.91 is an arduesk,tbut for the BSC seen
in Figure 1.19 it becomes fairly simple. Let us consider #isple case and assume that the
source probabilities of 1 and 0 afg0) = P(1) = 0.5 and the error probability is.. The
entropy at the destination is computed as:

1 1 1 1 .
H(Y) = -3 log, 53735 log, 5= 1 bit/symbol
while the error entropy is given by:

H(Y/X) ==Y > P(X;Y;)log, P(Y;/X,). (1.92)
X Y

In order to be able to compute the capacity of the BSC as aiumof the channel’s error
probability, let us substitute the required joint probtiei$ of:

P0,0) = P(0O)(1—pe)

P(Oal) = P(O)pe

P(LO) = P(l)pe

P(1,1) = P(1)(1—p.). (1.93)
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and the conditional probabilities of:

P0/0) = (1-pc)
PO/1) = pe
P(l/O) = Pe
P(1/1) = (1-p.). (1.94)
into Equation 1.92, yielding:
H(Y/X) = =[P(0)(1—pe)-logy(1—pe) + P(0) - pelog, pe

+P(1) - pe logg pe + P(1)(1 — pe) logy (1 — pe)]
= —[P(0) + P(1)](1 — pe)loga(1 = pe)
+[P(0) + P(1)]pe log, pe
= —(1—pe) - logy(1 = pe) — pe - 10gs pe. (1.95)

Finally, upon substitutingZ(Y") and H(Y/X) from above into Equation 1.91, the BSC's
channel capacity becomes:

C =1+ (1—pe)logy(l —pe) + pelogy pe. (1.96)

Following Ferenczy’s [33] interpretation of Shannon’ssiess [24—-27, 35, 36], the graphic
representation of the BSC's capacity is depicted in Figu28 Lising varioug. error proba-
bilities.

Observe, for example, that fpr = 102 the channel capacity i§' ~ 0.9 bit/symbol,
that is, close to its maximum af = 1 bit/symbol but for higherp. values it rapidly
decays, falling toC = 0.5 bit/symbol aroungp. = 10~!. If p. = 50%, we haveC =
0 bit/symbol; since no useful information transmission takdace, the channel delivers
random bits. Notice also that (0) # P(1) # 0.5, thenH(Y) < 1 bit/symbol and hence
C < Ciae = 1 bit/symbol, even i, = 0.

1.12 Shannon’s Channel Coding Theorem [30, 38]

In the previous section, we derived a simple expressiorti®capacity of the noisy BSC in

Equation 1.96, which was depicted in Figure 1.20 as a funaifahe channel’s error proba-
bility p.. In this section, we focus on Shannoafgnnel coding theoremwhich states that as

long as the information transmission rate does not exceeditannel’s capacity, the bit error
rate can be kept arbitrarily low [35, 36]. In the context c BSC channel capacity curve of
Figure 1.20, this theorem implies that noise over the chlashmes not preclude the reliable
transmission of information; it only limits the rate at whitransmission can take place. Im-
plicitly, this theorem prophesies the existence of an apate error correction code, which
adds redundancy to the original information symbols. Téilices the system’s useful infor-
mation throughput but simultaneously allows error coipectoding. Instead of providing a

rigorous proof of this theorem, following the approach segggd by Abramson [30], which

was also used by Hey and Allen [38] in their compilation of fFeey’s lectures, we will make

it plaussible.
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Figure 1.20: Channel capacity vergusfor the BSC.

The theorem is stated more formally as follows. Let us asghatea message ¢f useful
information symbols is transmitted by assigning it to idrsymbol so-called block code,
where the symbols are binary and the error probability.isThen, according to Shannon,
upon reducing theoding rateR = % beyond every limit, the error probability obeys the
following relationship:

R= <C =14 (1—-pe)logy(l —pe) + pe - logy pe. (1.97)

21>

As Figure 1.20 shows upon increasing the bit error patehe channel capacity reduces
gradually toward zero, which forces the channel coding Rate % to zero in the limit. This
inequality therefore implies that an arbitrarily low BERjgssible only when the coding rate
R tends to zero, which assumes an infinite-length block codearinfinite coding delay. By
scrutinizing Figure 1.20, we can infer that, for example ZBER of10~! an approximately
R = % A % so-called half-rate code is required in order to achievengsgtically perfect
communications, while foBER = 10~2 an approximately? ~ 0.9 code is required.

Shannon’s channel coding theorem does not specify how &iecegror correction codes,

which can achieve this predicted performance; it mereliesttheir existence. Hence, the
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error correction coding community has endeavored over éagsyto create such good codes
but until 1993 had only limited success. Then in that year®@eet al. [39] invented the
family of iteratively decoded turbo-codes, which are cdpalb approaching the Shannonian
predictions within a fraction of a dB.

Returning to the channel coding theorem, Hey and Feynmdmf&8ed a witty approach
to deepening the physical interpretation of this theorefmichvwe briefly highlight below.
Assuming that the block-coded sequences are long, in eachk bh the average there are
t = p. - N number of errors. In generalnumber of errors can be allocated over the block

of N positions in
N NI
t o —
Cn = (t) (N —t)!

different ways, which are associated with the same numberrof patterns. The number
of additional parity bits added during the coding proces®is= (N — K), which must
be sufficiently high for identifying all th&y, number of error patterns, in order to allow
inverting (i.e., correcting) the corrupted bits in the riggqd positions. Hence, we have [38]:

N
_ NV oN-K)
AV <2 . (1.98)

Upon exploiting the Stirling formula of
N N
N!'~ V27N - (—) =V21-VN-NN.eN
(&
and taking the logarithm of both sides, we have:

1
log, N! ~ log, V27 + ilogeN—i—NlogeN—N.

Furthermore, wheV is large, the first and second terms are diminishingly smatbimpar-
ison to the last two terms. Thus, we have:

log, N! =~ Nlog, N — N.

Then, after taking the logarithm, the factorial expressarthe left-hand side (L) of Equa-
tion 1.98 can be written as:

L~ [Nlog, N — N]—[tlog,t—t] — [(N —¢)log . (N —t) — (N —1)].
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Now taking into account that~ p. - N, we have [38]:

L = [NlogeN - N] - [peNloge(peN) _peN]
— [(N = peN)log (N —peN) — (N —p.N)]
[Nlog, N — N| — [p.Nlog, pe + peNlog, N — p.N]
- [N loge(N(l _pe)) _peN 1Oge(N(1 _pe)) - (N _peN)]
[Nloge N — N] - [peNlogepe +p8N loge N _peN]
— [Nlog, N + Nlog.(1 — p.) — peNlog, N

— peNlog, (1 —pe) — (N = peN)]
Nllog, N — 1 — p.log, pe — pelog, N + pe

— log, N —log,(1 — pe) + pelog, N

+ pelog. (1 —pe) + 1 — pc]
~ N[-pelog, pe —log.(1 — pe) + pelog.(1 — pe)]

N[_pe log, pe — (1 _pe) 10g8(1 _pe)]-

Q

Q

Q

If we consider thatog, a = log, a - log, 2, then we can convert thieg, terms tolog, as
follows [38]:
L ~ N log, 2[—pelogy pe — (1 — pe) logy (1 — pe)].

Finally, upon equating this term with the logarithm of thght-hand side expression of Equa-
tion 1.98, we arrive at:

Nlog, 2[—pelogy pe — (1 — pe) logy(1 — pe)] < (N — K)log, 2,

which can be simplified to:

—pelogg pe — (1 —pe) logy(1 —pe) <1 —

2=

or to a form, identical to Equation 1.97:

K
N S1+ (1 — pe)logy(1 — pe) + pe logy pe.

1.13 Capacity of Continuous Channels [27, 33]

During our previous discussions, it was assumed that thece@mmitted discrete messages
with certain finite probabilities, which would be exemplifiby an 8-bit analog-to-digital
converter emitting one of 256 discrete values with a cepadipability. However, after digi-
tal source encoding and channel encoding according to tie behematic of Figure 1.1 the
modulator typically converts the digital messages to adigdt of bandlimited analog wave-
forms, which are chosen for maximum “transmission convezg€ In this context, trans-
mission convenience can imply a range of issues, dependitiggoicommunications channel.
Two typical constraints are predominantly power-limitecdbandwidth-limited channels, al-
though in many practical scenarios both of these constrdiatome important. Because
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of their limited solar power supply, satellite channelsttémbe more severely power-limited
than bandlimited, while typically the reverse situatioexperienced in mobile radio systems.

The third part of Shannon’s pioneering paper [27] consideaay of these issues. Thus,
in what follows we define the measure of information for coatius signals, introduce a con-
cept for the continuous channel capacity, and reveal ttadioekships among channel band-
width, channel capacity, and channel signal-to-noiseyas stated by the Shannon-Hartley
theorem. Finally, the ideal communications system trairgpifrom Shannon’s pioneering
work is characterized, before concluding with a brief d&sian of the ramifications of wire-
less channels as regards the applicability of Shannon’tses

Let us now assume that the channel’s analog input sigftalis bandlimited and hence
that it is fully characterized by its Nyquist samples and tsyprobability density function
(PDF)p(x). The analogy of this continuous PDF and that of a discreteceoare character-
ized by P(X;) ~ p(X;)AX, which reflects the practical way of experimentally detering
the histogram of a bandlimited analog signal by observirgréiative frequency of events,
when its amplitude resides inaX wide amplitude bin-centered aroutdd. As an analogy
to the discrete average information or entropy expresdion o

H(X) ==Y P(X;)log, P(Xy), (1.99)

Shannon [27] introduced thentropy of analog sourcess it was also noted and exploited,
for example, by Ferenczy [33], as follows:

H(x)= —/ p(z) logs p(z)dz. (1.100)

For our previously used discrete sources, we have showiththaburce entropy is max-
imized for equiprobable messages. The question that assgkether this is also true for
continuous PDFs. Shannon [27] derived the maximum of théogregnal’s entropy under
the constraints of:

/00 p(x)dx 1 (1.101)

— 00

o2 = / 22 - p(x)de = Constant (1.102)

xr
—0o0
based on the calculus of variations. He showed that the gnwba signalx(¢) having a
constant variance of? is maximum, ifz(¢) has a Gaussian distribution given by:

1 2 2
= —— ¢ (@/27) 1.103
X e . .
p(x) o ( )
Then the maximum of the entropy can be derived upon subistitehis PDF into the
expression of the entropy. Let us first take the natural ittgarof both sides of the PDF and
convert it to base two logarithm by taking into account that a = log, a - log, 2, in order
to be able to use it in the entropyisg, expression. Then the PDF of Equation 1.103 can be
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written as:

—log, p(x) = +log, V2o + (z%/207) - (1.104)

log, 2’

and upon exploiting thadbg, 2 = 1/log, e, the entropy is expressed according to Shan-
non [27] and Ferenczy [33] as:

e

Hmaz(a?) = _/p(I) ' 1Og2p(I)dI
= /p(:c) -log, V2rodz + /p(x)%dm

1
= logy V 27T0/p(x)dx—|— c;ng /,TQp(SC)d.T
o
|
o2

0.2

= log, V270 + 252 logy e
1
= logy V2mo + 08z ¢

1
= logy V2mo + 3 log, e
= log, V2meo. (1.105)

Since the maximum of the entropy is proportional to the lagar of the signal's average
power S, = o2, upon quadrupling the signal’s power the entropy is ineddsy one bit
because the range of uncertainty as regards where the sinales can reside is expanded.

We are now ready to formulate the channel capacity versusneghidandwidth and ver-
sus channel SNR relationship of analog channels. Let usressthite, additive, signal-
independent noise with a power &f via the channel. Then the received (signal+noise)
power is given by:

aj =S+ N. (1.106)

By the same argument, the channel’s output entropy is maniifits output signal(¢) has
a Gaussian PDF and its value is computed from Equation 1.4:.05 a

1 1
Hpaz(y) = 3 1og2(27recr§) =3 log, 2me(S + N). (1.107)

We proceed by taking into account the channel impairmeathjaing the amount of infor-
mation conveyed by the amount of the error entréply/x) giving:

I(z,y) = H(y) — H(y/x), (1.108)

where again the noise is assumed to be Gaussian and hence:

H(y/x) = % log,(2meN). (1.109)
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Upon substituting Equation 1.107 and Equation 1.109 in Equd.108, we have:

1 2me(S + N
I(z,y) = 51032 (#)

1 S
= 3 log, (1 + N) , (1.110)

where, again, both the channel’s output signal and the ravs@ssumed to have Gaussian
distribution.

The analog channel’s capacity then calculated upon multiplying the information con-
veyed per source sample by the Nyquist sampling raig ef 2 - fg, yielding [35]:

C = fp - log, (1 + 5) bit (1.111)

N/ sec
Equation 1.111 is the well-know®hannon-Hartley layy establishing the relationship among
the channel capacity, channel bandwidtliz, and channel signal-to-noise ratio (SNR).

Before analyzing the consequences of the Shannon-Haatlefollowing Shannon'’s de-
liberations [35], we make it plausible from a simple praatigoint of view. As we have seen,
the root mean squared (RMS) value of the nois¢/i§, and that of the signal plus noise at
the channel's output i’'S + N. The receiver has to decide from the noisy channel's output
signal what signal has been input to the channel, althoughts been corrupted by an ad-
ditive Gaussian noise sample. Over an ideal noiseless ehaha receiver would be able to
identify what signal sample was input to the receiver. Hagvewver noisy channels it is of
no practical benefit to identify the corrupted received ragesxactly. It is more beneficial to
quantify a discretized version of it using a set of decistmeshold values, where the resolu-
tion is dependent on how corrupted the samples are. In avdprantify this SNR-dependent
receiver dynamic range resolution, let us consider theiofig argument.

Having very densely spaced receiver detection levels wottkeh yield noise-induced
decision errors, while a decision-level spacing/¥ according to the RMS noise-amplitude
intuitively seems a good compromise between high inforomatésolution and low decision
error rate. Then assuming a transmitted sample, whichessitithe center of ¢ N wide
decision interval, noise samples larger thdV /2 will carry samples across the adjacent
decision boundaries. According to this spacing, the nurobegceiver reconstruction levels
is given by:

_VS+N ( LS ) 3

N

which creates a scenario similar to the transmission ofpggbableg-ary discrete symbols
via a discrete noisy channel, each conveyling, ¢ amount of information at the Nyquist
sampling rate off; = 2 - fg. Therefore, the channel capacity becomes [35]:

S
C=2-fp-log,q= fp-log, (1+N)’ (1.113)

1Ccomment by the Authors: Although the loose definition of adyds due to Hartley, the underlying relationship
is entirely due to Shannon.
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Figure 1.21: Graphical representation of the Shannonkéydew. ©Ferenczy [33].

as seen earlier in Equation 1.111.

1.13.1 Practical Evaluation of the Shannon-Hartley Law

The Shannon-Hartley law of Equation 1.111 and Equation3lreteals the fundamental
relationship of the SNR, bandwidth, and channel capacitys Telationship can be further
studied following Ferenczy's interpretation [33] uponaeing to Figure 1.21.

Observe from the figure that a constant channel capacity eandintained, even when
the bandwidth is reduced, if a sufficiently high SNR can bergoteed. For example, from
Figure 1.21 we infer that afg = 10 K Hz and SNR= 30 dB the channel capacity is as
high as C= 100 kbps. SurprisinglyC' = 100 kbps can be achieved even ffis = 5 KHz,
if SNR = 60 dB is guaranteed.

Figure 1.22 provides an alternative way of viewing the SloamHartley law, where the
SNR is plotted as a function g¢fs, parameterized with the channel capacitylt is important
to notice how dramatically the SNR must be increased in doderaintain a constant channel
capacityC, as the bandwidtlfz is reduced belovd.1 - C, whereC and fp are expressed
in kbit/s and Hz, respectively. This is due to tlag, (1 + SNR) function in Equation 1.111,
where a logarithmically increasing SNR value is necessitad compensate for the linear
reduction in terms of 5.
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Figure 1.22: SNR versugp relations according to the Shannon-Hartley la@Ferenczy
[33].

From our previous discourse, the relationship betweereilagive channel capacity/ /5
expressed from Equation 1.113, and the channel SNR now lecptausible. This rela-
tionship is quantified in Table 1.8 and Figure 1.23 for comeeece. Notice that due to the

logarithmic SNR scale expressed in dBs, thefs [%} curve becomes near-linear, allow-

ing a near-linearly proportional relative channel capatitprovement upon increasing the
channel SNR. A very important consequence of this relaltignis that if the channel SNR

is sufficiently high to support communications using a higmber of modulation levels, the
channel is not exploited to its full capacity upon usitigf s values lower than is afforded by
the prevailing SNR. Proposing various techniques in oralexploit this philosophy was the

motivation of reference [40].

The capacityC' of a noiseless channel withVR = oo is C = oo, although noiseless
channels do not exist. In contrast, the capacity of an ideses with fz = oo is finite [31,
34]. Assuming additive white Gaussian noise (AWGN) with alole-sided power spectral
density (PSD) of)/2, we haveN = 3 -2 fgp = n - fp, and applying the Shannon-Hartley
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SNR C/fB

Ratio | dB | bit/sec/Hz

1 0 1

3 4.8 2

7 8.5 3

15 | 11.8 4

31 | 14.9 5

63 | 18.0 6
127 | 21.0 7

Table 1.8: Relative Channel Capacity versus SNR

C/B (Bit/sec/Hz)

Z i
5 7
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1
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Figure 1.23: Relative channel capacity/(fz) versus SNR (dB).
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law gives [31]:

nfs
- G )(’“”B) (1457
s s\
= (—) log, (1 + —) . (1.114)
n nfe
Our aim is now to determin€,, = lim,_.-C. Upon exploiting that:
lima—o(l+2)+ =e (1.115)
wherex = S/(n - fg), we have
Coo = lim, 0aC = 5 logy e = 1.45 - <§> , (1.116)
n n

which is the capacity of the channel wiff; = co. The practically achievable transmis-
sion rateR is typically less than the channel capacity although complex turbo-coded
modems [39] can approach its value. For example, for a teleplthannel with a signal-to-
noise ratio ofS/N = 10> = 30dB and a bandwidth o3 = 3.4 kHz from Equation 1.113,
we haveC' = 3.4 - logy(1 + 10%)E2E ~ 3.4 .10 = 34kbit/s, which is fairly close to
the rate of the V.34 CCITT standard 28.8 kbit/s telephoranalel modem that was recently
standardized.

In this chapter, we have been concerned with various indalidspects of Shannon’s
information theory [24—27, 35, 36]. Drawing nearer to ca¢hg our discourse on the foun-
dations of information theory, let us now outline in broachte the main ramifications of
Shannon’s work [24-27].

1.13.2 Shannon’s Ideal Communications System
for Gaussian Channels

The ideal Shannonian communications system shown in Fig@rehas the following char-
acteristics. The system’s information-carrying capadtygiven by the information rate
C = fplog,(1+ S/N), while as regards its error rate we haye— 0. The transmitted and
received signals are bandlimited Gaussian random vasablgch facilitate communicating
at the highest possible rate over the channel.

Information from the source is observed fBrseconds, wher@' is the symbol duration
and encoded as equiprobabilé-ary symbols with a rate ok = 1°g:,% Accordingly, the
signaling waveform generator of Figure 1.24 assigns a lraitdd AWGN representation
having a maximum frequency df; from the set ofd = 277 possible waveforms to the
source message, uniquely representing the sigftalto be transmitted for a duration @f.
The noisy received signal(t) = z(t) + n(t) is compared to alM = 277 prestored wave-
forms at the receiver, and the most “similar” is chosen taiife the most likely transmitted
source message. The observation intervals at both the enaod decoder amount B,
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Figure 1.24: Shannon’s ideal communications system for AWBannels.

yielding an overall coding delay &fT". Signaling at a rate equal to the channel capacity is

only possible, if the source signal’s observation intersahfinitely long, that isT — co.
Before concluding this chapter, we offer a brief discussbithe system-architectural

ramifications of transmitting over wireless channels rathan over AWGN channels.

1.14 Shannon’s Message for Wireless Channels

In wireless communications over power- and bandlimitecholess it is always of prime con-
cern to maintain an optimum compromise in terms of the calidtary requirements of low
bit rate, high robustness against channel errors, low dalag low complexity. The mini-
mum bit rate at which distortionless communications is fies$s determined by the entropy
of the speech source message. Note, however, that in [@aetis the source rate corre-
sponding to the entropy is only asymptotically achievakléh@ encoding memory length or
delay tends to infinity. Any further compression is ass@datith information loss or coding
distortion. Note that the optimum source encoder geneeggesfectly uncorrelated source-
coded stream, where all the source redundancy has been edmberefore, the encoded
symbols are independent, and each one has the same sigrefiddaving the same signif-
icance implies that the corruption of any of the source-dedasymbols results in identical
source signal distortion over imperfect channels.

Under these conditions, according to Shannon’s pioneemvioidx [24], which was ex-
panded, for example, by Hagenauer [41] and Viterbi [42],ibst protection against trans-
mission errors is achieved if source and channel codingeatetd as separate entities. When
using a block code of lengtN channel coded symbols in order to encddsource symbols
with a coding rate olR = K/N, the symbol error rate can be rendered arbitrarily lowy if
tends to infinity and the coding rate to zero. This condititso amplies an infinite coding
delay. Based on the above considerations and on the assungftadditive white Gaus-
sian noise (AWGN) channels, source and channel coding hiat@rically been separately
optimized.

Mobile radio channels are subjected to multipath propagaind so constitute a more
hostile transmission medium than AWGN channels, typicalyibiting path-loss, log-normal
slow fading and Rayleigh fast-fading. Furthermore, if tignaling rate used is higher than
the channel's coherence bandwidth, over which no spedbadain linear distortion is ex-
perienced, then additional impairments are inflicted bypelision, which is associated with
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frequency-domain linear distortions. Under these cirdamses the channel’s error distri-
bution versus time becomes bursty, and an infinite-memamybsy interleaver is required
in Figure 1.1 in order to disperse the bursty errors and hémeender the error distribu-
tion random Gaussian-like, such as over AWGN channels. Fafyilsnchannels, many of
the above mentioned, asymptotically valid ramificationSbé&nnon’s theorems have limited
applicability.

A range of practical limitations must be observed when des@gmobile radio speech or
video links. Although it is often possible to further redube prevailing typical bit rate of
state-of-art speech or video codecs, in practical termsdghgossible only after a concomitant
increase of the implementational complexity and encodiglgyd A good example of these
limitations is the half-rate GSM speech codec, which wasiireq to approximately halve
the encoding rate of the 13 kbps full-rate codec, while naamig less than quadrupled
complexity, similar robustness against channel errord J@ss than doubled encoding delay.
Naturally, the increased algorithmic complexity is typigaassociated with higher power
consumption, while the reduced number of bits used to reptes certain speech segment
intuitively implies that each bit will have an increasedatele significance. Accordingly,
their corruption may inflict increasingly objectionableesgh degradations, unless special
attention is devoted to this problem.

