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Chapter 1
Information Theory Basics

1.1 Issues in Information Theory
The ultimate aim of telecommunications is to communicate information between two geo-
graphically separated locations via a communications channel with adequate quality. The the-
oretical foundations of information theory accrue from Shannon’s pioneering work [24–27],
and hence most tutorial interpretations of his work over thepast fifty years rely fundamentally
on [24–27]. This chapter is no exception in this respect. Throughout this chapter we make
frequent references to Shannon’s seminal papers and to the work of various authors offering
further insights into Shannonian information theory. Since this monograph aims to provide
an all-encompassing coverage of video compression and communications, we begin by ad-
dressing the underlying theoretical principles using a light-hearted approach, often relying on
worked examples.

Early forms of human telecommunications were based on smoke, drum or light signals,
bonfires, semaphores, and the like. Practicalinformation sourcescan be classified as analog
and digital. The output of an analog source is a continuous function of time, such as, for
example, the air pressure variation at the membrane of a microphone due to someone talk-
ing. The roots of Nyquist’s sampling theorem are based on hisobservation of the maximum
achievable telegraph transmission rate over bandlimited channels [28]. In order to be able to
satisfy Nyquist’s sampling theorem the analogue source signal has to bebandlimitedbefore
sampling. The analog source signal has to be transformed into a digital representation with
the aid of time- and amplitude-discretization usingsampling and quantization.

The output of a digital source is one of a finite set of ordered,discrete symbols often
referred to as an alphabet. Digital sources are usually described by a range of characteristics,
such asthe source alphabet, the symbol rate, the symbol probabilities, and the probabilistic
interdependence of symbols. For example, the probability ofu following q in the English
language isp = 1, as in the word “equation.” Similarly, the joint probability of all pairs of
consecutive symbols can be evaluated.

In recent years, electronic telecommunications have become prevalent, although most
information sources provide information in other forms. For electronic telecommunications,
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the source information must be converted to electronic signals by atransducer. For example,
a microphone converts the air pressure waveformp(t) into voltage variationv(t), where

v(t) = c · p(t − τ), (1.1)

and the constantc represents a scaling factor, whileτ is a delay parameter. Similarly, a video
camera scans the natural three-dimensional scene using optics and converts it into electronic
waveforms for transmission.

The electronic signal is then transmitted over thecommunications channeland converted
back to the required form, which may be carried out, for example, by a loudspeaker. It is im-
portant to