In a somewhat simplistic approach, one could argue thatusecaf the reduced source
rate we could accommodate an increased number of parity@grabing a more powerful,
implementationally more complex and lower rate channekcodhile maintaining the same
transmission bandwidth. However, the complexity, quadityd robustness trade-off of such
a scheme may not always be attractive.

A more intelligent approach is required to design betteesher video transceivers for
mobile radio channels [41]. Such an intelligent transagivportrayed in Figure 1.1. Perfect
source encoders operating close to the information-ttieatdimits of Shannon’s predic-
tions can only be designed for stationary source signalgndition not satisfied by most
source signals. Further previously mentioned limitatiars the encoding complexity and
delay. As a consequence of these limitations the sourceecstleam will inherently contain
residual redundancy, and the correlated source symbdlexhiibit unequal error sensitivity,
requiring unequal error protection. Following Hagenadédi [ we will refer to the additional
knowledge as regards the different importance or vulnétabif various speech-coded bits
as source significance information (SSI). Furthermore ddager termed the confidence as-
sociated with the channel decoder’s decisions as decddsiliey information (DRI). These
additional links between the source and channel codecdsyemalicated in Figure 1.1. A
variety of such techniques have successfully been usedirst@ource-matched source and
channel coding.

The role of the interleaver and de-interleaver seen in [Eidut is to rearrange the channel
coded bits before transmission. The mobile radio chanmét&jly inflicts bursts of errors
during deep channel fades, which often overload the chatewelder’s error correction capa-
bility in certain speech or video segments. In contrastratkgments are not benefiting from
the channel codec at all, because they may have been tréedsbétween fades and hence are
error-free even without channel coding. This problem caniteimvented by dispersing the
bursts of errors more randomly between fades so that thenehaadec is always faced with
an “average-quality” channel, rather than the bimodal dadenfaded condition. In other
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words, channel codecs are most efficient if the channel®am@ near-uniformly dispersed
over consecutive received segments.

In its simplest manifestation, an interleaver is a memoririxélled with channel coded
symbols on a row-by-row basis, which are then passed on tmdhilator on a column-by-
column basis. If the transmitted sequence is corrupted hyst bf errors, the de-interleaver
maps the received symbols back to their original positidhereby dispersing the bursty
channel errors. An infinite memory channel interleaver igineed in order to perfectly ran-
domize the bursty errors and therefore to transform thediglylfading channel’s error statis-
tics to that of a AWGN channel, for which Shannon’s inforroattheoretical predictions
apply. Since in interactive video or speech communicattbestolerable delay is strictly
limited, the interleaver's memory length and efficiency als® limited.

A specific deficiency of these rectangular interleavers & th case of a constant ve-
hicular speed the Rayleigh-fading mobile channel typjgatbduces periodic fades and error
bursts at traveled distances)of2, where) is the carrier’'s wavelength, which may be mapped
by the rectangular interleaver to another set of periodistSwf errors. Hence a range of ran-
dom interleaving algorithms have been proposed in thealitee.

Returning to Figure 1.1, the soft-decision information (5@ channel state information
(CSI) link provides a measure of confidence with regard tolitedihood that a specific
symbol was transmitted. Then the channel decoder oftenthgemformation in order to
invoke maximum likelihood sequence estimation (MLSE) blase the Viterbi algorithm
and thereby improve the system’s performance with resgecbhventional hard-decision
decoding. Following this rudimentary review of Shannon®irmation theory, let us now
turn our attention to the characterization of wireless camitations channels.

1.15 Summary and Conclusions

An overview of Shannonian information theory has been giuemorder to establish a firm
basis for our further discussions throughout the book.idihtwe focussed our attention
on the basic Shannonian information transmission schermdenhlighted the differences
between Shannon'’s theory valid for ideal source and chaiotics as well as for Gaussian
channels and its ramifications for Rayleigh channels. We atgued that practical finite-
delay source codecs cannot operate at transmission radt®s as the entropy of the source.
However, these codecs do not have to operate losslesstg, gerceptually unobjectionable
distortions can be tolerated. This allows us to reduce thecated bit rate.

Since wireless channels exhibit bursty error statistieserror bursts can only be random-
ized with the aid of infinite-length channel interleaversieh are not amenable to real-time
communications. Although with the advent of high-delaytuchannel codecs it is possible
to operate near the Shannonian performance limits oversgaushannels, over bursty and
dispersive channels different information-theoretideenel capacity limits apply.

We considered the entropy of information sources both witth without memory and
highlighted a number of algorithms, such as the Shannow;Faa Huffman and run-length
coding algorithms, designed for the efficient encoding afrees exhibiting memory. This
was followed by considering the transmission of informati@er noise-contaminated chan-
nels leading to Shannon’s channel coding theorem. Our siészs continued by consider-
ing the capacity of communications channels in the contetttedShannon-Hartley law. The
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chapter was concluded by considering the ramifications ahB8an’s messages for wireless
channels.

1.16 Structure and novel aspects of the book

In this section we provide an overview of the remainder of ook and summarise its novel
aspects.

In Chapter 1 we provide a rudimentary introduction to information thgadn order to
lay the foundations for the rest of the book, whileGhapter 2, we provide a brief overview
of the system components and techniques used throughoutthegraph.

In Chapter 6 we demonstrate the application of IrVLCs for the joint s@and channel
coding of video information, as described in Section 4.T.Be proposed scheme employs
the serial concatenation and iterative decoding of a videtec with a channel codec, in the
manner detailed in Section 4.3.3.2. Our novel video codpresznts the video information
using Variable Dimension Vector Quantisation (VDVQ) tjleghich are similar to the VQ
tiles described in Section 4.2.1, but having various dirmrss The VDVQ tiles employed
are represented using the corresponding RVLC codewordstsdlfrom the VDVQ/RVLC
codebook, as described in Section 4.2.5. However, theilegfié use of the VDVQ tiles
and their corresponding RVLC codewords is limited by a nundfeode constraints, which
ensure that the VDVQ tiles employed perfectly tessellategrag other desirable design ob-
jectives. As a result, different sub-sets of the RVLC codelsaare available at different
points during the encoding of the video information and thappsed approach adopts an
IrVLC philosophy.

In the video codec of Chapter 6, the VDVQ/RVLC-induced codestraints are uniquely
and unambiguously described by a novel VDVQ/RVLC trellisisture, which resembles
the symbol-based VLEC trellis [1, 2] described in Sectiod.@.3. Hence, the employment
of the VDVQ/RVLC trellis structure allows the consideratiof all legitimate transmission
frame permutations. This fact is exploited in the video elerdn order to perform novel
MMSE VDVQ/RVLC encoding, using a variant of the Viterbi akifbm [3] described in
Section 4.2.6.2.

Additionally, the employment of the VDVQ/RVLC trellis strture during video decoding
guarantees the recovery of legitimate — although not nadbssrror-free — video informa-
tion. As a result, the video decoder never has to discardviidermation. This is unlike in
conventional video decoders, where a single transmisgiam may render an entire trans-
mission frame invalid. Furthermore, the novel modificatafithe BCJR algorithm [4] of
Section 4.3.2.2 is employed during APP SISO VDVQ/RVLC deagdn order to facilitate
the iterative exchange of soft information with the seyialbncatenated channel decoder and
in order to perform the soft MMSE reconstruction of the videguence. Finally, since the
VDVQ/RVLC trellis structure describes the complete set B\WQ/RVLC-induced code con-
straints, all of the associated redundancy is beneficiayoited with the aid of the modified
BCJR algorithm.

Owing to its aforementioned benefits and its employment @firat source and channel
coding philosophy, the video transmission scheme of Ch#&pite shown to outperform the
corresponding benchmarkers employing a separate soudcehamnel coding philosophy.
Our findings were originally published in [5, 6].
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In Chapter 7, we investigate the application of IrVLCs to UBP described in Sec-
tion 4.1.3. Here, a number of component VLC codebooks hadiffgrent error correction
capabilities are employed to encode various fractions@sturce symbol frame. In the case
where the various fractions of the source symbol frame h#ferent error sensitivities, this
approach may be expected to yield a higher reconstructiafitgthan equal protection, as
noted in [7-9], for example.

Chapter 7 also investigates the application of Ir'VLCs tor+oegoacity operation, as de-
scribed in Section 4.1.1. Here, a number of component VLGbodks having different
inverted Extrinsic Information Transfer Chart (EXIT) fuiens are employed to encode var-
ious fractions of the source symbol frame. We show that therted IrVLC EXIT function
may be obtained as a weighted average of the inverted compwh€ EXIT functions, as
described in Section 4.4. Additionally, the EXIT chart nfaig) algorithm [10] described in
Section 4.4 is employed to shape the inverted IrVLC EXIT fiorcto match the EXIT func-
tion of a serially concatenated inner channel code and tate@narrow but still open EXIT
chart tunnel. In this way, iterative decoding convergencatinfinitesimally low probability
of error is facilitated at near capacity SNRs, as describe®kiction 4.3.4.4.

Furthermore, in Chapter 7, the UEP and near-capacity aperaf the described scheme
is assessed using novel plots that characterise the cotigmatiacomplexity of iterative de-
coding. More specifically, the average number of ACS openatrequired to reconstruct each
source symbol with a high quality is plotted against the clehiSNR. These plots are em-
ployed to compare the novel IrVLC-based scheme with a syitisigned IrCC and regular
VLC based benchmarkers, quantifying the advantages of¥els Furthermore, these plots
demonstrate that the complexity associated with the ieda/LEC trellis of Section 4.2.6.1
is significantly lower than that of the symbol-based tredéscribed in Section 4.2.6.3. Our
findings were originally published in [11,12] and we propbatractive near-capacity IrvVLC
schemes in [13-18].

In Chapter 8 we introduce a novel Rv-FDM as an alternativeédY-FD lower bound of
(4.8) for the characterisation of the error correction ¢élfig that is associated with VLEC
codebooks. Unlike the IV-FD lower bound, the RV-FDM assurages from the real-valued
domain, hence allowing the comparison of the error comeatapability of two VLEC code-
books having equal IV-FD lower bounds, as described in 8eeti2.6.4. Furthermore, we
show that a VLEC codebook’s RV-FDM affects the number of ctften points that appear
in the corresponding inverted EXIT function. This completsethe property [19] that the
area below an inverted VLEC EXIT function equals the coroesling coding rate, as well as
the property that a free distance of at least two yields aerted VLEC EXIT function that
reaches the top right hand corner of the EXIT chart, as destin Section 4.3.4.4.

These properties are exploited by a novel GA in order to aelseneficial VLEC code-
books having arbitrary inverted EXIT function shapes. Tikisn contrast to the methods
of [20-22], which are incapable of designing codebooks rgdpecific EXIT function
shapes without imposing a significant level of ‘trial-amtde€’ based human interaction, as
described in Section 4.4. This novel GA is shown to be aitrador the design of IrVLC
component codebooks for EXIT chart matching, since Chaptdso demonstrates that our
ability to create open EXIT chart tunnels at near-capatignmel SNRs depends on the avail-
ability of a suite of component codes having a wide varietig ¥fT function shapes.
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Finally, a suite of component VLEC codebooks designed bynihvel GA is found to
facilitate higher-accuracy EXIT chart matching than a thenarker suite designed using the
state-of-the-art method of [22]. Our novel RV-FDM and GA wariginally published in
[15, 16].

In Chapter 9, we propose a novel modification to the EXIT chaatching algorithm
of [10] that additionally seeks a reduced APP SISO decodommexity by considering
the complexities associated with each of the componentcagerthermore, another novel
modification of Chapter 9 facilitates the EXIT chart matehof irregular codes that employ
a suite of component codes having the same coding rate. §hishieved by removing the
EXIT chart matching constraint of (4.30), facilitating tesign of a novel IrURC.

Additionally, Chapter 9 demonstrates the joint EXIT chagtaming of two serially con-
catenated irregular codecs, namely an outer IrVLC and agrinbRC. This is achieved by
iteratively matching the inverted outer EXIT function teetmner EXIT function and vice
versa. By employing an irregular inner code, in additionridraegular outer code, we can
afford a higher degree of design freedom than the propo$d0p which employ a reg-
ular inner code. Hence, the proposed approach is shown itdafEceven nearer-capacity
operation, which is comparable to that of I'LDPC and irregalirbo codes, as described in
Section 4.4. Our findings were originally published in [18] &nd we additionally demon-
stated the joint EXIT chart matching of serially concateddtregular codecs in [23].

Finally, in Chapter 10, we compare the results and findinge@previous chapters and
draw our conclusions.

In summary, the novel aspects of this research monograph are

e anovel VDVQ/RVLC-TCM scheme for the iterative joint sousred channel decoding

of video information;

e its VDVQ/RVLC trellis structure;

¢ the adaptation of the Viterbi algorithm for MMSE VDVQ/RVLQ@eoding;

e the adaptation of the BCJR algorithm for APP SISO VDVQ/RVLEcdding and

MMSE video reconstruction;

e Ir'VLC schemes for near-capacity operation;

e complexity versus channel SNR plots which are parametkbgethe reconstruction

quality;

e the RV-FDM for characterising the error correction capapibf VLECs having the

same IV-FD;

e the characterisation of the relationship between a VLE®<RM and the shape of

its inverted EXIT function;

e a GA for designing VLECs having specific EXIT functions;

e a suite of VLECs that are suitable for a wide range of IrVLClaggions;

o the adaptation of the EXIT chart matching algorithm to fitaié the use of component

codes having the same coding rate;

o the adaptation of the EXIT chart matching algorithm to addilly seek a reduced

APP SISO decoding computational complexity;

e the joint EXIT chart matching algorithm for designing schestemploying a serial

concatenation of two irregular codecs;

e an Ir'VLC-IrURC scheme for very near capacity joint sourcd ahannel coding.



Chapter

Irreqular Variable Length Codes
for EXIT Chart Matching

7.1 Introduction

As demonstrated in Section 6.6, a serially concatenatel] fl@smission scheme is capable
of achieving iterative decoding [132] convergence to amitd@simally low probability of
error at near-capacity Signal to Noise Ratios (SNRs), ifEX¢rinsic Information Transfer
(EXIT) functions of the inner and outer codecs are well matthrhis motivated the design
of Irregular Convolutional Coding (IrCC) schemes in [13,described in Sectio??.

The inverted EXIT function of an outer IrCC channel codec barspecifically shaped
in order to match the EXIT function of a serially concatedateer codec. This is possible,
because IrCCs amalgamate a number of component Convautmies (CC) [51] having
different coding rates, each of which is employed to gemematpecific fraction of the IrCC-
encoded bit stream. As described in Secti@the composite inverted IrCC EXIT function
is given as a weighted average of the inverted EXIT functaithe individual component
CCs, where each weight is given by the particular fractiathefirCC-encoded bit stream that
is generated by the corresponding component CC. Hencehit ispecific selection of these
fractions that facilitates the shaping of the inverted cosife IrCC EXIT function. Using the
EXIT chart matching algorithm of [10], the inverted IrCC EX¢thart may be matched to the
EXIT function of the inner codec in this way. This facilitatthe creation of an open EXIT
chart tunnel [158] at low channel SNRs, which approach ttenkl’s capacity bound.

However, the constituent bit-based CCs [51] of the IrCC caafg10] are unable to ex-
ploit the unequal source symbol occurrence probabilities &re typically associated with
audio, speech, image and video sources [61, 62]. Note thejuat source symbol occur-
rence probabilities were exemplified in Section 6.3.2. Sithe exploitation of all available
redundancy is required for near-capacity operation [24 Huffman source encoder [65] of
Chapter 1 must be employed to remove this source redundafoedrCC encoding com-
mences. However, the reconstruction of the Huffman encditsdwvith a particularly low
Bit Error Ratio (BER) is required in order that Huffman degayl[65] can achieve a low
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Symbol Error Ratio (SER), owing to its high error sensitivitvhich often leads to loss of
synchronisation.

This motivates the application of the Variable Length Er@wrrection (VLEC) code
[89] and Reversible Variable Length Coding (RVLC) [99] das of Variable Length Codes
(VLCs) as an alternative to the concatenated Huffman anddcithg of sequences of source
symbols having values with unequal probabilities of ocence. Unlike CCs, these joint
source and channel coding VLC schemes are capable of eérpglaitequal source symbol oc-
currence probabilities, as described in ChapterMore specifically, source symbols having
indices ofk € [1... K] and associated with unequal probabilities of occurrgiieg:)} £,
are mapped to binary codewords of varying lendtHs} £, from a K -entry codeboo® LC
during VLC encoding. Typically, the more frequently a pautar source symbol value oc-
curs, the shorter its VLC codeword, resulting in a reducedaye codeword length of

K
L(VLC) =Y P(k) - I*. (7.1)
k=1

In order that each valid VLC codeword sequence may be uniqietoded, a lower bound
equal to the source entropy of

K
E = =" P(k)log,(P(K) (7.2)
k=1

is imposed upon the average codeword ledgfWLC). Any discrepancy betweeh(VLC)
and F is quantified by the coding rate of

E

R(VLC) = L(VLO) (7.3)
and may be attributed to the intentional introduction ofuredbncy into the VLEC or RVLC
codewords. Naturally, this intentionally introduced redancy imposes code constraints
that limit the set of legitimate sequences of VLC-encodds. bLike the code constraints
of CCs [51], the VLC code constraints may be exploited forvaiimg an error correcting
capability during VLC decoding [89]. Note that the lower EC coding rate, the higher
the associated potential error correction capability,escdbed in Chapteé??. Furthermore,
unlikein CC decoding, any redundancy owing to the unequal occoerprobabilities of the
source symbol values may also be exploited during VLC dexpfH9].

Depending on the coding rate(VLC) of the VLECs or RVLCs, the associated code
constraints render their decoding substantially lessiten$o bit errors than Huffman de-
coding is, as described in Chapt®?. Hence, a coding gain of 1 dB at an SER16f®
has been observed by employing VLEC coding having a paatictdding rate instead of a
concatenated Huffman and Bose-Chaudhuri-HocquenghetdB®8,199] coding scheme
having the same coding rate [89].

Hence the application of EXIT chart matching invoking Inéay Variable Length Cod-
ing (Ir'VLC) is motivated for the sake of near-capacity jogtturce and channel coding of
source symbol sequences having values exhibiting unegeat@nce probabilities. In this



7.1. Introduction 257

chapter, we therefore employ a novel IrVLC scheme as ouraaerce codec, which we
serially concatenate [131,132] with an inner channel cddethe sake of exchanging extrin-
sic information. As shown in Figure 7.1, instead of the comgrt CCs employed in IrCC
schemes, the proposed IrVLC scheme employs component Vid€bomks. These have dif-
ferent coding rates and are used for encoding appropriagdgcted fractions of the input
source symbol stream. In this way, the resultant compasiteried EXIT function may be
shaped for ensuring that it does not cross the EXIT functidh@inner channel codec.

Design Characterise .
candidate candidate Select Design
- — component —s component
component component codes fractions
codes codes

Figure 7.1: Conventional irregular coding design procédsis chapter presents modifica-
tions to the aspects of this process that are indicated asiaid box.

Note that the proposed scheme has an Unequal Error ProtéttieP) capability [200],
since different fractions of the input source symbol stream protected by different VLC
codebooks having different coding rates and, hence, diftegrror correction capabilities. In
a manner similar to that of [7—9] for example, this UEP caliigtrnay be employed to appro-
priately protect audio-, speech-, image- and video-entbiétsequences, which are typically
generated using diverse encoding techniques and exhitidugaerror sensitivities. For ex-
ample, video coding typically achieves compression by egipfy Motion Compensation
(MC) [64] to exploit the characteristic inter-frame redandy of video information and the
Discrete Cosine Transform (DCT) [63] to exploit the intrashe redundancy, as described
in Section 6.1. As noted in [61], typically a higher degreiofeo reconstruction distortion
typically results from transmission errors that affect M€-generated motion vectors than
from those inflicted on the DCT-encoded information. Heribe,proposed scheme’s UEP
capability may be employed to protect the MC-encoded infdiom with a relatively strong
error correction capability, whilst employing a relatiy@leak error correction code to protect
the DCT-encoded information. This approach may hence beated to yield a lower degree
of video reconstruction distortion than equal protectmsinoted in [7-9], for example.

The rest of this chapter is outlined as follows. In Sectigh We propose iteratively de-
coded schemes, in which we opt for serially concatenatiiigQrwith Trellis Coded Modula-
tion (TCM) [129]. Furthermore, Section 7.2 additionallyrimduces our benchmark schemes,
where Ir'VLC is replaced by regular VLCs having the same cgdate. The design and EXIT
chart aided characterisation of these schemes is detail8ddtion 7.3. In Section 7.4, we
guantify the attainable performance improvements offénethe proposed IrVLC arrange-
ments compared to the regular VLC benchmarker schemeshdfarore, in Section 7.4 we
additionally consider a Huffman coding and IrCC based berarker. Section 7.4 also em-
ploys a novel method of quantifying the computational carjhy required for the schemes
considered in order to achieve different source samplenstnaction qualities at a range of
Rayleigh fading channel SNRs. This method is employed &cselur preferred scheme and
to characterise the benefits of UEP. Finally, we offer ourcbasions in Section 7.5.
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7.2 Overview of proposed schemes

In this section we provide an overview of a number of seriatipcatenated [131] and iter-
atively decoded [132] joint source and channel coding sefsermVhilst the novel schemes
introduced in this paper may be tailored for operating injeoation with any inner channel
codec, we opt for employing TCM [129] in each of our considesehemes. This provides
error protection without any bandwidth expansion or effedbit-rate reduction by accommao-
dating the additional redundancy by transmitting moregéischannel symbol. The choice of
TCM is further justified, sincé PosterioriProbability (APP) TCM Soft-In Soft-Out (SISO)
decoding, similarly to APP SISO IrVLC decoding, operategtom basis of Add-Compare-
Select (ACS) operations within a trellis structure. Hertbe, APP SISO IrVLC and TCM
decoders can share resources in systolic-array based faupisating a cost effective imple-
mentation. Furthermore, we will show that TCM exhibits attive EXIT characteristics in
the proposed IrVLC context even without requiring TTCM- dCBA-style internal iterative
decoding [197].

Our considered schemes differ in their choice of the outerc®codec. Specifically,
we consider a novel Ir'VLC codec and an equivalent regular \Wa8ed benchmarker in this
role. In both cases we employ both Symbol-Based (SB) [2] aitdB&sed (BB) [90] VLC
decoding, resulting in a total of four different configucats. We refer to these four schemes
as the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM arrangemisnas appropriate. A
schematic that is common to each of these four considerenrszhis provided in Figure 7.2.
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Figure 7.2: Schematic of the SBIrVLC-, BBIr'VLC-, SBVLC- a8BVLC-TCM schemes.

In the Ir'VLC schemes, thé/ number of VLC encoders, APP SISO decoders and MAP
sequence estimators are each based upon onderafmber of component VLC codebooks.
By contrast, in the VLC benchmarkers, all of thé number of VLC encoders, decoders and
sequence estimators are based upon the same VLC codebook.
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7.2.1 Joint source and channel coding

The schemes considered are designed for facilitating the-cepacity detection of source
samples received over an uncorrelated narrowband Rayladihg channel. We consider
the case of independent identically distributed (i.i.cburee samples, which may represent
the prediction residual error that remains following thedgictive coding of audio, speech,
image or video information [61,62], for example. Note thas was exemplified in the novel
video codec of Chapter 6, in which Frame Differencing (FDsweaployed, as depicted in
Figure 6.1. A Gaussian source sample distribution is asdumaee, since this has widespread
applications owing to the wide applicability of the centialit theorem [201]. Additionally,

a zero mean and unity source sample variance was assumatiingegn the Probability
Distribution Function (PDF) shown in Figure 7.3. Note hoeethat with the aid of suitable
adaptation, the techniques proposed in this chapter maysbag readily applied to arbitrary
source sample distributions.
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Figure 7.3: Gaussian PDF for unity mean and variance. Theisciadabelled with the
K = 16 Lloyd-Max quantisation level§*} K| as provided in [74]. The decision boundaries
are employed to decompose the Gaussian PDHinte 16 sections. The integral of the PDF
between each pair of adjacent decision boundaries is prdvid

In the block@ of the transmitter depicted in Figure 7.2, each real-vakmgdce sample
of the source sample framneeis quantised [74, 75] to one of thl€ = 16 quantisation levels
{e*}K | provided in Figure 7.3. In each case, the selected quatisiavel is that which
represents the source sample with the minimum squared &igarre 7.3 provides decision
boundaries, which are located halfway between each adjpeénof quantisation levels.
Each pair of adjacent decision boundaries specifies theesrahgource sample values that
are quantised to the quantisation level at the centre ofitgrafthis interval, resulting in the
minimum squared error. Following quantisation, each segample in the source sample
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framee is represented by a symbol in the source symbol frathat represents the index of
the selected quantisation levéland has avalue gf € [1... K].

Owing to the lossy nature of quantisation, distortion is @sgd upon the reconstructed
source sample frame that is obtained following inverse quantisation in the kloas de-
scribed in Sectio??. Note that the set of quantisation levels depicted in FiguBeepresents
those of Lloyd-Max quantisation [74,75]. This employs thei€ans algorithm [98] to search
for the set of quantisation levels that minimises the exg@quantisation distortion. In the
case of the quantisation levels seen in Figure 7.3, the ¢éegp&ignal to Quantisation Noise
Ratio (SQNR) is about 20 dB. Note however that again, withatldeof suitable adaptation,
the techniques advocated in this chapter may be just adyegqtilied to arbitrary quantisers.

Also note that LIoyd-Max quantisation results in a largdation in the occurrence prob-
abilities of the resultant source symbol values. Thesemenuae probabilities are given by
integrating the source PDF between each pair of adjacensidedoundaries, resulting
in the values provided in Figure 7.3. These source symbaiegloccurrence probabili-
ties {P(k)}< | are repeated in Table 7.1 and can be seen to vary by more thardan
of magnitude. These probabilities correspond to the vargiource symbol informations
{—log,(P(k))}<_, provided in Table 7.1, motivating the application of VLC agiting a
source entropy off = 3.77 bits per source symbol, according to (7.2).

In the transmitter of the proposed scheme, the Lloyd-Maxtised source symbol frame
s is decomposed intd/ = 300 sub-frameg{s™}}_,, as shown in Figure 7.2. In the case
of the SBIrVLC- and SBVLC-TCM schemes, this decompositiemécessary for the sake
of limiting the computational complexity of VLC decodingnse the number of transitions
in the symbol-based VLC trellis is inversely proportionalthe number of sub-frames in
this case [2], as described in Secti®h We opt for employing the same decomposition of
the source symbol frames into sub-frames in the case of tHevBB- and BBVLC-TCM
schemes for the sake of ensuring that we make a fair companigh the SBIrVLC- and
SBVLC-TCM schemes. This is justified, since the decompmsitionsidered benefits the
performance of the BBIrVLC- and BBVLC-TCM schemes, as wél thetailed below. Each
source symbol sub-frams&* comprises/ = 100 source symbols. Hence, the total number of
source symbols in a source symbol frame becoied = 30 000. As described above, each
Lloyd-Max quantised source symbol in the sub-frastfehas ak-ary values? € [1... K],
where we havg € [1...J].

As described in Section 7.1, we empldy number of component VLC codebooks to
encode the source symbols, where we optedNor= 15 for the SBIrVLC and BBIrVLC
schemes and/ = 1 for the regular SBVLC and BBVLC schemes. Each Lloyd-Max guan
tised source symbol sub-frare® is VLC-encoded using a single component VLC codebook
VLC", where we have: € [1...N]. In the case of the SBIrVLC and BBIrVLC schemes,
the particular fractiorC™ of the set of source symbol sub-frames that is encoded by the
specific component VLC codebodKLC" is fixed and will be derived in Section 7.3. The
specific Lloyd-Max quantised source symbols having theevalik € [1... K| and encoded
by the specific component VLC codeboWl.C™ are represented by the codewdfdl. C™*,
which has a length of % bits. TheJ = 100 VLC codewords that represent tble= 100
Lloyd-Max quantised source symbols in each source symtmfiaumes™ are concatenated
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| k| P(k) | —logy(P(k) | I" | Huff
1 [ 0.0082 6.93 7 | 0000000
2 | 0.0244 5.35 6 | 000001
3 | 0.0427 455 5 00010
4 | 0.0605 4.05 4 0010
5 | 0.0762 3.72 4 0100
6 | 0.0887 3.49 4 0110
7 | 0.0974 3.36 3 101
8 | 0.1019 3.29 3 110
9 | 0.1019 3.29 3 111
10 | 0.0974 3.36 3 100
11 | 0.0887 3.49 4 0111
12 | 0.0762 3.72 4 0101
13 | 0.0605 4.05 4 0011
14 | 0.0427 455 5 00011
15 | 0.0244 5.35 5 00001
16 | 0.0082 6.93 7 | 0000001

Table 7.1: The probabilities of occurrenégk) and informations— log,(P(k)) of the

K = 16 source symbol valuels € [1... K] that result from the Lloyd-Max quantisation of
Gaussian distributed source samples. The correspondimgessymbol entropy i& = 3.77

bits per source symbol, according to (7.2). Also providetthéscomposition of théd = 16
codewords in the corresponding Huffman codebbhikif = {Huﬂ'k}ff:l [65], having the
codeword length§ 7%} . According to (7.1), the average Huffman codeword length is
L(Huff) = 3.81 bits per source symbol, which corresponds to a Huffman apdite of
Ryug = 0.99, according to (7.3).

to provide the transmission sub-frame
u™ = {VLC™%"}/_,.

Owing to the variable lengths of the VLC codewords, each efith= 300 transmission
sub-frames typically comprises a different number of bits.order to facilitate the VLC
decoding of each transmission sub-franfg, it is necessary to explicitly convey its length

J
™ = E In.,s;”
Jj=1

to the receiver. Furthermore, this highly error sensitiike Snformation must be reliably
protected against transmission errors. This may be aatigsieg a low rate block code, for
example. For the sake of avoiding obfuscation, this is notwhin Figure 7.2. Note that the
choice of the specific number of sub-framiésin each frame constitutes a trade-off between
the computational complexity of SBVLC decoding or the perfance of BBVLC decoding
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and the amount of side information that must be conveyedettiéh 7.3, we shall comment
on the amount of side information that is required for rdliaimnveying the specific number
of bits in each transmission sub-frame to the decoder.

In the scheme’s transmitter, té = 300 number of transmission sub-framgs™ }2_,
are concatenated. As shown in Figure 7.2, the resultargriresion framen has a length of
SSM_ 1™ bits.

In the proposed scheme, the VLC codec is protected by a lgeciahcatenated TCM
codec. Following VLC encoding, the bits of the transmisdiameu are interleaved using
the functionr in order to provide the interleaved transmission framewhich is TCM en-
coded in order to obtain the channel's input symbalsas shown in Figure 7.2. These are
transmitted over an uncorrelated narrowband Rayleigméadhannel and are received as the
channel’s output symbofjg, as seen in Figure 7.2.

7.2.2 lterative decoding

In the receiver, APP SISO TCM- and VLC-decoding are perfanteratively, as shown
in Figure 7.2. Both of these decoders invoke the Bahl-Cakimek-Raviv (BCJR) algo-
rithm [4] on the basis of their trellises. Symbol-basedlisets are employed in the case of
TCM [129], SBIrVLC and SBVLC [2] decoding, whilst BBIrVLC ahBBVLC decoding
rely on bit-based trellises [90]. All BCJR calculations performed in the logarithmic prob-
ability domain and using an eight-entry lookup table forreoting the Jacobian approxima-
tion in the Log-MAP algorithm [197]. The proposed approagefuires only Add, Compare
and Select (ACS) computational operations during iteeadi@coding, which will be used as
our complexity measure, since it is characteristic of theglexity/area/speed trade-offs in
systolic-array based chips.

As usual, extrinsic soft information, represented in therf@f Logarithmic Likelihood
Ratios (LLRs) [124], is iteratively exchanged between tl@MIand VLC decoding stages
for the sake of assisting each other’s operation [131, E328iescribed in Sectid??. In Fig-
ure 7.2,L(-) denotes the LLRs of the bits concerned (or the log-APPs ddpleeific symbols
as appropriate), where the supersciiptdicates inner TCM decoding, whilecorresponds
to outer VLC decoding. Additionally, a subscript denotes tiedicated role of the LLRs
(or log-APPs), witha, p and e indicatinga priori, a posterioriand extrinsic information,
respectively.

During each decoding iteration, the inner TCM decoder ivioied witha priori LLRs
pertaining to the interleaved transmission frahig¢u’), as shown in Figure 7.2. These LLRs
are obtained from the most recent operation of the outer Ve€oding stage, as will be
highlighted below. In the case of the first decoding itemratiwo previous VLC decoding has
been performed and hence thpriori LLRs L’ (u’) provided for TCM decoding are all zero-
valued, corresponding to a probability of 0.5 for both ‘0dda’. Given the channel’s output
symbolsy and thea priori LLRs L! (u’), the BCJR algorithm is employed for obtaining the
a posterioriLLRs L/ (u’), as shown in Figure 7.2.

During iterative decoding, it is necessary to prevent these of already exploited infor-
mation, since this would limit the attainable iterationrgfi97], as described in Secti@?.
This is achieved following TCM decoding by the subtractidn/g,(u’) from L (u’), as
shown in Figure 7.2. The resultant extrinsic LLRS(u’) are de-interleaved in the block
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71 and forwarded aa priori LLRs for VLC decoding. As described in Secti@f, inter-
leaving is employed in order to mitigate correlation witktie a priori LLR frames. This is
necessary since the BCJR algorithm assumes that @liori LLRs that can influence any
particular decoding decision are uncorrelated.

Justasy/ = 300 separate VLC encoding processes are employed in the prpdseme’s
transmitter, M = 300 separate VLC decoding processes are employed in its reckivear-
allel to the composition of the bit-based transmission ganfrom its M/ = 300 sub-frames,
thea priori LLRs L¢(u) are decomposed intd/ = 300 sub-frames, as shown in Figure 7.2.
This is achieved with the aid of the explicit side informatibat conveys the number of bits
I in each transmission sub-franm&*. Each of thedM = 300 VLC decoding processes is
provided with thea priori LLR sub-frameL?(u™) and in response it generates th@os-
teriori LLR sub-frameLs(u™), m € [L...M]. Thesea posterioriLLR sub-frames are
concatenated in order to provide tagosterioriLLR frame L (u), as shown in Figure 7.2,
Following the subtraction of the priori LLRs L2 (u), the resultant extrinsic LLRE?(u) are
interleaved and forwarded agpriori information to the next TCM decoding iteration.

In the case of SBIr'VLC and SBVLC decoding, each of tle= 300 VLC decoding
processes additionally provides log-APPs pertainingeatrresponding source symbol sub-
frame Ly(s™). This comprises a set df number of log-APPs for each source symbf
in the sub-frame™, wherej € [1...J]. Each of these log-APPs provides the logarithmic
probability that the corresponding source symigblhas the particular value € [1... K].

In the receiver of Figure 7.2, the source symbols’ log-APB-Bames are concatenated to
provide the source symbol log-APP framg(s). By inverse-quantising this soft information
in the block@~!, we may obtain a frame of Minimum Mean Squared Error (MMSEjree
sample estimates, which approximates the reconstructed source sample féadiescribed
in Section 7.2.1. More specifically, each source samplenes#i is obtained by using the
corresponding set dk source symbol value probabilities to find the weighted ayef the
K number of quantisation levefg*} X .

Conversely, in the case of BBIr'VLC and BBVLC decoding, no byirbasedh posteriori
output is available. In this case, each source symbol sads™ is estimated from the cor-
respondin@ priori LLR sub-frameL?(u™). This may be achieved by employing Maximum
A posterioriProbability (MAP) sequence estimation operating on a bidd trellis struc-
ture, as shown in Figure 7.2. Unlike in APP SISO SBIrVLC and/&B decoding, bit-based
MAP sequence estimation cannot exploit the knowledge thel sub-frame™ comprises
J = 100 source symbols. For this reason, the resultant hard dacistimates™ of each
source symbol sub-fram#* may or may not contaid = 100 source symbols. In order that
we may prevent the loss of synchronisation that this woulplygrsource symbol estimates
are removed from, or appended to the end of each source syulbdtame estimat&™ for
ensuring that they each comprise exadtly 100 source symbol estimates. Note that it is the
decomposition of the source symbol framéto sub-frames that provides this opportunity
to mitigate the loss of synchronisation that is associati¢hl bit-based MAP VLC sequence
estimation. Hence the decomposition of the source symbaoids into sub-frames benefits
the performance of the BBIrVLC- and BBVLC-TCM schemes, astiomed above.

Following MAP sequence estimation, the adjusted sourcebsyisub-frame estimates
§™ are concatenated for the sake of obtaining the source syinaimoé estimat&. This may
be inverse-quantised in order to obtain the source sanguecfiestimaté. Note that for the
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reconstruction of a source sample frame estinddtem a givena priori LLR frame L¢ (u),
a higher level of source distortion may be expected in therBBC- and BBVLC-TCM
schemes than in the corresponding SBIrVLC- and SBVLC-TCHlestes. This is due to
the BBIrVLC- and BBVLC-TCM schemes’ reliance on hard demis as opposed to the soft
decisions of the SBIrVLC- and SBVLC-TCM schemes. Howeuas teduced performance
substantially benefits us in terms of a reduced complexitgesthe bit-based VLC decoding
trellis employed during APP SISO BBIrVLC and BBVLC decodiagd MAP sequence esti-
mation contains significantly less transitions than thelsyirbased VLC decoding trellis of
APP SISO SBIrVLC and SBVLC decoding, as described in Se@ibn

In the next section we detail the design of our IrVLC schemeé elmaracterise each of
the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes witlhé aid of EXIT chart
analysis.

7.3 Parameter design for the proposed schemes

7.3.1 Scheme hypothesis and parameters

As described in Section 7.1, the SBIrVLC and BBIrVLC schemesy be constructed by
employing a number of component VLC codebooks having difiecoding rates, each of
which encodes an appropriately chosen fraction of the isputce symbols. We opted for
usingN = 15 component VLC codebooKsVLC"}15 ., that were specifically designed for
encodingK = 16-level Lloyd-Max quantised Gaussian i.i.d. source samphessshown in
Figure 7.1, thes&/ = 15 component VLC codebooks were selected from a large number of
candidates using a significant amount of ‘trial-and-erfb@ased human interaction in order to
provide a suite of ‘similarly-spaced’ EXIT functions. Moseecifically, theN = 15 com-
ponent VLC codebooks comprised 13 different Variable Larigtror Correcting (VLEC)
designs having various so-called minimum block-, convecgeand divergence-distances as
defined in Sectior??, complemented by a Symmetric Reversible Variable Lengttiti@p
(SRVLC) and an Asymmetric Reversible Variable Length CgdiARVLC) design. These
codebooks were designed using Algorithms C and E of Se@tton

As described in Sectiof?, the free distance lower bound of a VLC codebddk.C"
can be calculated as

dizec(VLC") = min(dy,,, (VLC"), dg,,,,(VLC") + e, (VLC")),

whered,, .. (VLC") is defined as the minimum block distance between any pair wdleq
length codewords in the VLC codebodkLC", whilst d4,_, (VLC") andd,, . (VLC™)
are the minimum divergence and convergence distances &etavey pair of unequal-length
codewords, respectively. In all codebooks, a free distéower bound ofds,..(VLC™) > 2
was employed, since this supports iterative decoding agevee to an infinitesimally low
probability of error [161], as described in Secti®® The resultant average VLC codeword
lengths were found to range from 3.94 to 12.18 bits/symhtmpeding to (7.1). When com-
pared to the source symbol entropyBf= 3.77 bits per source symbol, these correspond
to coding rates spanning the range of 0.31 to 0.96, accotdiiig.3). The properties and
composition of theV = 15 component VLC codebookSVLC"}15 | are summarised in
Table 7.2.

Cmin
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| VLC" | Properties | Composition

VLC' | (VLEC,2,1,1,2,0.96)[ 6,6,5,5,4,4,3,3,3,3,4,4,5,5,6,6,
857E1FD3074A55133A

VLC? | (ARVLC,2,1,1,2,0.91)| 6,6,5,5,4,4,4,3,3,4,4,4,5,5,6,6,
1EB624C9A1D58F6EAAL

VLC® | (SRVLC,2,1,1,2,0.86) 7,6,6,5,5,4,4,3,3,4,4,5,5,6,6,7,
7D9C248FCAACOEDBC641

VLCT | (VLEC,3,1,1,2,0.81)| 8,7,7,6,6,5,4,2,3,3,4,5,6,7,7,8,
81F6F9E86322ACEDEOE77E

VLC® | (VLEC,4,1,1,2,0.75)| 8,8,7,6,6,5,4,2,3,4,5,6,7,7,8,8,
36EF61EB5BA44D179F5D7ES1

VLC® | (VLEC,2,2,1,2,0.70)]| 8,7,7,6,6,6,4,4,4,4,6,6,6,7,7,8,
E6CO9FCADBI035628FFOE2EA

VLC” | (VLEC,3,2,1,3,0.64)| 8,8,7,7,6,6,6,4,5,5,6,6,7,7,7,9,
7FDE5CD3E65403625A267AAD7C

VLC® | (VLEC,3,2,2,3,0.60)| 9,8,8,7,7,6,6,4,6,6,6,6,7,8,8,9,
696F594FCBA5A03159B3F8B35583

VLC’ | (VLEC5,2,2,4,0.57)| 10,10,9,8,8,7,6,4,5,5,6,7,8,9,9,10,
126307A57CE367501B2AACI9A69CFIED

VLC™ | (VLEC4,3,2,4,0.52)] 11,10,9,8,8,7,7,6,6,6,7,7,8,9,9,11,
1673E8FOCB2DAAA401F9CC68CD55E37BF

VLCY | (VLEC,4,3,3,4,0.47)| 11,11,10,9,9,8,7,6,6,7,8,8,9,10,10,12,
11FA38AB9536B72B800F4D67B3355A655663

VLC™ | (VLEC,7,3,3,6,0.43)| 12,12,11,10,10,9,8,6,7,7,8,9,11,11,12,13,
2F696B8EC5D38F93A5007715A363233BBA2B399

VLC™ | (VLEC,5,4,3,5,0.39)| 13,12,11,10,10,9,9,8,9,9,9,10,10,11,11,14,
17455A1FFED72B7CC9380079C479A5F32C95
A4D

VLC™ | (VLEC,9,4,4,8,0.35)| 15,14,14,12,12,11,10,8,9,9,10,11,13,13,14,15,
18DA499F59CAB71C9B55C9C003DE136155202CD
7ACFB4AD3B

VLC™ | (VLEC,8,5,5,8,0.31)] 16,15,15,13,13,12,12,10,10,11,12,12,14,14,15,16,
31D97570AE9A5A9CBA59664D4003FES7 CES3
C671CE53464F3A

Table 7.2: Properties and composition of the 15 componei@ Yadebook{ VLC"}1° .
The properties of each component VLC codebddkC™ are provided using the format
(Type,ds,,.. (VLC™), dy,... (VLC"), d.,... (VLC"), diree(VLC™), R(VLC™)). The com-
position of each component VLC codebo®HL.C" is specified by providing th& = 16
codeword lengthg 7™*}X || together with the hexadecimal representation of the edler
concatenation of th& = 16 VLC codewords in the codebook.
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As will be detailed below, our SBIrVLC and BBIrVLC schemesreelesigned under the
constraint that they have an overall coding rateRgfy.c = 0.52. This value was chosen,
since it is the coding rate of the VLC codebo®R.C'?, which we employ in our SBVLC
and BBVLC benchmarkers usiny = 1 codebook. This coding rate results in an average
interleaver length of\f - J - E/Ryvi,c = 217500 bits for all the schemes considered.
Note that this interleaver length is nearly three times t@rtgan any of those considered in
Chapter 6.

Each of the schemes considered employs the same TCM codédnng llae Linear Feed-
back Shift Register (LFSR) schematic of Figure 6.9. As shawfigure 6.9, the TCM
encoder generates a set of four bits to represent each seeefihput bits, giving a coding
rate of Rrcm = 3/4. Three of the four output bits are systematic replicatiohthe three
input bits, whilst the fourth output bit is generated witle thid of theL ¢y = 6 modulo-2
memory elements. Note that the TCM codec is a recursive capmtdaving an infinite im-
pulse response, since feedback is employed in the shifttezgif Figure 6.9. As a result, the
TCM codec supports iterative decoding convergence to amitegimally low probability of
error [159], as is the case for our component VLC codeboakdeacribed above. Hence, we
may expect the proposed scheme to achieve iterative degodivergence to an infinitesi-
mally low probability of error, provided that the channekbdjty is sufficiently high to create
an open EXIT chart tunnel and the iterative decoding trajgcapproaches the inner and
outer codecs’ EXIT functions sufficiently closely, as dissed in Sectio®?. Furthermore,
Figure 6.10 provides the constellation diagram for Mtiecn = 16-ary set-partitioned [129]
QAM scheme of the TCM codec. This was employed together witpHase Quadrature-
phase (IQ)-interleaving [196] for transmission over anarmnelated narrowband Rayleigh
fading channel.

Ignoring the modest bitrate contribution of conveying tieeesgnformation, the effective
throughput of the schemes considered is= Rivic - Rrom - logy(Mrem) = 1.56 bits
per channel use. This implies that iterative decoding cayarmece to an infinitesimally low
probability of error cannot be achieved when channel caipacof less than 1.56 bits per
channel use [24] are attained at |d#./N, values, whereF, is the transmit energy per
Rayleigh fading channel use af\ is the average noise energy. Note that the uncorrelated
narrowband Rayleigh fading channel’s capacity for 16QAN&s&s than 1.56 bits per channel
use forEy, /Ny values below 2.6 dB [116], whetB, = E./n is the transmit energy per bit
of source entropy. Given this point on the correspondinginbhcapacity versug, /Ny
function, we will be able to quantify how closely the propodsehemes may approach this
ultimate limit.

Recall from Section 7.2 that it is necessary to convey thgtlenf each transmission
sub-frameu™ to the receiver in order to facilitate its VLC decoding. Thmaunt of side
information required may be determined by considering imgye of transmission sub-frame
lengths that can result from VLC encoding using each ofthe 15 component codebooks.
When allJ = 100 source symbols in a particular source symbol sub-frafhere repre-
sented by the codeword from the component VLC codeb¥@C™ having the maximal
lengthmaxyc(1...x) I™* a maximal transmission sub-frame length of

=J- max I™F
k€E[l...K]

I’ﬂ

max
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results. Similarly, a minimal transmission sub-frame kbnaf

In. =J- min I™F
k€E[l...K]

results, when all source symbols are represented by themainéngth VLC codeword. A
transmission sub-fram&” encoded using the component VLC codebd@kC™ will there-
fore have one of I}, — I, + 1) number of lengths in the rang&* e [I". ... I} .].
Hence, the length of the transmission sub-fraiifiecan be represented using a fixed-length
codeword comprisinglog, (1., — I"., + 1)] number of bits. When considering the VLC
codeword lengths provided in Table 7.2, it was found for aheanes that a single 10-bit
fixed-length codeword of side information is sufficient fameeying the length of each of
the M = 300 transmission sub-framas” in each transmission frame As suggested in
Section 7.2, this error sensitive side information may lmtqmted by a low-rate block code
in order to ensure its reliable transmission. UsinB,g, = 1/3-rate repetition code results
in a total of10 - M/R.., = 9000 bits of side information per frame, which represents an
average of just 4% of the transmitted information, when aplpé to the transmission frame
u, which has an average length&f - J - E/Ry,vi.c = 217500 bits for all of the schemes

considered.

7.3.2 EXIT chart analysis and optimisation

We now consider the EXIT characteristics of the various congmts of our various schemes.
In all cases, EXIT functions were generated using uncaedl&aussian distributeal pri-
ori LLRs and all mutual information measurements were madegusia histogram-based
approximation of the LLR PDFs [152].

In Figures 7.4 and 7.5, we provide the EXIT functiddél’ , E;,/Ny) of the TCM scheme
for a number off}, / N, values above the channel capacity bound of 2.6 dB. Note tiagdo
its recursive nature, the APP SISO TCM decoder can be seehigva unity extrinsic mutual
information ! for unity a priori mutual informationZ? [159]. Additionally, the inverted
EXIT functions1$™(12) plotted for theN = 15 component VLC codebooks, together with
their coding ratesR(VLC"), are given in Figure 7.4 for symbol-based APP SISO VLC
decoding and in Figure 7.5 for bit-based APP SISO VLC deapd8imilarly to APP SISO
TCM decoding, APP SISO VLC decoding achieves unity extdmsutual informatiory? for
unity a priori mutual information¢ in all cases, owing to the employment of codebooks
having a free distance lower bound @éf.. > 2 [161], as discussed in Secti@®?. Note
that the EXIT functions obtained for symbol- and bit-basd@PASISO VLC decoding are
slightly different. This is because unlike the bit-based”AHISO VLC decoder, the symbol-
based APP SISO VLC decoder is capable of exploiting the kedgé that there aré = 100
source symbols in each source symbol sub-frafheas described in Sectia?.

The inverted EXIT function of an IrVLC scheni€(12) can be obtained as the appropri-
ately weighted superposition of thé = 15 component VLC codebooks’ EXIT functions,

N
I(I2) =) a™Igm(I2), (7.4)
n=1
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VLC!
VLC?
VLC?
VLC?
VLC?®
VLC®
VLC’
VLC?®
VLC?

0.96, 0.00, 0.00
0.91, 0.00, 0.00
0.86, 0.00, 0.00
0.81, 0.00, 0.00
0.75, 0.29, 0.20
0.70, 0.00, 0.00
0.64, 0.00, 0.00
0.60, 0.00, 0.00
0.57, 0.00, 0.00
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Figure 7.4: Inverted VLC EXIT functions, which were obtaihesing symbol-based APP
SISO VLC decoding. The inverted EXIT function is provided fihe corresponding
SBIrVLC arrangement, together with TCM EXIT functions fonember ofE,, /N, values.
Decoding trajectories are provided for the SBIrVLC-TCM ente at a channdl}, /N, value
of 3.2 dB, as well as for the SBVLC-TCM scheme at a chamnglN, value of 3.7 dB. In-
verted VLC EXIT functions are labelled using the forMaLC" (R(VLC"), C¢p, op).
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Figure 7.5: Inverted VLC EXIT functions, which were obtaihasing bit-based APP SISO
VLC decoding. The inverted EXIT function is provided for therresponding BBIrVLC
arrangement, together with TCM EXIT functions for a numbkFp/N, values. Decoding
trajectories are provided for the BBIr'VLC-TCM scheme at arotelE), / N, value of 3.2 dB,
as well as for the BBVLC-TCM scheme at a chanfg) N, value of 3.7 dB. Inverted VLC
EXIT functions are labelled using the formeL.C" (R(VLC"), C%g, o'k p).
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wherea™ is the fraction of the transmission framethat is generated by the specific compo-
nent codebooW LC". Note that since all of th&/ = 15 component VLC codebooks’ EXIT
functions achieve unity extrinsic mutual informatiéhfor unity a priori mutual information
12, the same is true for the composite IrVLC EXIT function. Alsote that the values ef”
are subject to the constraints

N
d a"=1, a">0Yne[l...N]. (7.5)
n=1

The specific fraction of source symbol sub-fram®sthat should be encoded by the specific
component codebodKLC" in order that it generates a fractiofi of the transmission frame
u, is given by

C"*"=a" 'R(VLC")/RIrVLc, (76)

whereRy,vi,c = 0.52 is the desired overall coding rate. Again, the specific vabfe™ are
subject to the constraints

N N
Z cn = Z a" - R(VLC")/Rpvic =1, C">0Vne[l...N]. 7.7)
n=1 n=1

As described in Sectiofi?, an open EXIT chart tunnel [158] can be achieved at suffi-
ciently high channeE, /N, values, since both the VLC and the TCM APP SISO decoders
support iterative decoding convergence to unity mutuarimiation. Hence, beneficial values
of {C"})_, may be chosen by ensuring that there is an open EXIT charetetween
the inverted IrVLC EXIT function and the EXIT function of TCMt anE} /N, value that
is close to the channel capacity bound. This may be achiesiag the iterative EXIT-chart
matching process of [10] to adjust the valueg 67*})_, under the constraints of (7.5) and
(7.7) for the sake of minimising the error function

{C™}N_| = argmin (/1 e(I)zdI) , (7.8)
{3, 0
where .
e(I) = I:(1, By/No) — I3(I) (7.9)

is the difference between the inverted IrVLC EXIT functiamdathe EXIT function of TCM
at a particular targeE;, /N, value. Note that in order to ensure that the design resubis in
open EXIT tunnel, we must impose the additional constrdint o

e(I)>0V1Ie[0,1]. (7.10)

Open EXIT tunnels were found to be achievable for both the"@BT- and the BBIrVLC-
TCM schemes at a threshald, /Ny value of 3.1 dB, which is just 0.5 dB from the channel
capacity bound of 2.6 dB. The inverted SBIrVLC EXIT functiamshown in Figure 7.4,
which is slightly different from the BBIrVLC EXIT functionlsown in Figure 7.5, owing to
the slight differences in the EXIT functions obtained for-lasind symbol-based APP SISO
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decoding, as described above. The corresponding valugs ahda™ are provided for both

the SBIrVLC- and the BBIr'VLC-TCM schemes in Figures 7.4 anfl, Tespectively, and il-

lustrated in Figures 7.6 and 7.7, respectively. Note th#tércase of both the SBIrVLC- and
BBIrVLC-TCM schemes, there are just three activated corepdiWLC codebooks, which

have corresponding values©f' anda™ that are higher than zero.

The source symbol frameand the transmission frameare depicted in Figures 7.6 and
7.7. Note that in both cases, the horizontal bar represgiihia source symbol frameis
Rivic = 0.52 times as long as that representing the transmission figreice an overall
coding rate ofRy,yvr.c = 0.52 is employed. Each bar is decomposed into three sections,
representing the three activated component VLCs, naM&y:®, VLC!! and VLC' in
the case of the SBIrFVLC-TCM scheme aMLC®, VLC'' and VLC' in the case of the
BBIrVLC-TCM scheme. The length of each section correspdodbe fractionC™ of the
source symbol frame or the fractiono™ of the transmission frame that is coded using the
associated component VLC codebook.

S 11 4 V13 y
Rivvie = 0.52 Cip 7l 0.29 oLy 7l 0.65 oL 7L 0.06
st | \ [ ]
H(VLCS)‘:(]ﬂ/ R(VLC") = 0.47 R(VLCY) = 0.39
u |
! ! !
a%p =020 ally =072 aly =0.08

Figure 7.6: lllustration depicting the corresponding fiaes of the source symbol framse
and the transmission framethat are encoded using the three component VLC codebooks
VLC?, VLC' andVLC" in the SBIrVLC-TCM scheme.

5 _ 96 11 35 15 <
Rivic = 052 % = 0.32 CHy =0.63 Oy = 0.05
| | |
st | | [
R(VLC®) =0.75 R(VLC") = 0.47l R(VLC") =0.31
u: | | | |
;| 5

ayp =0.22 ally =0.70 ald; = 0.08

Figure 7.7: lllustration depicting the corresponding fiaics of the source symbol frame
and the transmission framethat are encoded using the three component VLC codebooks
VLC?, VLC'' andVLC'" in the BBIrVLC-TCM scheme.

In the case of the SBVLC- and BBVLC-TCM benchmarkers, an dp¥hT chart tunnel
between the inverted EXIT function of their only componehB/codebookVLC!® and the
TCM EXIT function was only found to be achieved &} /N, values above a threshold value
of 3.6 dB. ThisE} /N, value is 1.0 dB from the channel capacity bound of 2.6 dB, erdjs
ancy that is twice that of the SBIrVLC- and BBIrVLC-TCM scheg10.5 dB value. We can
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therefore expect our SBIrVLC- and BBIrVLC-TCM schemes tachpable of operating sig-
nificantly closer to the channells, /N, capacity bound in comparison to our benchmarkers,
achieving a gain of about 0.5 dB.

7.4 Simulation results

In this section, we discuss our findings when communicatirey an uncorrelated narrow-
band Rayleigh fading channel having a rangeif N, values above the channel capacity
bound of 2.6 dB. In all simulations, we considered the traasion of a single source sample
framee, since this comprises a sufficiently large number of samplasely)M - J = 30 000.

7.4.1 IrCC-based benchmarker

In addition to the proposed SBIrVLC-, BBIrVLC-, SBVLC- andB&LC-TCM schemes, in
this section we also consider the operation of an additibeathmarker which we refer to as
the Huffman-IrCC-TCM scheme, as depicted in the schemék@ure 7.8. In contrast to the
SBIrVLC-, BBIr'VLC-, SBVLC- and BBVLC-TCM schemes of Figur&g2, in the Huffman-
IrCC-TCM scheme the transmission framés generated by both Huffman and concatenated
IrCC encoding the source symbol frameather than by invoking VLC encoding.

In the Huffman-IrCC-TCM scheme, Huffman coding is emploped sub-frame by sub-
frame basis, as described in Section 7.2. Table 7.1 proteesomposition of thé( = 16
codewords in the Huffman codebobkuff = {Huffk}szl, having the codeword lengths of
{I*}K_,. Compared to the source symbol entropyfb= 3.77 bits per source symbol, the
average Huffman codeword lengthligHuff) = 3.81 bits per source symbol and the coding
rate isRuus = 0.99, according to (7.1) and (7.3), respectively.

As shown in Figure 7.8, the frame of Huffman encoded viis protected by thé&/ = 17-
component IrCC scheme of [175], which employs a coding mgmbiL.cc = 4. The
inverted EXIT functions of théV = 17 component CC codes are provided in Figure 7.9.
The EXIT chart matching algorithm of [10] was employed toigeghe IrCC scheme. This
was tailored to have an overall coding rateftyfcc = 0.525 so that the combined Huffman
coding and IrCC coding rat®y.g - Ri.cc = 0.52 equals that of the outer codecs in the
SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes. Just kthe SBIrVLC and
BBIrVLC designs detailed in Section 7.3, an open EXIT chanitel was found to be achiev-
able between the inverted IrCC EXIT function and the TCM EXlifiction at anE;, /Ny
value of 3.1 dB, resulting in the inverted IrCC EXIT functiofiFigure 7.9.

In the Huffman-IrCC-TCM receiver, iterative APP SISO IrC&daTCM decoding pro-
ceeds, as described in Section 7.2. Note that in additidmeta posterioriLLR frame L7 (u)
pertaining to the transmission framethe APP SISO IrCC decoder can additionally provide
thea posterioriLLR frame L (v) pertaining to the frame of Huffman encoded bitslt is
on the basis of this that bit-based MAP Huffman sequencenasittn may be invoked on a
sub-frame by sub-frame basis in order to obtain the sourodslframe estimatg, as shown
in Figure 7.8.

7.4.2 lterative decoding convergence performance

For each of our schemes and for each valu&gfN, investigated, we consider the recon-
structed source sample frar@@nd evaluate the SNR associated with the ratio of the source
signal’'s energy and the reconstruction error energy thatmeaachieved following iterative
decoding convergence. This relationship is plotted fohesfcthe SBIrVLC-, BBIrVLC-,
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Figure 7.8: Schematic of the Huffman-IrCC-TCM scheme. Aliree A/ number of Huffman
encoders and MAP sequence estimators are based upon théls&man coding codebook.

SBVLC- and BBVLC-TCM schemes, as well as for the Huffman@TCM scheme, in
Figure 7.10.

As shown in Figure 7.10, the source sample reconstructioR &fthined following the
achievement of iterative decoding convergence increasethe channel'®;, /N, value in-
creases for all schemes considered. This may be explainedrsidering the associated
EXIT chart tunnels, which gradually open and become wid¢he#, / N, value is increased
from the channel’s capacity bound, allowing the iteratigeatling trajectory to progress fur-
ther, as explained in Secti®?. Note that an open EXIT chart tunnel implies that iterative
decoding convergence to an infinitesimally low probabitgrror can be achieved, provided
that the iterative decoding trajectory approaches theriand outer codecs’ EXIT functions
sufficiently closely, as described in Secti®®2 However, it can be seen in Figure 7.10 that
high source sample reconstruction SNRs were not achievést ahreshold®;, /N, values,
for which open EXIT chart tunnels may be created. This is bseaur217 500-bit inter-
leaver is unable to entirely eradicate the correlation iwithe a priori LLR framesL?(u)
and L (u’), which the BCJR algorithm assumes to be uncorrelated [4]a Assult, the it-
erative decoding trajectory does not perfectly match withihner and outer codecs’ EXIT
functions and the EXIT chart tunnel must be further widenefbke the iterative decoding
trajectory can reach the top right hand corner of the EXITrighehich is associated with an
infinitesimally low probability of error, as described incdien ??.

For sufficiently highE, /N, values, the iterative decoding trajectory of all considere
schemes was found to approach the top right hand corner &XKE chart, yielding source
sample reconstruction SNRs of 20 dB. As described in Sedtidri, this represents the in-
finitesimally low probability of error scenario, where qtiaation noise provides the only
significant degradation. As shown in Figure 7.10, sourcepsameconstruction SNRs of
20 dB may be achieved by the SBIrVLC- and BBIrVLC-TCM schemed’, /Ny values
above 3.2 dB, which is just 0.1 dB from the correspondingshodd £, / N, value of 3.1 dB,
as described in Section 7.3.2. In the case of the SBVLC- andLBEBTCM schemes, Fig-
ure 7.10 also shows a 0.1 dB discrepancy between the thceBhaN, value of 3.6 dB and
the lowestE, /Ny value, for which a source sample reconstruction SNR of 20 @ be
achieved, namely 3.7 dB. By contrast, Figure 7.10 shows @B.8iscrepancy between the
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Figure 7.9: Inverted CC EXIT functions. The inverted EXIThtidion is provided for the
corresponding IrCC arrangement, together with the TCM EXKlfction corresponding to
an E, /Ny value of 3.4 dB. A decoding trajectory is provided for the friun-IrCC-TCM
scheme at a channgl, /N, value of 3.4 dB. Inverted CC EXIT functions are labelled gsin
the formatCC" (R(CC"), C™, a™).
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Figure 7.10: Reconstruction SNR versHs/N, for a Gaussian source usirfg = 16-
level Lloyd-Max quantisation for the SBIrVLC-, BBIrVLC-, B/LC- and BBVLC-TCM
schemes, as well as for the Huffman-IrCC-TCM scheme, conicating over an uncorre-
lated narrowband Rayleigh fading channel following iteatlecoding convergence.

thresholdE, /Ny value of 3.1 dB and the lowegt, /N, value for which the Huffman-IrCC-
TCM scheme may achieve a source sample reconstruction SRRaB, namely 3.4 dB.

For each of our schemes, the iterative decoding trajectatyreaches thél, 1) point of
the EXIT chart at the lowest channg} /N, value considered is provided in either Figure 7.4,
7.5 or 7.9, as appropriate. Note that the iterative decottimgctories of the SBIrVLC-,
BBIrVLC-, SBVLC- and BBVLC-TCM schemes approach the copmsding inner and outer
EXIT functions fairly closely, facilitating iterative deding convergence to th&, 1) point of
the EXIT chart at a channél, /N, value that is just 0.1 dB above the threshold value. This is
in contrast to the iterative decoding trajectories of Fegbirl1, which did not exhibit a close
match with the inner and outer EXIT functions, requiring &5/N, value that is 0.5 dB
above the threshold value in order that {iel) point of the EXIT chart may be reached.
The improved matching of the SBIrVLC-, BBIr'VLC-, SBVLC- aBBVLC-TCM schemes’
iterative decoding trajectories is a benefit of employingraerleaver that is nearly three
times longer than any of those employed in Chapter 6, fatitiyy the improved mitigation
of correlation within the iteratively exchanged extringiformation. However, the iterative
decoding trajectory of the Huffman-IrCC-TCM scheme dodsapproach the inner and outer
EXIT functions as closely as those of the SBIrVLC-, BBIr'VL,GSBVLC- and BBVLC-
TCM schemes. As a result, the channdlis/ Ny value must be increased by 0.3 dB beyond
the thresholdE, /Ny value before the EXIT chart tunnel becomes sufficiently wimtethe
iterative decoding trajectory to reach tHie 1) point of the EXIT chart. This may be attributed
to the APP SISO IrCC decoder’s relatively high sensitivityahy residual correlation within
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thea priori LLR frame L2 (u) that was insufficiently mitigated by ti¥d 7 500-bit interleaver,
as will be detailed in Section 7.4.3.

7.4.3 Interleaver length and latency

As described in Section 7.2.2, interleaving is employedteethea priori LLR frame L9 (u)

is forwarded to the outer APP SISO decoder of each of the sehawmnsidered. This is
necessary, since the BCJR algorithm employed by the APP 8&80ders assumes that all
a priori LLRs that can influence any particular decoding decisionuareorrelated, as de-
scribed in Sectio??. However, despite the employment of a long average intezldangth
of 217500 bits, APP SISO IrCC decoding applied to the Huffman-IrCCM Gcheme is
still sensitive to the residual correlation within thepriori LLR frame L9(u). As a result,
the Huffman-IrCC-TCM scheme suffers from a gradually engdierative decoding perfor-
mance, when the EXIT chart tunnel is narrow, as explained@bbet us now consider the
relatively high sensitivity of APP SISO IrCC decoding to tlesidual correlation within the
a priori LLR frame L2 (u) in greater detail.

In the IrCC encoder [175] of the Huffman-IrCC-TCM schemejathemploys a coding
memory of L;,cc = 4, each bit of the Huffman encoded frameas encoded in conjunction
with the preceedind.;,cc = 4 bits, in order to generate an averagd 9R,cc = 1.92 bits
for the transmission frama [51]. Hence, each set of 1.92 bits in the transmission frame
u is directly influenced by the values of the preceeding ¢ = 4 sets of 1.92 bits, which
are each in turn directly influenced by their preceeding:c = 4 sets of 1.92 bits and so
on, providing indirect influences. Similarly, each set @2 bits in the transmission frame
u has a direct influence upon the values of the followingzc = 4 sets of 1.92 bits, each
of which in turn has a direct influence upon their followihg.cc = 4 sets of 1.92 bits
and so on, providing further indirect influences. These ddpacies between the sets of
1/Rycc = 1.92 bits are illustrated in Figure 7.11.

—

Figure 7.11: Dependencies between sets/dt;,cc = 1.92 IrCC-encoded bits, for a coding
memory ofLy,cc = 4.

The aforementioned influences amongst the bits in the trasgm frameu are exploited
during APP SISO IrCC decoding, by employing the BCJR albaritn order to consider the
a priori LLRs in the frameL?(u) that pertain to both the preceeding and following bits of
u. However, the BCJR algorithm assumes thagagitiori LLRs in the frameL¢ (u) that can
influence a particular decoding decision are uncorrelasdiescribed in Sectio??. Since
all bits in the transmission frame are either directly or indirectly influenced by each other,
we could argue that APP SISO IrCC decoding is sensitialtoorrelation within thea priori
LLR frameL¢(u). However, each set of 1.92 bits in the transmission frarigeonly directly
influenced by the values of the preceedingcc = 4 sets of 1.92 bits and only has direct
influence upon the values of the followirdg,cc = 4 sets of 1.92 bits in the Huffman-IrCC-
TCM scheme. Hence, we can say that APP SISO IrCC decodingysdmectly sensitive
to correlation within the sets df/ Ri,cc X Lircc + 1/Rirce + 1/Rice X Liyce = 17.28
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consecutive priori LLRs. We may therefore conclude that the sensitivity of ARBGBIrCC
decoding to correlation within the priori LLR frame L2 (u) is dependent on both the IrCC
coding memoryLy,.cc and on the coding rat&;,cc. Note that this implies that a shorter
interleaver and latency may be afforded, provided that &drigrCC coding rate and/or a
lower memory was employed.

By contrast, during VLC encoding in the context of the SBIGA,. BBIrVLC-, SBVLC-
and BBVLC-TCM schemes, the source symbols of the source slirames are encoded in
isolation using VLC codewords having an average lengti 6R;,vr.c = 7.25 bits, which
are concatenated to provide the transmission framuring APP SISO VLC decoding us-
ing the BCJR algorithm, al priori LLRs in the frameL? (u) are considered for the sake of
investigating the lengths of the VLC codewords. Despite tuwever, we could argue that
only thea priori LLRs in the frameL?(u) that pertain to a particular VLC codeword have
a direct influence upon its APP SISO decoding. We can thexefay that APP SISO VLC
decoding in the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM $emes is only particu-
larly sensitive to correlation within the sets@R5 consecutiva priori LLRs. Additionally,
we may conclude that the sensitivity of APP SISO VLC decodingorrelation within thea
priori LLR frame L¢ (u) is dependent on only the VLC coding rate. Again, this imptrest
a shorter interleaver and latency may be afforded, if a hiyh€ coding rate was employed.

Whilst APP SISO VLC decoding applied in the context of the ISRIC-, BBIrVLC-,
SBVLC- and BBVLC-TCM schemes is only particularly sengtio correlation within sets
of 7.25 consecutiva priori LLRs in the frameL?(u), APP SISO IrCC decoding in the
Huffman-IrCC-TCM scheme is particularly sensitive to @ation within sets of 17.28 con-
secutivea priori LLRs, which are about 2.4 times longer. This therefore arpléhe obser-
vation that the Huffman-IrCC-TCM scheme would require ageninterleaver and latency
to achieve iterative decoding convergence to an infinitakljmow probability of error for
channelE, /Ny values between 3.2 dB and 3.4 dB.

7.4.4 Performance during iterative decoding

The achievement of iterative decoding convergence regjtlieecompletion of a sufficiently
high number of decoding iterations. Clearly, each decot@rgtion undertaken is associated
with a particular computational complexity, the sum of whiepresents the total computa-
tional complexity of the iterative decoding process. Hertlhe completion of a sufficiently
high number of decoding iterations in order to achieve fiegadecoding convergence may
be associated with a high computational complexity. In ptdejuantify how this computa-
tional complexity scales as iterative decoding proceedsgagorded the total number of ACS
operations performed per source sample during APP SISQlitexrand MAP sequence es-
timation.

Furthermore, the performance of the considered schemeslsasssesseduring the
iterative decoding process, not only after its completinoceoconvergence has been achieved.
This was achieved by evaluating the source sample recatisimSNR following the com-
pletion ofeachdecoding iteration. The total computational complexitgaasated with this
SNR was calculated as the sum of the computational com@sxéssociated with all decod-
ing iterations completed so far during the iterative denggirocess. Clearly, as more and
more decoding iterations are completed, the resultantse@ample reconstruction SNR can
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be expected to increase until iterative decoding convexrgenachieved. However, the asso-
ciated total computational complexity will also increasereore and more decoding iterations
are completed. Hence, this approach allows the charaatierisof the tradeoff between re-
construction quality and computational complexity.

For each considered Rayleigh chanBgl N, value, a set of source sample reconstruction
SNRs and their corresponding computational complexities @btained, as described above.
Note that the size of these sets was equal to the number ofihgciterations required to
achieve iterative decoding convergence at the partiddjdiV, value. It would therefore be
possible to display the source sample reconstruction SNBuseboth theF;, /Ny and the
computational complexity in a three-dimensional surfalm, dor each of the SBIrVLC-,
BBIrVLC-, SBVLC- and BBVLC-TCM schemes. For clarity howay¢hese surfaces are
projected in the direction of the source sample reconstmu@&NR axis into two dimensions
in the novel plot of Figure 7.12. We employ contours of conssmurce sample reconstruc-
tion SNR, namely 15 dB and 20 dB, to parameterise the relstiprbetween the Rayleigh
fading channel'sEl, /Ny value and the associated computational complexity. Natettie
plot of Figure 7.10 may be thought of as a cross-section titrdlie surfaces represented by
Figure 7.12, perpedicular to the computational complexiig atl - 107 ACS operations per
source sample. Note that this particular value of computaticomplexity is sufficiently high
to achieve iterative decoding convergence at all valueB,gfVy, in each of the considered
schemes.

Note that the SBIrVLC and SBVLC decoders have a computalt@mmplexity per source
sample that depends on the number of symbols in each sourtmsgub-frame™, namely
J. This is because the number of transitions in their symlaskel trellises is proportional
to J? [2], as described in SectioP?. Hence the results provided in Figure 7.12 for the
SBIrVLC- and SBVLC-TCM schemes are specific to the= 100 scenario. By contrast, the
TCM, BBIrVLC, BBVLC and IrCC decoders have a computationaiplexity per source
sample that is independent of the number of symbols in easttssymbol sub-frame™,
namely.J. This is because the number of transitions in their tredliseproportional ta/
[106,129,197], as described in Secti®h Hence the results for the BBIrVLC- and BBVLC-
TCM schemes, as well as for the Huffman-IrCC-TCM schemeyided in Figure 7.12 are
not specific for the/ = 100 case.

As shown in Figure 7.12, source sample reconstruction SNRg do 20 dB can be
achieved within 0.6 dB of the channels, /N, capacity bound of 2.6 dB for the SBIrVLC-
and BBIrVLC-TCM schemes, within 1.1 dB for the SBVLC- and BBY-TCM schemes
and within 0.8 dB for the Huffman-IrCC-TCM scheme. Note tHase findings agree with
those of the EXIT chart analysis and the asymptotic perfoceanalysis.

7.4.5 Complexity analysis

We now comment on the computational complexities of the idened schemes and select
our preferred arrangement.

In all considered schemes and at all valueEgfN,, a source sample reconstruction SNR
of 15 dB can be achieved at a lower computational complekiynan SNR of 20 dB can, as
shown in Figure 7.12. This is because a reduced number ofiderderations is required
for achieving the extrinsic mutual information value asaterd with a lower reconstruction
quality, as stated above. However, for all considered seisemperating at high values of
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Figure 7.12: Computational complexity verskis/ N, for a Gaussian source usidg = 16-
level Lloyd-Max quantisation for the SBIrVLC-, BBIrVLC-,B/LC- and BBVLC-TCM
schemes, as well as for the Huffman-IrCC-TCM scheme, conicating over an uncorre-
lated narrowband Rayleigh fading channel, parameterisidtiae source sample reconstruc-
tion SNR.
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E, /Ny, this significant 5 dB reduction in source sample reconfttnSNR facilitates only
a relatively modest reduction of the associated computatimomplexity, which was between
9% in the case of the Huffman-IrCC-TCM scheme and 36% for tBE\A_C-TCM scheme.
Hence we may conclude that the continuation of iterativede until near-perfect conver-
gence is achieved can be justified at all value&EpfN,.

Additionally, it may be seen that a given source sample rsitoation SNR may be
achieved at a reduced computational complexity for all mered schemes as theg, /Ny
value increases. This may be explained by the widening oEE chart tunnel, as the
E, /Ny value increases. As a result, less decoding iterationseapgired for reaching the
extrinsic mutual information that is associated with a #jjesource sample reconstruction
SNR considered.

In each of the considered schemes it was found that VLC and &@ding is associ-
ated with a higher contribution to the total computatior@hplexity than TCM decoding.
Indeed, in the case of the SBIrVLC- and SBVLC-TCM schemesas found that VLC de-
coding accounts for about 97% of the numbers of ACS opersifien source sample, having
a complexity of about 32.3 times higher than that of TCM déegd By contrast, in the
BBIrVLC- and BBVLC-TCM schemes, VLC decoding accounts foityo70% of the opera-
tions, having a complexity of about 2.3 times that of TCM d#ting. Similarly, CC decoding
accounts for only 60% of the ACS operations in the Huffma®afTCM scheme, having a
complexity of about 1.4 times that of TCM decoding.

The high complexity of the SBIr'VLC and SBVLC decoders may lteitauted to the
specific structure of their trellises, which contain sigrafitly more transitions than those of
the BBIrVLC, BBVLC and IrCC decoders [2], as described int8st??. As a result, the
SBIrVLC- and SBVLC-TCM schemes have a complexity that iswgtam order of magnitude
higher than that of the BBIrVLC- and BBVLC-TCM schemes, adlas the Huffman-IrCC-
TCM scheme, as shown in Figure 7.12. In the light of this, t@leyment of the SBIrVLC-
and SBVLC-TCM schemes cannot be readily justified.

Observe in Figure 7.12 that at higt, /Ny values, the SBIrVLC- and BBIr'VLC-TCM
schemes have a higher computational complexity than thegmonding SBVLC- or BBVLC-
TCM scheme. This is due to the influence of their low rate congmd VLC codebooks.
These codebooks comprise codewords with many differewgthen which introduce many
transitions, when represented in a trellis structure, asriteed in Sectior??. The observed
computational complexity discrepancy is particularlythig the case of the schemes that
employ the symbol-based VLC trellis, owing to its particutature. For this reason, the
SBIrVLC-TCM scheme has a computational complexity thatd8% higher than that of the
SBVLC-TCM scheme.

By contrast, we note that at high valuesif/N, the BBIrVLC-TCM scheme has only
about a 60% higher computational complexity than the BBVLCM scheme. Similarly, the
BBIrVLC-TCM scheme has only twice the computational comfileof the Huffman-IrCC-
TCM scheme. Coupled with the BBIr'VLC-TCM scheme’s abilibydperate within 0.6 dB
of the Rayleigh fading channelB, /N, capacity bound, we are able to identify this as our
preferred arrangement.
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7.4.6 Unequal error protection performance

Let us now examine the UEP performance of our preferred BBBMCM scheme. As
described in Section 7.1, the UEP capability of IrVLC is nfasied because different frac-
tions of the source symbol frameare encoded with different component VLC codebooks
having a variety of coding rates and, hence, error correcapabilities. More specifically,
the lower the coding rate of a component VLC codebook, thadrithe associated potential
error correction capability, as described in Sec6n

As argued above, the composite source sample reconsti&itiR was evaluated follow-
ing the completion of each decoding iteration during oundations. The total computational
complexity associated with this SNR was calculated as the giuthe computational com-
plexities associated with all decoding iterations congaeto far during the iterative decoding
process. These computational complexities were plottathat, /Ny and parameterised
by the source sample reconstruction SNR in Figure 7.12. tetethe composite BBIrVLC-
TCM ACS-complexity verseg;, /N, plots are repeated in Figure 7.13. In addition to record-
ing the composite source sample reconstruction SNR aftdr éacoding iteration, we also
recorded the reconstruction SNRs associated with theidrescof the source sample frame
e that were protected by each of the three activated comporie@tcodebooksVLC?,
VLC!! andVLC'. For each case, the associated computational compleaigeglotted
againstEy /Ny and parameterised by the source sample reconstruction SRigure 7.13.

As shown in Figure 7.13, the lower the coding r&&€VLC"™) of the component VLC
codebookVLC™ that is employed to protect a fractiarf} ; of the source sample frame
e, the lower the computational complexity that is requireddconstruct it with a particular
reconstruction SNR at a particulfy, /Ny value. Indeed, at high, /Ny values the complex-
ity associated with reconstructing the fraction of the setsample frame that is protected
by the R(VLC?®) = 0.75 coding rate component VLC codebodKLC? is about twice as
high as that associated with ti VLC'") = 0.47 coding rate component VLC codebook
VLC!!. Thisis, in turn, about 1.5 times as high as that associattttie component VLC
codebookVLC'?, having a coding rate aR(VLC'') = 0.31. In the scenario, where only
a limited iterative decoding computational complexity danafforded at the receiver, the
fractions of the source sample fraraghat are protected by the different component VLC
codebooks would be reconstructed with SNRs that are comumeteswith the associated
coding rates, demonstrating the UEP capability of the BBRIEVTCM scheme.

As described in Section 7.1, each of the activated compovie@t codebooksVLC?,
VLC!! andVLC' in the BBIr'VLC-TCM scheme is employed to protect a differémat-
tion of the source sample franee More specifically, the component VLC codebodkEC?,
VLC!" andVLC' each protect a fractiof}, ; = 0.32, C5 = 0.63 andCy; = 0.05 of
the source sample franeg respectively. Note that the composite computational derify
versusEy, /Ny plots depend on each of the component plots. Furthermormayeexpect the
composite plots to be dominated by the components plotsidsd with the largest fraction
of the source sample frame. Specifically, these are the conemglots associated with the
component VLC codebooW LC'!, which is employed to protect a fracti 1> = 0.63 of
the source sample franee However, Figure 7.13 shows that the composite plots atalygt
dominated by the component plots associated with the coemon_C codebookVLC?,
which is employed to protect only a fracti@if, ; = 0.32 of the source sample franee This
may be explained as follows.
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Figure 7.13: Computational complexity verskis/ N, for a Gaussian source usitig = 16-
level Lloyd-Max quantisation for the BBIrVLC-TCM schemeyramunicating over an un-
correlated narrowband Rayleigh fading channel, paransettwith the source sample re-
construction SNR. Separate plots are provided for the igethsource samples that are VLC
encoded using each of the component VLC codebddk€C®, VLC!! and VLC'?, to-
gether the composite BBIr'VLC-TCM plots of Figure 7.12. Campnts are labelled using
the formatVLC" (R(VLC"), Ckpg, &%)
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A composite error-free reconstruction SNR of 20 dB can omyabhieved if error free
reconstruction is attained for all three of the fractionshaf source sample framethat are
protected by the three activated component VLC codebddk€®, VLC'! and VLC'.
Hence, the composite computational complexity veiSp&N, plot that is parameterised by
an error-free reconstruction SNR of 20 dB is dominated by d@isaociated with the specific
component VLC codebook having the weakest error correctpability, namelWLC?®, as
shown in Figure 7.13 and observed above. Note that the coempdf.C codebooRVLC®
has the weakest error correction capability of the threwated codebooks, since it has the
highest coding rate oR(VLC®) = 0.75, as shown in Figure 7.13. This effect may also
explain the domination of the composite plot that is paramistd by a reconstruction SNR
of 15 dB corresponding to that associated with the compovieBtcodebookVLC?, despite
a relatively low fraction ofC® = 0.32 being protected by this codebook.

7.5 Summary and Conclusions

In this chapter, we have investigated the application oLI2¥ for EXIT chart matching. This
was prompted by the observation that the serially conctgdnadeo transmission scheme
of Chapter 6 could have facilitated operation at chaiglN, values that are closer to the
capacity bound, if the EXIT functions of its inner and outedecs were better matched. More
specifically, this would have facilitated the creation of@en EXIT chart tunnel at near-
capacity F /Ny values, implying that iterative decoding convergence tardinitesimally
low probability of error may be achieved, if the iterativecdding trajectory approaches the
inner and outer codecs’ EXIT functions sufficiently closely

In analogy to IrCCs, the novel IrVLC scheme of this chaptepkays a number of com-
ponent VLC codebooks having different coding rates for thieesof generating particular
fractions of the transmission frame, as described in Sedtit. We demonstrated that this
provides a UEP capability, which may be employed to appedely protect the various com-
ponents of audio-, speech-, image- and video-coded infdi@mavhich typically have dif-
ferent error sensitivities. Furthermore, we showed in Fégw.4 and 7.5 that the composite
inverted IrVLC EXIT function is given by a weighted averadelte inverted EXIT functions
of the individual component VLC codebooks, where each weiglyiven by the specific
fraction of the transmission frame that is generated by ¢lneesponding component. Finally,
we demonstrated that this inverted IrVLC EXIT function maydhaped to match the EXIT
function of a serially concatenated TCM codec using the E3li&irt matching algorithm
of [10].

It was noted that an IrVLC scheme’s component VLC codebobksilsl have a suite
of widely varying inverted EXIT functions in order that acate EXIT chart matching can
be performed. Hence, a significant amount of ‘trial-and»efsased human interaction was
required in order to select our component VLC codebooks. Hapter 8 we shall therefore
propose and characterise an efficient technique for degjgmigh quality suites of com-
ponent VLC codebooks that does not require ‘trial-and+&trased human interaction. In
addition to this, Chapter 8 will investigate the relatioipsbetween the suite of component
VLC codebooks and the resultant IrVLC EXIT chart matchingwacy. Furthermore, the
application of IrVLCs for EXIT chart matching will be furthexplored in Chapter 9, where
the EXIT functions of Ir'VLCs and of novel Irregular Unity RaCodes (IrURCs) will be
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jointly matched to each other, facilitating the creatioranfopen EXIT chart tunnel at chan-
nel £}, /Ny values that are even closer to the channel’s capacity bound.

During the EXIT chart matching investigations of this clexpan open EXIT chart tunnel
was created in Figures 7.4 and 7.5 for the Ir'VLC-TCM schenoasidered and in Figure 7.9
for the Huffman-IrCC-TCM benchmarker for channi} /N, values above a threshold of
3.1 dB. This is just 0.5 dB from the Rayleigh fading channélig N, capacity bound of
2.6 dB, which corresponds to our schemes’ effective thrpugjlof 1.56 bits per channel
use. By contrast, an open EXIT chart tunnel was only fatéddain Figures 7.4 and 7.5
for the conventional regular VLC-TCM benchmarkers for thereased channél, /N, val-
ues in excess of a threshold of 3.6 dB, which is 1.0 dB from tienoel's capacity bound,
corresponding to twice the discrepancy of the Ir'VLC-TCMeties. Note that the above-
mentioned discrepancy of the VLC-TCM benchmarkers is sintd the 1.29 dB discrepancy
of the VDVQ/RVLC-TCM scheme of Chapter 6, which also doesamploy irregular coding
techniques.

The iterative decoding performance and computational d¢exitg of the considered
schemes was investigated in a novel context using plotseotdmputational complexity
required to achieve particular source sample reconstru&NRs as a function of the chan-
nel’s E, /Ny value in Figure 7.12. Recall that we observed that the iterigtdecoded video
transmission scheme of Chapter 6 would have been capabthigving iterative decoding
convergence to an infinitesimally low probability of errarchannelE; /N, values that are
closer to the threshold at which an open EXIT chart tunnelaachieved, if a longer inter-
leaver was employed. This prompted the consideration ohtamléaver having a length of
217 500 bits in this chapter, which is nearly three times longer thay of those considered
in Chapter 6. Indeed, it was found that the IrVLC- and VLC-TGbhemes were capable of
achieving a high-quality source sample reconstructiohiwi®.1 dB of the threshold chan-
nel E, /Ny values, which were the lowest values at which an open EXITtdhanel was
achieveable.

However, in the case of the Huffman-IrCC-TCM scheme, highlitya source sample
reconstruction was only achieveable for chanfiglN, values above 3.4 dB, whichis 0.3 dB
above the threshold at which an open EXIT chart tunnel maygbieged. This was explained
in Section 7.4.3 by the relatively high sensitivity of the RRSISO IrCC decoder to any
residual correlation within the priori LLRs, that was insufficiently mitigated by ti2é7 500-
bit interleaver. This resulted in a poor match between thiive decoding trajectory and
the inverted IrCC EXIT function. More specifically, we conded that an APP SISO IrCC
decoder’s sensitivity to this correlation depends on btdtcoding rate and, in particular,
its coding memory, which had the relatively high valuelgfcc = 4 in the IrCC scheme
considered. We additionally concluded that an APP SISO VECoder’s sensitivity to the
aforementioned correlation depends only on its codingaatkthat shorter interleavers and
latencies could be afforded, if a higher coding rate was eygal. Note that the effect of the
VLC coding rate upon its sensitivity to correlation withimeta priori LLRs frame will be
investigated in Chapter 8, whilst the effect of the interkgdength upon iterative decoding
shall be investigated in greater detail in Chapter 9.

Recall that the outer APP SISO video decoder of the itergtiiecoded video trans-
mission scheme of Chapter 6 operated on the basis of this toelflined in Section 6.3.4,
which is reminiscent of the symbol-based VLC trellis of [Z]his was the rationale of why
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this video transmission scheme was associated with a hagimeputational complexity than
the benchmarkers, which employed the bit-based VLC trelif90] as the basis of their
outer APP SISO decoders. Hence, in this chapter we chaisedde¢he computational com-
plexity associated with employing both symbol- and bitdzhiellises as the basis of APP
SISO VLC decoding. In both cases, we concluded that the ctatipoal complexity as-
sociated with continuing iterative decoding until convenige is achieved is justified owing
to the significantly improved reconstruction quality thasults. As predicted in Chapter 6,
the schemes that employed bit-based trellises for APP SIEO decoding were found to
achieve iterative decoding convergence with a signifigdntver computational complexity
than the schemes employing symbol-based trellises in &igur2.

Owing to its reduced iterative decoding computational clexipy, the Ir'VLC-TCM scheme
employing the bit-based VLC trellis as the basis of APP SIS@\ecoding was identified
as our preferred arrangement in Section 7.4.5. Additign&dt this reason, only bit-based
trellises will be employed as the basis of APP SISO VLC dergdh Chapters 8 and 9. Note
that in this chapter, the source symbol frame was decomgosed/ = 300 sub-frames in
order that the computational complexity associated wighsymbol-based VLC trellis could
be limited. However, explicit side information was reqgiri@ order to convey the length
of each of the corresponding transmission sub-frames toetbeiver, resulting in a trade-
off between the computational complexity associated vithdymbol-based VLC trellis and
the amount of side information required. Indeed, in all IGHTCM parameterisations con-
sidered, the required side information was found to acctamt% of the total information
conveyed in Section 7.3. In this chapter, the source synthoié was also decomposed into
M = 300 sub-frames, when the bit-based VLC trellis was employedyrder that a fair
comparison could be obtained. However, since Chapters ® avill only consider the em-
ployment of the bit-based VLC trellis rather than the symbased VLC trellis, a significant
reduction in the amount of required side information willdhieved by employing a single
source symbol sub-frame per activated component VLC camebo
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Conclusions and Future Research

10.1 Chapter 1: Introduction

This chapter constitutes the general background of ouiestuttiroughout the book. More
specifically, a brief overview of the literature of sourceeding and soft source decoding
was presented in Sectid??. Then the development of iterative decoding techniques and
their convergence analysis was described in Se@bnFurthermore, as a special case of
iterative decoding, joint source-channel decoding wasihtced and the main contributions
to the open literature were summarised in Sect#@nFinally, the organisation of the book

was described in Sectid?®?, while our novel contributions were highlighted in Sectiz

10.2 Chapter 1: Information Theory Basics

In this chapter we focussed our attention on the basic Shaandnformation transmission
scheme and highlighted the differences between Shanrteosyt valid for ideal source and
channel codecs as well as for Gaussian channels and itseatioifis for Rayleigh channels.
We also argued that practical finite-delay source codeasataperate at transmission rates
as low as the entropy of the source. However, these codeostdmame to operate losslessly,
since perceptually unobjectionable distortions can berédéd. This allows us to reduce the
associated bit rate.

Since wireless channels exhibit bursty error statisties, drror bursts can only be ran-
domized with the aid of infinite-length channel interleayevhich are not amenable to real-
time interactive multimedia communications. Althoughtwihe advent of high-delay turbo
channel codecs it is possible to operate near the Shannpeifarmance limits over Gaus-
sian channels, over bursty and dispersive channels différrmation-theoretical channel
capacity limits apply.

We considered the entropy of information sources both wiitth without memory and
highlighted a number of algorithms, such as the Shannow;Faa Huffman and run-length
coding algorithms, designed for the efficient encoding afrees exhibiting memory. This
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was followed by considering the transmission of informati@er noise-contaminated chan-
nels leading to Shannon’s channel coding theorem. Our skszis continued by consider-
ing the capacity of communications channels in the contettteoShannon-Hartley law. The

chapter was concluded by considering the ramifications ah8bn’s messages for wireless
channels.

10.3 Chapter ??: Sources and Source Codes

Chapter?? commenced with the description of general source modelsngwhich a mem-
oryless source model having a known finite alphabet sucheasléiscribed in SectioP? was
used throughout the monograph. Then various source codbesasiHuffman codes, RVLCs
and VLEC codes were introduced in Sect®® along with their construction methods. An
important contribution of this chapter is that a generioalhym was presented for the con-
struction of efficient RVLCs and VLEC codes. The philosopligar proposed algorithm is
that we first construct an initial RVLC or VLEC code using axig methods such as those
described in?,?, 7], then we optimise the codeword length distribution of tesultant code
length-by-length. For example, Fig. 10.1 shows the ewvoiutf the codeword length his-
tograms of the RVLC designed for the English Alphabet in Bac??. After 12 iterations of
optimisation, the best codeword length distribution isrfduresulting in a RVLC having the
lowest average codeword length4f, = 4.18732.
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Figure 10.1: Evolution of the RVLC codeword length histagea The RVLC is designed for
the English Alphabet and its detailed construction proéeskescribed in Sectio?. The
codeword length distribution is optimised via a number efations for the sake of reducing
the average codeword length.

Consequently, as shown in Tal#i@, Table?? and Table??, for a variety of memoryless
sources, the proposed algorithm was capable of generadb@®of higher code efficiency
and/or shorter maximum codeword length than the algorithragiously disseminated in the
literature. Furthermore, as seen from Ta®bkand Table??, the proposed algorithm was also
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capable of constructing VLEC codes having similar codeiefficy as those generated by the
existing algorithm ], but incurring a significantly lower complexity.

In Section??, various VLC decoding methods were presented. First, thieceainfor-
mation, such as the number of bits/symbols in the transthiteemes, and the constraints
imposed by a source code and formulated in terms of the gunelng codebook were trans-
lated into a trellis representation, such as the symbaotdbaellis described in Sectid? or
the bit-based trellis described in Sectidd Then MAP/ML sequence estimation or MAP
decoding may be performed, which were introduced in Se@®and Sectior??, respec-
tively. It has been shown in Secti@? that trellis based soft-decoding provides an effective
way of capitalising on the available information as much assble. In general, the more
information is utilised, the better the performance. Thimimation can be explicit, such as
the transmission frame length information, or implicitcbuas the code constraint of a VLC.
For example, soft-decoding generally outperforms hambdimg, and the symbol-level trel-
lis based decoding outperforms the bit-level trellis bassrbding. Furthermore, as expected,
VLCs having higher free distances outperform VLCs havinvgdpfree distances at the price
of a reduced system throughput. Fig. 10.2 provides sometitai@re results, summarising
the conclusions of Sectid??. It can be seen from Fig. 10.2a that soft-decision decodgig s
nificantly outperforms hard-decision decoding and thersdtde £, / Ny gain improves upon
increasing the VLC's free distance. Moreover, as seen fr@gn F0.2b, the performance of
soft ML decoding improves upon increasing the free distaridke VLC used.
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Figure 10.2: Comparison of the various VLC decoding schemesstigated in Sectio?.

Fig. 10.2a compares the performance of soft-decision and-decision decoding based
schemes, where thB, /N, gain is defined as the difference of the minimiifzy N, values
required for achieving a SER dab—> for transmission over AWGN channels, when using
ML decoding. Fig. 10.2b demonstrates the effects of difiekd_C free distances/; = 1
(RVLC-1) anddy = 2 (RVLC-2). The Huffman code (HUFF) based scheme is used as a
benchmarker, where thE, /N, gain is defined as the difference of the minimuty/N,
values required for achieving a SER 1f~° for transmission over AWGN channels, when
using soft ML decoding.
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10.4 Chapter ??: Iterative Source/Channel Decoding

Chapter?? provides an investigation of iterative source/channeldew techniques. In
this chapter, the source code, the channel code and the 48hehare viewed as a serially
concatenated system. Hence, iterative decoding may berpeél, provided that the source
decoder, channel decoder and the channel equaliser dddartbe 1SI channel are all SISO
modules.

This chapter commenced with an overview of various conedéshschemes, as described
in Section??. Then a SISO APP decoding algorithm was introduced in Se@® This
algorithm provides a general description of any trellisdthAPP decoding/detection scheme,
which can be applied to source decoding, channel decodihglzennel equalisation. Hence
it constitutes the core module of iterative decoding scleeme

EXIT charts were introduced in Secti@?. The mutual information between the data bits
at the transmitter and the soft values at the receiver wasfoseharacterising the decoding
behaviour of a SISO APP module, resulting in the so-calledTE¥nctions. A histogram-
based algorithm and its simplified version were introduce8éction??in order to evaluate
the EXIT functions of a SISO APP module, followed by sevesaraples of typical EXIT
functions of SISO APP modules embedded in different pasitiof a concatenation scheme.
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Figure 10.3: Free distance versfs/N, gain and throughput, where thg, /N, gain is
based on the minimum SNR value required for achieving a SER)of for transmission
over AWGN channels and the scheme using the Huffman code E)lidFused as a bench-
marker. The system model is described in FRP, where the transmitter is constituted by
a VLC encoder and a convolutional encoder, and the receivesnstituted by an APP con-
volutional decoder as well as an APP VLC decoder, which perfochannel decoding and
source decoding iteratively.

Given the EXIT characteristics of the constituent modules concatenated scheme,
we may either predict or explain its convergence behavidhis is carried out for iterative
source/channel decoding for transmission over non-dispeAWGN channels in Sectid?f?
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and for transmission over dispersive AWGN channels in 8a@®. In the scenario of non-
dispersive AWGN channels, it was shown in FRP.that the free distance of the source code
has to be larger thadi; = 2 in order that the iterative decoding scheme becomes capéble
converging to the perfect mutual-information point of (1\thich implies attaining infinites-
imally low SERs. Furthermore, it was shown in FR-Fig. ?? that given a specific channel
code, the system’s convergence threshold decreases ugeasing the free distance of the
source code, resulting in an improved SER performance. T3 serves as a summary of
our main results provided in Secti@?. It is worth noting that when the free distance of the
VLC code is increased fromi; = 1 to dy = 2, i.e. when using the code RVLC-2 instead of
the code HUFF or RVLC-1, the system’s throughput is onlytgligdecreased, but a signifi-
cantE, /Ny gain is attained. Further increasing the free distancecwiltinue to increase the
attainableE;, /Ny gain, while incurring a considerable loss of throughput.

In the scenario of dispersive channels, it was shown by bath&XIT chart analysis
and our Monte Carlo simulations provided in Sect®hthat the redundancy in the source
codes is capable of effectively eliminating the I1SI impossdthe channel, provided that
channel equalisation and source decoding are performettijaind iteratively. Furthermore,
the higher the free distance of the source code, the close8EHR performance approaches
the SER bound of non-dispersive AWGN channels.

Additionally, in Section?? precoding was shown to be an effective way of "modifying”
the EXIT characteristic of a channel equaliser. Most imgatly, in conjunction with pre-
coding the EXIT function of a channel equaliser becomes laigpaf reaching the point of
(Ia =1, Ig = 1) as shown in Fig??, which is critical for avoiding potential error floors at
the receiver’s output. It was demonstrated in Fg-Fig. ??that the choice of the precoder
depends on both the EXIT characteristics of the channellsguand that of the source de-
coder so that these two are matched to each other, henceiagtttee lowest possibl&;, / Ny
convergence threshold.

Fig. 10.4 summarises the main results of Sec@n It can be seen from Fig. 10.4
that the SER performance of both the scheme using RVLC-2katdising VLEC-3 can be
improved, when using appropriate precoders. Howevemath the precoder df + D? is
optimal for the scheme using RVLC-2, the precodet af D constitutes a better choice for
the scheme using VLEC-3.

Finally, the performance of a three-stage iterative rezreivas evaluated in Sectid@?.
The receiver of Fig.?? consists of a channel equaliser, a channel decoder and aesour
decoder, where the extrinsic information is exchanged apadinthe three SISO modules,
which hence constitutes a joint source-channel decodidgegpalisation scheme. It was
shown in Fig.?? that by exploiting the source redundancy in the iterativeodéng process,
the system’s performance was improved by 2 dB in terms ofd})EV, values required for
achieving the same SER, when compared to the separate &haneeel decoding scheme.
The convergence behaviour of this scheme was analysed&Xidgcharts in Sectior?? after
we introduced the convergence analysis technique for fatatie concatenated schemes in
Chapter??.
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Figure 10.4: The effects of precoding and those of VLC frestagices ofl; = 2 for the
RVLC-2 andd; = 3 for the VLEC-3 schemes on the attainable SER performancenwh
communicating over dispersive AWGN channels, wherepgN, value is the minimum
SNR value required for achieving a SER10f*. The system model is described in FRf2
and Fig.??, where the transmitter is constituted by a VLC encoder at ageh precoder if
precoding is employed, and the receiver is constituted bARIA channel equaliser as well as
an APP VLC decoder, which performs channel equalisatiorsandce decoding iteratively.

10.5 Chapter ??: Three-Stage Serially Concatenated Turbo
Equalisation

Chapter?? investigated the design of the three-stage serially ceneatd turbo MMSE
equalisation scheme seen in FR, which consisted of an inner channel equaliser, a unity-
rate recursive intermediate channel code and an outer ehande. Firstly, a brief intro-
duction to SISO MMSE equalisation was offered in Secti followed by an example
of conventional two-stage turbo equalisation in Sec@n The main body of this chapter
focused on the optimisation of three-stage turbo equaisachemes by using EXIT chart
analysis.

With the aid of the EXIT modules as proposed in FR?. of Section??, 3D EXIT chart
analysis may be simplified to 2D EXIT analysis as shown in Fig.?? and?? of Section
??. It was also shown in Fig.?? of Section?? that by employing a unity-rate recursive
convolutional code as the intermediate constituent cdue three-stage scheme becomes
capable of converging to the perfect mutual informatiompoi

Moreover, the outer constituent code was optimised in 8e@® for achieving the low-
est possibleF, /N, convergence threshold. Interestingly, it was observedign P? that
relatively weak codes having short memories resulted im@ia@onvergence threshold than
strong codes having long memories.

Additionally, the activation order of the component deasdsas optimised in Section
?7? for achieving the convergence at the lowest possigN, value, while maintaining a
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low decoding complexity. It was found in Tab®® that by invoking the outer and interme-
diate decoder of Fig?? more frequently the total number of decoder activationgékiced,
resulting in a decreased decoding complexity.

The BER performance of the optimised scheme was evaluatgddtion??, which ver-
ified the EXIT chart analysis provided in Secti@R. The iterative decoding process was
visualised using both 3D and 2D EXIT charts as shown in ##?? of Section??. Further-
more, the effects of different interleaver block lengthsewdiscussed in Fig?? of Section
?7?. Generally, the longer the interleaver length, the cldsestmulated performance matches
the EXIT chart analysis. It was found in Fi@? that an interleaver length on the order of
105 bits is sufficiently high for achieving a good match with treedding trajectory recorded.
Fig. 10.5 provides some quantitative results summarised Bectior??. It can be seen from
Fig. 10.5 that when the interleaver depth is increased ffom 103 bits to L = 10* bits, a
significant coding gain may be attained. Further increasiiesgnterleaver depth tb = 10°
bits, however, results in a marginal increase of the codimig.g Naturally, the attainable
iteration gain is increased upon increasing the interledepth.
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Figure 10.5: Achievable coding gains at a BER16f* for the three-stage turbo equalisa-
tion scheme of Fig.?? using different interleaver depths. The turbo equalisaticheme
is constituted by a RSC(2,1,2) code as the outer code, a-tatdyRSC(1,1,2) code as the
intermediate code and an inner MMSE equaliser as descnib8ddtion??.

In Section??, the maximum achievable information rate of the threeestagoo equali-
sation scheme of Fig?? was analysed. Then an IRCC was invoked as the outer comgtitue
code, whose EXIT function was optimised for matching thathef combined module of the
inner channel equaliser and the intermediate channel éecsd that the EXIT tunnel-area
between these two EXIT functions was minimised. The MontddCamulation results pro-
vided in Fig. ?? of Section?? show that the performance of the resultant scheme is only 0.5
dB away from the channel capacity.
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Finally, the employment of non-unity rate intermediatee€®das also considered in Sec-
tion ??. It was shown in Fig?? that as expected, the maximum achievable information rate
of such schemes was reduced in comparison to the schemegurstg-rate intermediate
codes. By contrast, th&;, /N, convergence threshold may be decreased, when only regu-
lar convolutional codes are used. A number of optimisedaligrtoncatenated codes were
obtained and listed in Tabl#?.

As a summary, Fig. 10.6 compares the distance to capacithéorarious MMSE turbo
equalisation schemes discussed in Chapter
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Figure 10.6: Distance to capacity for the various MMSE tughoalisation schemes of Chap-
ter ??, where the scheme of Sch-A represents the conventionastage turbo equalisation
scheme of Fig.??. The schemes of Sch-B, Sch-C and Sch-D denotes the samesthgee
turbo equalisation scheme of Fi@?, but differ in the channel codes used. The scheme of
Sch-B employs a unity-rate RSC(1,1,2) code as the intemtedbde and a RSC(2,1,2) code
as the outer code. The scheme of Sch-C uses a SCC of SCC-Atbdddn Table??, which

is constituted by a rate-3/4 RSC(3,4,2) code as the inteateedode and a RSC(2,3,3) code
as the outer code. The scheme of Sch-D employs the sameratétiRSC(1,1,2) code used
in the scheme of Sch-B as the intermediate code, while ubm¢RCC described in Section
??as the outer code.

In Part Il of this book, we have introduced the novel concéptregular Variable Length
Coding (Ir'VLC) and investigated its applications, chaeaistics and performance in the con-
text of wireless telecommunications. As discussed througPRart Il of the book, Ir'VLCs
encode various components of the source signal with diffexets of binary codewords, hav-
ing a range of appropriately selected lengths. Three paati@pplications of IrVLCs were
investigated in this volume, namely joint source and chhooding, EXtrinsic Information
Transfer (EXIT) chart matching and Unequal Error Protat(i0EP). These are detailed in
the following sections, together with a discussion of ouunfa work.
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10.6 Chapter 6: Joint source and channel coding

In Chapter 6 we exemplified the application of Ir'VLCs for the source and channel cod-
ing of video information. This application was motivatedthg observation that Shannon’s
source and channel coding separation theorem [24] is thirathe context of practical video
transmission. While source and channel coding can be peefin isolation without impos-
ing any performance loss, if the assumptions discussedatidBes.1 apply, these conditions
are not fulfilled in the case of practical video transmissidfe therefore proposed the novel
joint source and channel coding scheme of Section 6.2, wighloys both Variable Dimen-
sion Vector Quantisation (VDVQ) [194] as a special case aftéeQuantisation (VQ) [80]
and the Reversible Variable Length Coding (RVLC) [99] cla§d/ariable Length Codes
(VLCs).

Here, the employment of VDVQ tiles having a range of dimensitacilitates the effi-
cient representation of both large areas of the video fréwadave a low luminance-variance
and small areas of high variance, as exemplified in FigureAd8itionally, the employment
of RVLC codewords having various lengths facilitates theresentation of more frequently
occurring VDVQ tiles with the aid of shorter codewords, giyia reduced average codeword
length and providing source coding. Furthermore, chanoebing is provided by the redun-
dancy that is inherent in the RVLC codewords [99], facilitgtan error correction capability
during RVLC decoding. The VDVQ/RVLC video codec advocateerefore employs a joint
source and channel coding philosophy.

In Section 6.3.3 we imposed a number of constraints govgrtiie allocation of the
VDVQ tiles and RVLC codebooks in order to represent the wagicomponents of the video
source frame. More specifically, these code constraintsreed the legitimate tessellation
of the VDVQ tiles having a range of dimensions and ensurettttevarious fractions of
the source video frame were encoded using the same numbigs.obimce the set of RVLC
codewords that can be employed during video encoding vedpending on which compo-
nent of the source video frame is being encoded, the VDVQ/RVIdeo codec can be said
to employ IrVLCs.

In the VDVQ/RVLC video codec, the complete set of the abowtioned code con-
straints was described by the novel trellis structure otiSe®.3.4, which is reminiscent of
a symbol-based VLC trellis [2]. Hence, the employment o$ tinéllis structure facilitated
the consideration of all legitimate transmission framemgations. This fact was exploited
in order to perform novel Minimum Mean Squared Error (MMSHE)WQ/RVLC encoding
using a variation of the Viterbi algorithm [3], as descritbe&ection 6.4.

Additionally, the employment of the trellis structure chgiVDVQ/RVLC decoding was
shown to guarantee the recovery of legitimate — althoughmeoessarily error-free — video
information in Section 6.5. This ensured that useful viddorimation was never discarded,
unlike in the conventional video decoders of [181,182], seteesingle transmission error may
render an entire video frame invalid. A novel modificatiortled Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [4] was employed durigPosterioriProbability (APP) Soft-In Soft-Out
(SISO) VDVQ/RVLC decoding in order to facilitate the iteket exchange [132] of extrinsic
information with a serially concatenated APP SISO Trellel€d Modulation (TCM) [129]
decoder, as well as to facilitate the soft MMSE reconstaunctif the video sequence. Since
the VDVQ/RVLC trellis structure describes the completeafe? DVQ/RVLC-induced code
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constraints, all of the associated redundancy was beriBfieiploited with the aid of the
modified BCJR algorithm.

In Section 6.6 the serially concatenated and iterativetpded VDVQ/RVLC-TCM scheme
of Section 6.2 was shown to outperform two suitably desiggegrhrate source- and channel-
coding benchmarkers. This was attributed to the benefithe@MDVQ/RVLC codec de-
scribed above, which were realised owing to the joint soarmbchannel coding philosophy
adopted. Indeed, Figure 6.12 shows that the VDVQ/RVLC-TGMesne was capable of
achieving subjectively pleasing video reconstructiongrita Peak Signal to Noise Ratio
(PSNR) of 29.5 dB at a channel Signal to Noise Ratio (SNR)ithatl dB lower than that
of the VQ based benchmarker [181] and 1.6 dB lower than th#teeMPEG-4 [68] based
benchmarker [182].

10.7 Chapters 7 —9: EXIT chart matching

In Chapters 7 — 9 we considered the application of IrVLCs féfTEchart matching. This was
motivated by the fact that an open EXIT chart tunnel was orgated for the VDVQ/RVLC-
TCM scheme of Section 6.2, if the Rayleigh fading channel SR in excess of a threshold
that was 1.29 dB higher than the channel's SNR capacity boamdhown in Figure 10.1.
Note that as described in Secti@R, an infinitesimally low probability of decoding error
can only be achieved, if the EXIT chart tunnel is open andéfiterative decoding trajec-
tory approaches the inner and outer EXIT functions suffityeciosely to facilitate itera-
tive decoding convergence to tlig, 1) point of the EXIT chart. Hence, operation closer
than 1.29 dB from the channel’s capacity bound was prevdotettie VDVQ/RVLC-TCM
scheme, as shown in Figure 6.12. Note that similar disci@parof 1 dB were obtained
for the SBVLC-TCM and BBVLC-TCM schemes of Section 7.3.2shewn in Figure 10.1.
Like the VDVQ/RVLC-TCM scheme of Section 6.2, the SBVLC-TCivid BBVLC-TCM
schemes employed the serial concatenation and iterativedd® of a VLC-based outer
codec with a TCM inner codec and were not designed using EX#&Ftanatching. Further-
more, Figure 10.1 shows that a similar discrepancy of 1.4 elidiben the thresholfl;, /N
value and the channel’s attainable capacity bound wasr@utdor the VLC-URC scheme
of Section 9.5.4, which employs Unity Rate Coding (URC) foe inner codec instead of
TCM. Instead of the capacity bound, the channattsinablecapacity bound is considered
in this case, since it is this that imposes the fundamentat bn the VLC-URC scheme’s
operation, as described in Section 9.5.3. This is justifstte we will propose a solution
to the associated effective throughput loss in Section2L@dtlining our future work. The
corresponding EXIT chart obtained for the VLC-URC schemg&edtion 9.5.4 was provided
in Figure 9.10, together with those of the other schemesdinired in Section 9.5.4, which
are repeated for convenience in Figure 10.7.

In Section 6.6, we observed that open EXIT chart tunnelsccbalve been created for
channel SNRs that are closer to the channel’'s capacity haluthe: inverted VDVQ/RVLC
EXIT function of Figure 6.11 offered a better match with theM scheme’s EXIT function.
More specifically, this would have enabled the EXIT chartninto remain open and be
further narrowed as the channel SNR was reduced towardshémenel’s capacity bound.
The described observation of Section 6.6 may be explaineithdwrea property of EXIT
charts [19], which states that the EXIT chart area enclosethb threshold EXIT chart
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Chapter Scheme Outer codec Inner codec Modem Capacity | Interleaver| Capacity | ACS compleX
Coding | EXIT Coding | EXIT bound — length bound — at 2 dB from
rate matched| rate matched threshold [bits] operating capacity
Eb/NO Eb/No bound

6 VDVQ/RVLC-TCM 0.667 No 0.75 No SPI1I6QAM | 1.29dB 1485 3.04dB N/A °
74250 1.79dB N/A Y
7 SBVLC-TCM 0.52 No 0.75 No SP 16QAM | 1.00dB 217500 1.10dB 3.5 x 10° 3
BBVLC-TCM 0.52 No 0.75 No SP 16QAM | 1.00dB 217500 1.10dB 47 x 10" |o
SBIr'VLC-TCM 0.52 Yes 0.75 No SP 16QAM | 0.50dB 217500 0.60 dB 1.2 x 10° o
BBIr'VLC-TCM 0.52 Yes 0.75 No SP 16QAM | 0.50 dB 217500 0.60dB 8.1 x 10* "3'
Huffman-IrCC-TCM | 0.52 Yes 0.75 No SP 16QAM | 0.50dB 217500 0.80 dB 4.3 x 10* o
8 I'VLC-URC t 0.55 Yes 1 No BPSK 0.42 dB 100000 | 1.41dB 6.0 x 107 | <
0.85 Yes 1 No BPSK 0.70dB 100 000 1.15dB 3.1 x 10* k=

9 VLC-URC 0.53 No 1 No Gray-coded| 1.40 dBx 100000 | 1.60 dBx 5.0 x 10T %

16QAM 1000000 | 1.45dBx 5.0 x 10%

I'VLC-URC-high 0.53 Yes 1 No Gray-coded| 0.54 dBx 100000 | 0.76 dBx 5.6 x 10" %

16QAM 1000000 | 0.63 dBx 5.6 x 10% x

I'VLC-IrURC-high 0.53 Yes 1 Yes Gray-coded| 0.04 dBx 100000 | 0.57 dBx 8.6 x 10" %

16QAM 1000000 | 0.22 dB* 8.6 x 10% *

I'VLC-IrtURC-low 0.53 Yes 1 Yes Gray-coded| 0.04 dBx 100000 | 0.67 dBx 6.1 x 10* %

16QAM 1000000 | 0.17 dBx 6.1 x 10" %

Table 10.1: Iterative decoding performance and compl@fitiie various schemes considered in Chapters 6--18e IrVLC comprises
the component VLEC codebooK¥ LEC™}22 ,, of Table 8.6, which were designed using the GA of Section 8.3he channel’s
attainableF; /N, capacity bound is employed.

YA
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Figure 10.7: EXIT charts for the schemes of Section 9.5.1V{dC-URC arrangement. (c)
I'VLC-URC-high arrangement. (a) IrVLC-IrtURC-high arragmgent. (b) Ir'VLC-IrURC-low

arrangement. The inner EXIT functions are provided for tieshold channel, /N, values,

as specified in Table 9.1.
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tunnel is commensurate with the discrepancy between theneltia capacity bound and the
threshold SNR.

Hence, in Section 7.3.2 we demonstrated that the inverteld Extiction of an outer
IrVLC codec can be shaped to match with an inner EXIT functidare, the IrVLC scheme
generated particular fractions of the IrVLC-encoded tnaigsion frame using different com-
ponent VLC codebooks of either the RVLC or the Variable Lérigtror Correction (VLEC)
[89] class. We showed that the inverted EXIT function of tleeresponding APP SISO
IrVLC decoder depends on the specifically chosen fractidnhe IrVLC-encoded trans-
mission frame that are generated by each component VLC ocolletMore explicitly, the
inverted Ir'VLC EXIT function may be obtained using the eqoatof (7.4), which employs
the described fractions as weights during the averagingetbomponent VLC codebooks’
inverted EXIT functions.

Section 7.3.2 showed that the EXIT chart matching algorittiffi0] may be employed
to design specific parameterisations of the SBIrVLC-TCM B&drVLC-TCM schemes de-
tailed in Section 7.2. Here, the algorithm of [10] was emplbyo shape the inverted IrVLC
EXIT functions to match the EXIT function of the serially aratenated TCM codec. This
facilitated the creation of open EXIT chart tunnels at chedrity, /N, values in excess of a
threshold that is 0.5 dB from the channel’'s capacity bousdsteown in Table 10.1. This is
equal to the 0.5 dB discrepancy shown in Table 10.1 that weesraddl, when matching the
inverted EXIT function of an Irregular Convolutional CodeQC) [175] to the TCM EXIT
function during the parameterisation of the Huffman-IrCCM scheme of Section 7.4.1.

Furthermore, Table 10.1 shows that the open EXIT chart fuah&igure 10.7b was
achieved at a similaF, /N, discrepancy of 0.54 dB from the channel’s attainable capaci
bound for the IrVLC-URC-high arrangement detailed Secidn4. Note that this scheme
employed a serial concatenation of an IrVLC outer codec ad&R& inner codec. A URC
inner codec was also employed by the IrVLC-URC scheme ofi@e&4. Discrepancies
of 0.42 dB and 0.7 dB are shown in Table 10.1 for parametéisaif this scheme that
employed IrVLC coding rates of 0.55 and 0.85, respectivEhjs suggests that an improved
EXIT chart matching was achieved when employing lower IrVtdgling rates, resulting in
open EXIT chart tunnels at channgl,/ N, values that are closer to the channel’'s capacity
bound, as shown in Figures 8.12 and 9.9.

Owing to the aforementioned benefits of EXIT chart matchthg,observed discrepan-
ciesintherange of 0.42 dB — 0.7 dB are lower than those atdaiten EXIT chart matching
was not employed, which are in the range of 1 dB — 1.4 dB, agitbestabove.

10.8 Chapter 8: GA-aided Design of Irregular VLC Components

Chapter 8 showed that our ability to perform EXIT chart matghand to achieve an open
EXIT chart tunnel atF}, /N, values that are close to the channel’s capacity bound is com-
mensurate with the degree of diverse shapes exhibited bpvwbeed EXIT functions of the
component VLC codebook suite. For this reason, the conweatirregular coding design
process strives for obtaining a component VLC codeboole dwving a wide variety of in-
verted EXIT functions, as shown in Figure 10.8. The compoké&iEC codebooks employed

by the IrVLC schemes of Chapters 7 and 8 were designed usiggrihm E of Sectior??.

As discussed in Section 8.1, this algorithm attempts togtegl EC codebooks having max-
imal coding rates that satisfy particular specified distacriteria. However, this algorithm
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does not facilitate the direct control or prediction of thearted EXIT function shapes that
correspond to the designed VLEC codebooks. Hence, in theeational irregular coding
design process depicted in Figure 10.8, a significant amafumnial-and-error based human
interaction is required. This involves the design of a higmber of candidate component
VLEC codebooks, the characterisation of their inverted EXinctions and the selection of
a suite having a wide variety of inverted EXIT functions, asraplified in Chapter 7.

Design Characterise .
candidate | _| candidate | _ corielg(rjltent - cogesé%lrc}nt
component component b g ; pt'

codes codes codes ractions

Figure 10.8: Conventional irregular coding design process

The trial-and-error efforts required to design a suite ¥LIE component codebooks us-
ing Algorithm E of Sectior?? motivated the design of a novel Genetic Algorithm (GA) for
generating the VLEC codebooks of Section 8.3. Unlike Altdon E of Sectior??, this GA
was shown to facilitate the direct control and predictiothafinverted EXIT function shapes
that result for the designed VLEC codebooks, eliminatirg tifial-and-error efforts in the
irregular coding design process. While maintaining désrad/LEC-encoded bit entropies
and IrVLC decoding complexities, the GA of Section 8.3 se®¥k&C codebooks having
arbitrary coding rates and Real-Valued Free Distance ke(RV-FDMS).

This novel RV-FDM was proposed in Section 8.2 as an alteredti the Integer-Valued
Free Distance (IV-FD) lower bound of [89] for the charatation of a VLEC codebook’s
error correction capability. Like the IV-FD lower bound @&9], the RV-FDM considers
the minimum number of differing bits in any pair of equal-dginmlegitimate VLEC-encoded
bit sequences, characterising the probability of occuednr the most likely undetectable
transmission error scenario, as described in Section 8alveMer,unlike the IV-FD lower
bound, the RV-FDM of Section 8.2 also considers how susioleptihe VLEC-encoded bits
are to this transmission error scenario. As a result, th&BW exists within the real domain,
allowing the comparison of the error correction capaletitof two VLEC codebooks having
equal IV-FD lower bounds. This facilitates its employmerithvn the objective function of
the novel GA proposed in Section 8.3.

In Section 8.2, we showed that a VLEC codebook’'s RV-FDM dfféhe number of in-
flection points appearing in the corresponding invertedEihction. More specifically, we
showed that high RV-FDMs are associated with ‘S’-shapedried EXIT functions having
up to two points of inflection, whilst low RV-FDMs result invarted EXIT functions hav-
ing no more than one point of inflection. Furthermore, we stebthat the inverted EXIT
function of a VLEC codebook will reach the top right hand aarof the EXIT chart if its
RV-FDM is at least equal to two [161]. These findings complettiee property [19] that the
area below an inverted VLEC EXIT function equals the coroesiing coding rate. There-
fore, since the inverted VLEC EXIT function shape of a VLEGlebook depends on both its
coding rate and RV-FDM, the GA of Section 8.3 facilitates direct control and prediction
of the inverted EXIT function shapes that result for the gestd VLEC codebooks.
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The employment of both the novel GA of Section 8.3 and AldwnitE of Sectior?? to
design suites of IrVLC component codebooks was investibatéSection 8.5. The suite of
component VLEC codebooks designed in Section 8.5.1 by otglii®A had the wide variety
of inverted EXIT functions shown in Figure 8.8. This was ala by seeking component
VLEC codebooks having a wide variety of coding rates and RWAS. In some cases, high
RV-FDMs were sought, resulting in ‘S’-shaped inverted EXiihctions having up to two
points of inflection, whilst low RV-FDMs were sought for themnaining component VLEC
codebooks, which were associated with inverted EXIT furihaving no more than one
point of inflection. Here, we found that more extreme RV-FDddsld be obtained for VLEC
codebooks having lower coding rates. This may be explaiggtdhigher degree of design
freedom that is facilitated for lower coding rates owing e tonger codewords that this
implies.

Similarly to when the novel GA of Section 8.3 was employeddsign component VLEC
codebooks, trial-and-error was not employed when Algarith of Section?? was used, fa-
cilitating a fair comparison. Instead, a different IV-FDaer bound was sought for each
component VLEC codebook designed using Algorithm E of ®a@P. However, the resul-
tant component VLEC codebooks were found to have relatikigh RV-FDMs and only a
limited variety of coding rates, resulting in the limitedriey of ‘S’-shaped inverted EXIT
functions shown in Figure 8.7.

Owing to its employment of a wider variety of coding rates an@ benefit of its both high
as well as low RV-FDMs, the suite of component VLEC codebadédsigned by our novel
GA in Section 8.5.1 was found to be more suitable for use inTE2tlart matching than that
designed using Algorithm E of Secti@?. More specifically, open EXIT chart tunnels could
be created for the IrVLC-URC scheme of Section 8.4 at chaRpé&N, values within 1 dB of
the Rayleigh fading channel’s capacity bound for a wide eaofgeffective throughputs, when
employing the suite of component VLEC codebooks generasatyour GA, as shown in
Figure 8.12. By contrast, open EXIT chart tunnels could drdyachieved when employing
the suite designed by Algorithm E of Secti®ffor a limited range of effective throughputs
and within a significantly higher margin of 4.4 dB from tl&& /N, capacity bound. This
confirmed the observation that our ability to perform EXITadhmatching depends on how
much variety is exhibited within the inverted EXIT funct®af the suite of component VLEC
codebooks.

However, regardless of the component VLEC codebook suitel@mad, we observed
in Section 8.5.4 that the inverted IrVLC EXIT function canlypibe matched to the EXIT
functions of a regular inner codec with limited accuracyislit because inverted outer EXIT
functions are constrained to starting from {i#e0) point of the EXIT chart, while the inner
EXIT functions typically emerge from a relatively high poaiong thel! axis of the EXIT
chart, as described in Secti@?. As a result, we cannot create an arbitrarily narrow open
EXIT charttunnel. Instead, a lower bound is imposed uporttaosed EXIT chart area and,
hence, upon the discrepancy between the threshpldV, value and the channel’s capacity
bound, owing to the area property of EXIT charts [19].
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10.9 Chapter 9: Joint EXIT Chart Matching of IRVLCs and IRURC s

The above-mentioned findings motivated the introductiamkl Irregular Unity Rate Codes
(I'URC) in Chapter 9, which encode different fractions cé thansmission frame using dif-
ferent component URCs, having various EXIT functions. Ialagy to those of IrVLCs and
IrCCs, IFtURC EXIT functions may be shaped by specificallyesehg the fraction of the
transmission frame that is encoded by each component URMBiswvay, the IrURC EXIT
function may be shaped to emerge from a point on the EXIT hHrtxis that is closer to
the inverted outer EXIT function’s starting point @f, 0).

The serial concatenation and iterative decoding of an Ir'dlu@&r codec with an IrURC
inner codec was demonstrated in Section 9.4. Here, the |®&/t@te of component VLEC
codebooks was designed using the GA of Section 8.3 in ordgenerate the required di-
versity of inverted EXIT function shapes shown in Figure &l repeated for convenience
in Figure 10.9. By contrast, the EXIT functions shown in Fig9.7 and repeated for con-
venience in Figure 10.10 were obtained by selecting the GYRuite of component URCs
from a large number of candidates, as described in Sectto®.9n Section 9.3, we proposed
a novel method for jointly matching the EXIT functions of ttveo serially concatenated ir-
regular codecs. This method iteratively applies the EXlartmatching algorithm of [10] to
alternately match the outer EXIT function to the inner antewersa, simultaneously seek-
ing the highest coding rate that offers an open EXIT charhé&lin Note however, that the
novel modification of Section 9.2 was required in order towlthe EXIT chart matching of
the IF'URC EXIT function, since all component URCs have thmesainity coding rate. The
joint EXIT chart matching algorithm of Section 9.3 was shawrbe able to exploit the in-
creased degree of design freedom that is afforded by enmgjdwio irregular codecs in order
to create an EXIT chart tunnel that is narrow at all pointsglds length. This facilitated
the creation of the marginally open EXIT chart tunnels shawigures 10.7c and 10.7d for
the IrVLC-IrURC-high and IrVLC-IrURC-low arrangements 8&ction 9.5.4, respectively.
Owing to the area property of EXIT charts, these were obthate”;, /N, values that were
just 0.04 dB from the channel’s attainable capacity bousdj@wn in Figure 10.1.

Note that an open EXIT chart tunnel implies that iterativeatBng convergence to an
infinitesimally low probability of error can be achievedppided that the iterative decoding
trajectory approaches the inner and outer EXIT functiofificsently closely, as described in
Section??. However, throughout this monograph we found that highiguedconstructions
could not be achieved at the threshdlg/N, values, where the EXIT chart tunnels open.
This is owed to the BCJR algorithm’s assumption [4] that altrelation within the LLR
frames exchanged by the APP SISO decoders is successftilfyatad by the intermediary
interleavers. If this is not the case, the iterative decgdiajectory will not match perfectly
with the inner and outer EXIT functions and the tunnel musfusther widened before the
trajectory can reach the top right hand corner of the EXITrighéhich is associated with an
infinitesimally low probability of error, as described inc@ien ??. Since the interleaver’s
ability to mitigate the correlation is proportional to itsnigth, longer interleavers can be
expected to yield lower discrepancies between ilp¢N, value at which the EXIT chart
tunnel opens and that at which it is sufficiently widened tadilifiate a high reconstruction
quality. Indeed, this relationship may be observed in Fgl0.11, which provides a scatter
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Figure 10.9: Inverted EXIT functions for the component VLE@lebooks employed by the
IrVLC-IrURC-high and IrVLC-IrURC-low arrangements of Sem 9.5.4.

Figure 10.10: EXIT functions corresponding to a Gray-cotie@AM-modulated Rayleigh
fading channel SNR of 8 dB for the component URC codes emgdlbyehe IrVLC-IrURC-
high and IrVLC-IrURC-low arrangements of Section 9.5.4.
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plot of the discrepancies and interleaver lengths giveralld10.1, as will be detailed in our
forthcoming discussions.

2 l T l T l T

Operating — threshold E;/N, [dB]

0 | \
10° 10 10° 106
Interleaver length [bits]

Figure 10.11: Scatter plot of the interleaver lengths mtediin Table 10.1 and the corre-
sponding discrepancies between g N, value at which EXIT chart tunnel opens and that
at which it is sufficiently widened to facilitate a high reabruction quality.

In Section 6.6, we characterised the discrepancy betweeththsholdE, /N, value at
which an open EXIT chart tunnel could be created for the VDRY)/C-TCM video trans-
mission scheme and the operatifg/ N, value at which it could achieve a high quality
reconstruction having a Peak Signal to Noise Ratio (PSNRYd dB. This discrepancy was
found to be 1.75 dB, when the interleaver length was equdilabdf a single encoded video
frame, namelyl 485 bits, as shown in Table 10.1. By contrast, when 50 encodexb\fidames
were concatenated to give an interleaver lengtiddf50 bits, the discrepancy was reduced
to just 0.5 dB, facilitating operation at 1.79 dB from the chel's £, /N, capacity bound.
However in Section 6.6, this scheme was shown to incur a ®edgt since the video frame
rate was 10 fps and because all 50 frames must be receivet tleéy can be deinterleaved.

The discrepancy between the threshbld N, value at which an open EXIT chart tunnel
could be created for the arrangements of Section 9.5.4 andpkratingE, /N, value at
which they could achieve a BER 06~ was characterised in Section 9.6. Whet0a 000-
bit interleaver was employed, the discrepancies for the MIRIC and Ir'VLC-URC-high
arrangements were found to be 0.2 dB and 0.22 dB, respsgta®ishown in Table 10.1.
However, these discrepancies were reduced to 0.05 dB afdiB8.Orespectively, when we
employed a longer interleaver, having a length 600 000 bits. Larger discrepancies were
observed for the IrVLC-IrURC-high and Ir'VLC-IrURC-low amngements, owing to their
narrow EXIT chart tunnels, as discussed in Section 9.6. &knexe 0.53 dB and 0.67 dB,
respectively, when th&00 000-bit interleaver was employed, as compared to 0.18 dB and
0.13 dB, respectively, when tHe)00 000-bit interleaver was employed. Note that the IrVLC-
IrURC-low arrangement using tHed00 000-bit interleaver could achieve a BER of less than
10~° for E},/Ny in excess of a limit that was just 0.17 dB from the channelainable
capacity bound, as shown in Table 10.1. This is comparabthad.13 dB discrepancy
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demonstrated for Irregular Low Density Parity Check (Irl@®Rodes [58, 166] and superior
to the 0.25 dB discrepancy found for irregular turbo cod€§.[5

In Section 7.4, we showed that the SBVLC-, BBVLC-, SBIrVLGwaBBIrVLC-TCM
schemes using 217 500-bit interleaver could achieve a high quality source sameé®n-
struction SNR of 20 dB foiE, /N, values in excess of a limit that was 0.1 dB from the
threshold at which an open EXIT chart tunnel was createch@sisin Table 10.1. However,
in the case of the Huffman-IrCC-TCM scheme of Section 7.th& corresponding discrep-
ancy was equal to the higher value of 0.3 dB. This was expthineSection 7.4.3 by the
relatively high sensitivity of the APP SISO IrCC decoder ty aesidual correlation within
the iteratively exchanged LLRs, that was insufficientlyigated by the217 500-bit inter-
leaver. This resulted in the poor correlation between tbeafive decoding trajectory and
the inverted IrCC EXIT function. More specifically, we conded that an APP SISO IrCC
decoder’s sensitivity to this correlation increased iftbsling rate is reduced or if, in partic-
ular, we increase its coding memory. Hence, the high seitgitf the Huffman-IrCC-TCM
scheme’s APP SISO IrCC decoder was attributed to its religtivigh coding memory of 4.

Section 7.4.3 also concluded that an APP SISO VLC decodensitivity to the afore-
mentioned correlation depends only on its coding rate.dddm Section 8.6, the APP SISO
IrVLC decoder’s sensitivity to this extrinsic informatiaorrelation was found to increase
as the IrVLC coding rate was reduced. As shown in Table 18el|iVLC-URC scheme of
Section 8.4 using &00 000-bit interleaver and an Ir'VLC coding rate of 0.85 could agkie
a BER of less than0~5 for E;,/N, values in excess of a limit that was 0.45 dB from the
threshold at which an open EXIT chart tunnel was created. é¥ew this discrepancy grew
to 0.99 dB when the IrVLC coding rate was reduced to 0.55, es/slin Table 10.1.

Throughout this book we have considered receivers in whi¢hisformation is itera-
tively exchanged between APP SISO decoders and in which lehéind decision is made by
a MAP sequence estimator. These components of the recgipbrthe BCJIR algorithm [4]
and the Viterbi algorithm [3] to suitably designed trelig&2, 90]. These require only Add,
Compare and Select (ACS) operations if all calculationsperormed in the logarithmic
probability domain and if a lookup table is employed for eating the Jacobian approxima-
tion [197]. Since each individual ACS operation requires same resources in a systolic-
array based chip, the number of ACS operations performedrbgeiver may be employed
to characterise the complexity/area/speed trade-offiredtor its implementation.

In Section 7.4, we introduced the novel plot of Figure 7.Jrxfaracterising the iterative
decoding complexity of a receiver. This plot provides therage number of ACS opera-
tions required per source symbol to achieve particularnstraction qualities as a function
of the channel'¥, /N, value. This plot, as well as those of Figures 7.13, 8.17, 8itB9.12,
showed that particular reconstruction qualities can béesel with lower complexities as the
channel'sE}, /Ny value is increased. This may be explained by the associatiEhimg of the
open EXIT chart tunnel, requiring fewer decoding iterasidor the iterative decoding trajec-
tory to reach the particular point on the EXIT chart that iscasated with the reconstruction
quality considered.

Additionally, Figures 7.12 and 7.13 showed that lower carjples may be maintained,
provided that lower reconstruction qualities can be td&tasince less decoding iterations
are required for the iterative decoding trajectory to retihparticular point on the EXIT
chart that is associated with a lower reconstruction quatbwever, Section 7.4.5 observed
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that in the approach of iterative decoding convergencgelegconstruction quality gains are
obtained for relatively small amounts of additional congtional complexity. We concluded
that if the channeE;, /N, value is sufficiently high to create an open EXIT chart tuntredn
we can typically justify the computational complexity répad for the iterative decoding tra-
jectory to reach thél, 1) point of the EXIT chart, owing to the infinitesimally low prability

of error that results.

In Sections 7.4.5, 8.6 and 9.5.4 we showed that outer APP SK&0ding and MAP
sequence estimation are typically associated with sigmiflg higher computational com-
plexities than inner APP SISO decoding. In the most extresmse considered in this volume,
the outer decoders of the SBVLC- and SBIrVLC-TCM schemeseatiSn 7.2 accounted for
about 97% of the ACS operations employed per source sampleoBrast, the outer de-
coders of the Huffman-IrCC-TCM scheme of Section 7.4.1 wesponsible for about 60%
of the iterative decoding complexity, in the most balancaskecconsidered.

In Table 10.1, we provide the average number of ACS opersitieguired per source sym-
bol to achieve high quality reconstructions at/ggy Ny value that is 2 dB from the channel’s
capacity bound for each of the schemes considered in Sscti@and 8.5.4. Additionally,
for the schemes of Section 9.6, the complexity atEai N, value that is 2 dB from the
channel'sattainablecapacity bound is provided in Table 10.1. Furthermore, f&di0.12
plots the complexities of the aforementioned schemes fange of £, /Ny discrepancies
from the capacity bounds. While the complexities shown ihl&a0.1 and Figure 10.12
for the schemes of Section 7.2 are associated with obtaminigh-quality source sample
reconstruction SNR of 20 dB, those provided for the schem&ections 8.5.4 and 9.6 are
associated with achieving a BER td—°. The comparison of the described complexities is
fair, since each of the schemes considered in Chapters 7 eil@atas the transmission of
16-ary source symbols over an uncorrelated narrowbanceRgyfading channel. Further-
more, in all cases, the source symbols have the probabibfi@ccurrence that result from
the Lloyd-Max quantisation [74, 75] of Gaussian distriltlg®urce samples, as described in
Section 7.2.1.

Note that Figure 10.12 illustrates the discrepancies kextvthe channel’'s appropriate
capacity bounds and thB, /N, values above which the schemes considered in Chapters 7
— 9 may achieve high quality reconstructions, confirmingdtserepancies provided in Ta-
ble 10.1. Furthermore, at high discrepancies from the ablanh;, /N, capacity bounds,
Figure 10.12 shows that similar iterative decoding comifitsx may be observed for the
BBVLC-, BBIrVLC- and Huffman-IrCC-TCM schemes of Section27as well as for each
scheme introduced in Sections 8.5.4 and 9.6. Indeed, thespmnding ACS counts provided
in Table 10.1 can be seen to have similar values in the ranffelok 10, 8.6 x 10%]. This
similarity may be explained because all of these schemesogrhji-based trellises [52, 90]
as the basis of their outer APP SISO decoders and MAP seqestinetors. By contrast,
the SBVLC- and SBIr'VLC-TCM schemes of Section 7.2 employetisymbol-based VLC
trellis of [2] as the basis of their APP SISO decoders. Fosghgchemes, Table 10.1 pro-
vides ACS operation counts 8f5 x 10° and1.2 x 10°, respectively, which are significantly
higher than those provided for the schemes employing Ilsietdrellises, as illustrated in
Figure 10.12. This increased complexity may be attributettieé number of trellis transitions
that are employed in symbol-based VLC trellises, which gdslly significantly higher than
the number employed in their bit-based equivalents, agitbestin Sectior??.
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Average ACS operations per source symbol

0 0.5 1 1.5 2
Ey /Ny from capacity bound [dB]

SBVLC-TCM —e—

BBVLC-TCM —e—

SBIrVLC-TCM —=—

BBIrVLC-TCM —&—

Huffman-IrCC-TCM —*—

IrVLC-URC 0.55-rate outer codec ——
IrVLC-URC 0.85-rate outer codec —>*—
VLC-URC 100 000-bit interleaver ——
VLC-URC 1000 000-bit interleaver —e—
[rVLC-URC-high 100 000-bit interleaver ——
[rVLC-URC-high 1000 000-bit interleaver —e—
[rVLC-IrURC-high 100 000-bit interleaver ——
IrVLC-IrURC-high 1000 000-bit interleaver —a—
IrVLC-IrtURC-low 100 000-bit interleaver ——
IrVLC-Irt URC-low 1 000 000-bit interleaver —=—

Figure 10.12: Average number of ACS operations per sourn#hel/ required to achieve
high quality reconstructions at a rangefaf/ N, discrepancies from the appropriate capacity
bounds for the schemes of Chapters 7 — 9.
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The computational complexities provided in Figure 10.12tfe IrVLC-URC arrange-
ment of Section 8.5.4 having an IrVLC coding rate of 0.85 carséen to be lower than that
associated with an IrVLC coding rate of 0.55. This may be @&xygd by the higher number of
bit-based trellis transitions that are required to reprees longer codewords of the 0.55-rate
Ir'VLC, as discussed in Section 8.6. For this reason, we cpaatower computational com-
plexities to be associated with VLCs and IrVLCs having higteding rates in general. This
is confirmed by the average numbers of ACS operations peednper source symbol that
are provided for VLEC codebooks having various coding ratésgures 8.7 — 8.10 and 9.5.
These figures additionally show that VLEC codebooks havétatively low RV-FDMs are
also associated with low computational complexities. Tas exploited during the design
of the Ir'VLC-IrURC-low arrangement of Section 9.5.4. Mogesifically, the novel modi-
fication of the EXIT chart matching algorithm [10] of Sectiér2 was employed to jointly
perform EXIT chart matching, while seeking a reduced IrVidinputational complexity by
invoking component VLEC codebooks having a low RV-FDM. Aseauit, in Table 10.1,
the computational complexity of the Ir'VLC-IrURC-low argement can be seen to be 25%
lower than that of the IrVLC-IrURC-high arrangement, whighas designed without seeking
a reduced IrVLC computational complexity. Note that a redlicomputational complexity
could not be achieved when the IrVLC’s EXIT function was nhetd to that of a regular
URC, as discussed in Section 9.5.4. This was found to be Becamlike the 'S’-shaped
inverted EXIT functions of the component VLEC codebooksihga high RV-FDM, those
associated with a low RV-FDM do not rise rapidly enough to ehawith the URC EXIT
function, which starts from a high point along the EXIT clgaff axis.

In Section 7.2.1, we showed that the number of transitionsi@yed by a symbol-based
VLC trellis, and hence its computational complexity and neyrrequirement, scales with
the square of the number of source symbols that it simuliasigalecodes. For this reason,
the total computational complexity and memory requirencantbe reduced by decomposing
each source symbol frame into sub-frames, which are decesfgatrately. However, owing
to the nature of VLCs, the lengths of VLC-encoded transmissub-frames typically vary
from frame-to-frame. In order to facilitate their decodinghe receiver, the transmitter must
convey the lengths of the sub-frames as explicit side in&tion, which should be protected
using a low-rate channel code, owing to its error sensitateime. Hence, the choice of how
many sub-frames to employ is a trade-off between the amdusitle information required
and the computational complexity as well as the memory requénts per source symbol.
Note that the complexities provided in Table 10.1 and Figl@el2 for the SBVLC- and
SBIrVLC-TCM schemes of Section 7.2 are therefore specifith® particular considered
case, in which each source symbol sub-frame comprised IBdg. In this arrangement,
the required side information was found to account for 4%eftotal information conveyed
in Section 7.3.

By contrast, Section 7.2.1 showed that the number of tiansiper source symbol em-
ployed by a bit-based trellis is independent of the numbeoafce symbols that it simultane-
ously decodes. Hence, the total computational complexityraemory requirememannot
be reduced by decomposing each source symbol frame intfyaunes in this case. However,
the memory required to decode each source symbol sub-fraiiMgeweduced if more sub-
frames are employed. If the sub-frames are decoded segligrliis memory can be reused
for each sub-frame and a lower-cost implementation williite By contrast, the amount of



10.10. Chapter ?7?: Iteratively Decoded VLC Space-Time CodeModulation 389

memory required by an implementation that decodes all salnés concurrently will not be
affected by the number of sub-frames employed.

In the schemes of Sections 8.5.4 and 9.6, the amount of sideriation required was
significantly reduced by employing just a single source syinsnb-frame for each Ir'VLC
component code. Using this approach, we found that lessrdolenation was required when
a longer interleaver was employed, as described in Secti®n lfdeed, the required side
information was reduced to just 0.006% of the total inforimatonveyed when 2000 000-
bit interleaver was employed.

10.10 Chapter ??: Iteratively Decoded VLC Space-Time Coded
Modulation

In this chapter an iteratively decoded variable length sgane coded modulation design
was proposed. The joint design of source-coding, space¢oded modulation and iterative
decoding was shown to achieve both spatial diversity andiphexing gain, as well as coding
and iteration gains at the same time. The variable lengtletsire of the individual codewords
mapped to the maximum &¥; transmit antennas imposes no synchronisation and errpr pro
agation problems. The convergence properties of the peopdk-STCM-ID scheme were
analysed using 3D symbol-based EXIT charts as well as 2D EK#Ft projections. A signif-
icant iteration gain was achieved by the VL-STCM-ID schemkich hence outperformed
both the non-iterative VL-STCM scheme as well as the FL-STG#chmarker with the
aid of NV, unity-rate recursive feedback precoders. The VL-STCM-dDBesne attains a near
MIMO channel capacity performance.

10.11 Chapter ??: Iterative Detection of Three-Stage Cond¢anated
Ir'VLC FFH-MFSK

In this chapter we investigated a serially concatenatdddfirFH-MFSK Transceiver oper-
ating in a Rayleigh fading channel, when the transmittedadigzas also corrupted by PBNJ.
Our EXIT chart analysis demonstrated that a two-stage ¢enated FFH-MFSK requires the
employment of an additional unity-rate precoder for theesatkmaking the channel to appear
recursive. For the sake of ensuring near-capacity operatie IrVLC codec was specifically
designed to ensure that the inverted EXIT curve of the IrVigeatler matches the EXIT
curve of the inner decoder. In this way, an open EXIT charh@irmay be created even
at low SNR values, providing source-correlation-dependdditional performance gains of
up to 1.1dB over the regular VLC-based benchmark schemeeSire employment of the
VLC involves non-identical occurence probabilities foe tsource symbols, it is not possible
to provide a comparison of the proposed scheme with the-sfatee-art in the context of
coded FFH-MFSK which traditionally employs equiprobalderse symbols or bits. How-
ever, we have provided a comparison of the IrVLC scheme wkth.@ scheme dispensing
with the precoder; consequently we noted that the precaidied schemes yield &),/ Ny
gain in excess of 7dB over the system dispensing with theoglerg which suffers from an
error floor when jamming is severe.

Moreover, we demonstrated that the 3-stage concatenatimiving the demodulator,
the rate-1 decoder and the outer IrVLC decoder yields sapperformance compared to
the 2-stage concatenation of the rate-1 decoder and thedrdeder. Naturally, the 3-stage
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scheme imposes a higher complexity. By contrast, we fouatalprecoder of memory 1 is
more suitable for the 3-stage Ir'VLC scheme, while the 2estaipeme requires a precoder of
memory 3, thus the memory-3 rate-1 decoder imposes a sorhéiginer complexity, than
its memory-1 counterpart.

In conclusion, the precoder-aided FFH-MFSK-VLC schemestituies a moderate-complexity
design option, which can be employed in systems communig#trough channels contami-
nated by PBNJ for transmission of joint source and chanreléed audio or video signals. If
a higher complexity can be afforded, the IrVLC based scheiffeesoadditional performance
improvements. In our future work, we will investigate moophisticated three-stage itera-
tive decoding, exchanging extrinsic information amonigstdemodulator, the rate-1 decoder
and the outer decoder.

10.12 Future work

As shown in Table 10.1, the schemes of Sections 6.2 and 7.bgethaRrcy = 3/4-rate
TCM inner codec together with Set Partitioned (S®)cv = 16-ary Quadrature Ampli-
tude Modulation (16QAM) [129] to facilitate transmissiom&er an uncorrelated narrowband
Rayleigh fading channel. However, in these schemes thermamieffective throughput is
limited to Rrc - logs (Mrcm) = 3 bits per channel use. Owing to the less-than-unity TCM
coding rate, an effective throughput loss occurs for highnetel £, /Ny values, where the
capacity of the 16QAM modulated channel will exceed the maxn effective throughput of

3 bits per channel use and will approdoh, (MrcMm) = 4 bits per channel use.

This motivated the employment of an inner URC codec in Se@id, which used/gpsx =
2 Binary Phase Shift Keying (BPSK) [116] to facilitate trarissions over an uncorrelated
narrowband Rayleigh fading channel, as shown in Figure. Hete, the maximum effective
throughput was equal to the maximum capacitjoaf, (Mppsk) = 1 bit per channel use and
no effective throughputloss was incurred. Indeed, thesstreaeath the URC EXIT functions
provided in Figure 8.13 were found to be equal to the cornedjmg channel capacities, as
predicted by the area property of EXIT charts [19].

In the scheme of Section 9.4, we opted for employing a UR@damer codec together
with Mqam = 16QAM instead of BPSK, since this facilitates a higher maximeffective
throughput oflog, (Mqam) = 4 bits per channel use. In Section 9.5.2 we showed that the
receiver of Figure 9.3 would benefit from the iterative endit information exchange of the
16QAM demodulator and the inner APP SISO decoder. Howewethé sake of obtaining an
implementational and computational complexity saving,rceiver of Figure 9.3 employed
only the ‘one-shot’ activation of the 16QAM demodulator. whver, as a result, when mul-
tiplied bylog,(Mqanm) = 4, the average area beneath the URC EXIT functions exemplified
in Figure 9.7 did not equal the corresponding channel céipaci

In Section 9.5.3, we defined the attainable capacity of a mélahaving a particular
E, /Ny value as being equal to the average area beneath the cordasgp®JRC EXIT func-
tions, multiplied bylog, (Mqam) = 4. We showed that the channel’s attainable capacity rep-
resents an upper bound to the maximum effective througlypwtiiich an open EXIT chart
tunnel can be achieved. This is because a scheme’s efféutingghput may be approximated
by multiplying the area beneath the inverted outer EXIT fiorcby log, (Mqawm) = 4 [19].
Since, this area must be lower than that beneath the innef EXliction in order for an
open EXIT chart to be facilitated, iterative decoding cagesce to an infinitesimally low
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probability of error is prevented when the effective thrbpgt is higher than the channel’'s
attainable capacity. The discrepancy between the charaaglacity and itattainablecapac-
ity therefore imposes an effective throughput loss.

Section 9.5.2 showed that this effective throughput loss m@imised by employing
Gray-coded 16QAM [141], since the corresponding EXIT fimetof Figure 9.8 is opti-
mised to emerge from the highest possible point on the EXArt&h!* axis. As shown in
Figure 9.9, the effective throughput loss resulted in ardjzancy of 0.29 dB between the
channel'sE, /Ny capacity bound and iattainablecapacity bound. Hence, the 0.17 dB dis-
crepancy between the channel’s attainable capacity bouthth& F, / Ny value at which the
Ir'VLC-IrURC-low arrangement could achieve a BER Idf° that is shown in Table 10.1,
represents a 0.46 dB discrepancy from the channel’s cagdamiind.

In this section, we propose a method for mitigating the éffechroughput loss of the
I'VLC-IrtURC scheme detailed in Section 9.4. However, thiduon does not employ
iterative extrinsic information exchange between the 16Qdemodulator and the inner
APP SISO decoder. Instead, the benefit of iterative demtidalés mitigated by replac-
ing the bit-based IrURC inner codec of Figure 9.3 with a Syhiased Irregular Unity
Code (SBIrURC). Unlike a bit-based IrURC, this SBIrURC caredtly employ the symbol
probabilities obtained for the demodulatof$éyan = 16 constellation points without first
converting them into sets abg,(Mqanm) = 4 bit probabilities. We refer to this proposed
solution as the IrVLC-SBIrURC scheme and Figure 10.13 mtesiits schematic, which is
reminiscent of the IrVLC-IrtURC schematic provided in Figl@.3.
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Figure 10.13: Schematic of the IrVLC-SBIrURC scheme.

In the Ir'VLC-SBIrURC scheme of Figure 10.13, Ir'VLC encodir@PP SISO decod-
ing and MAP sequence estimation are performed in exactlgdinge way as in the IrVLC-
IrTURC scheme of Figure 9.3. Furthermore, the source symbohds, the transmission
frameu and the LLR framed.;(u) as well asLy(u) are composed oN number of sub-
frames, as in the Ir'VLC-IrFURC scheme of Figure 9.3. Likewite interleaved transmis-
sion frameu’ and the LLR framed./,(u’) as well asL;(u’) are composed aR number of
sub-frames, as before. Additionally, iterative decodmgerformed as in the IrVLC-IrURC
receiver of Figure 9.3, with the subtraction of th@riori LLR frames from thea posteriori
LLR frames and the interleaving of the resultant extrinsic LLR frames, as shown in Fig-
ure 10.13. Finally, as in the Ir'VLC-IrURC scheme of Figur8,3he outer and inner EXIT
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functions of the IrVLC-SBIrURC scheme may be shaped by s$jpatly selecting the frac-
tions,{a"}Y_, and{a"}E_,, of the framesn andu’, that are composed by the sub-frames,
{u"}N_, and{u'"}E |, respectively. The IrVLC-SBIrURC scheme of Figure 10.1f8edls
from the IrVLC-IrURC scheme of Figure 9.3 in terms of the ggiem of the irregular inner
codec and the modem.

In the IrVLC-SBIrURC transmitter of Figure 10.13, each im¢éaved transmission sub-
frameu’" is decomposed into sets bfg,(Mqgam) = 4 consecutive bits, which are con-
verted intoMqam = 16-ary symbol values. In analogy with the Ir'VLC-IFURC schenie o
Figure 9.3, theMgan = 16-ary symbol values corresponding to each interleaved tnégs
sion sub-framer’” are encoded using a Symbol-Based Unity Rate Code (SBUR@)dhav
different symbol-based Linear Feedback Shift RegisteiSiR)-design. For example, these
LFSRs could employ the designs of Figure 9.6 if they were firedito employ modulo-16
additions and memory elements. Following SBURC encodintgeénrVLC-SBIrURC trans-
mitter, the sub-frame” of SBURC-encoded/qan = 16-ary symbol values is obtained, as
shown in Figure 10.13.

In the Ir'VLC-SBIrURC transmitter of Figure 10.13, thdqanm = 16-ary symbol val-
ues of each SBURC-encoded sub-franieare mapped td/gam = 16QAM constellation
points in order to generate the corresponding channel isypuibol sub-framex”. How-
ever, a different mapping scheme may be employed for eacliR&Be&hcoded sub-frame’,
facilitating irregular modulation, as shown in Figure 18. SuitablelMgam = 16QAM map-
ping schemes include Gray coding [116], SP [129], Modifiet Fetitioning (MSP) [206],
the mixed mapping of [206], the Maximum Squared Euclideanmgie(MSEW) mapping
of [207] and theM 16* and M 16" mappings of [208].

Following modulation, the resultant channel input symhdi-frames{x"}£ _, are con-
catenated in order to obtain the channel input symbol framehis is transmitted over an
uncorrelated narrowband Rayleigh fading channel and vedeis the channel output sym-
bol framey, as shown in Figure 10.13. In the IrVLC-SBIrURC receiver dfufe 10.13,
the channel output symbol franyeis decomposed int& number of sub-frame§y” } X,
each of which is interpreted by a differeifgan = 16QAM demodulator. More specifi-
cally, for each channel output symbol, the demodulatorsrdghe the probability that the
corresponding channel input symbol conveyed each ofifhgn = 16 constellation points.
Following this, theMqam = 16 probabilities associated with each channel output symbol
in the sub-framey” are provided as priori information to the corresponding APP SISO
SBURC decoder by means of the Logarithri€osterioriProbability (Log-APP) sub-frame
Li(v"), as shown in Figure 10.13.

In the Ir'VLC-SBIrURC receiver of Figure 10.13, eaalpriori LLR sub-frameL’ (u'")
is decomposed into sets bfg, (Mqgam) = 4 consecutive LLRs, which are converted into
sets ofMqam = 16 Log-APPs in a manner similar to that of TCM [129]. The TCM syohb
based trellis [129] is employed to interpret these Log-AR&gether with those of the Log-
APP sub-framd.: (v") provided by the demodulator. Here, the BCJR algorithm [4ris
ployed to determine sets dffoan = 16 a posterioriLog-APPs, which are converted into
sets oflog, (Mqam) = 4 LLRs for thea posterioriLLR sub-frameL; (u'").

In addition to mitigating the effective throughputlossleéirVLC-IrURC scheme of Fig-
ure 9.3, the IrVLC-SBIrURC scheme facilitates a higher @éegof design freedom, owing to
its employment of irregular modulation. While a differerXlE function may be obtained for
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each component URC code in the Ir'VLC-IrURC scheme of Figusetie IrVLC-SBIrURC
scheme benefits from a different EXIT function for eacmbinatiorof the component URC
code and component 16QAM mapping. As a result, a greatestyasf inner EXIT function
shapes can be obtained, facilitating the improved jointiriag of the inner and outer EXIT
functions, as described in Section 9.3.

Note however, that APP SISO SBURC decoders are associdted significantly higher
computational complexity than their bit-based equivageotwving to the significantly higher
number of trellis transitions that they employ [129]. Foaewle, alganm = 16-ary SBURC
employing just one memory element in its LFSR is associati#éd avtrellis that employs
Maqawm = 16 transitions from each al{qam = 16 states for each set &g, (Mqam) = 4
bits. By contrast, the equivalent bit-based URC employsthansitions from each of two
states for each bit. We can therefore expectthe APP SISQldeobthe described SBURC to
have a 16 times higher complexity than that of the equivdiértased URC. With reference
to Table 9.7, we may observe that a 16 times increase in ther iIARP SISO decoder’s
complexity would cause it to eclipse that of the outer APPGstecoder and dominate the
iterative decoding complexity. This could be counteredyéner, by employing the novel
modification to the EXIT chart matching algorithm [10] of $iea 9.2 for the sake of jointly
perform EXIT chart matching while seeking a reduced SBIrUf@putational complexity.

In the light of these discussions, our future work will catesithe design and characteri-
sation of the IrVLC-SBIrURC scheme of Figure 9.3.

10.13 Closing remarks

Throughout this book we have introduced novel IrVLC-aidddeless telecommunication
schemes and methodologies for their design, in the pur§uiear-capacity operation. In
Chapter 6, we developed a scheme without making any paatieffort to facilitate its near-
capacity operation. Here, EXIT chart analysis was only eygd in order to quantify how
close to capacity the scheme may operate. By contrast, Ebdit enalysis was employed as
an integral part of the design process in Chapter 7. Moreifigedty, EXIT chart matching
was employed to shape the IrVLC EXIT function to match thathef serially concatenated
inner codec and hence to facilitate near-capacity operatarther gains were achieved in
Chapter 8 by challenging the conventional irregular codiegign process of Figure 10.8.
Instead of selecting a suite of Ir'VLC components having aewidriety of EXIT function
shapes from a set of many candidates, a suite was directiyréesusing the RV-FDM of
Section 8.2 and GA of Section 8.3. In Chapter 9, we invokedriggular inner codec to
complement the IrVLC, facilitating a higher degree of desigeedom. This was exploited
by the joint EXIT chart matching algorithm of Section 9.3 irder to match the IrVLC and
inner EXIT functions to each other, facilitating even ‘neato-capacity’ operation. Finally,
in Section 10.12 outlining our future work, we proposed alradtfor mitigating the effective
throughput loss that was associated with the scheme of €h@pas well as for facilitating
the employment of irregular modulation and for providingeaen higher degree of design
freedom. With these benefits, we may expect to achieve ‘negr-capacity’ operation.
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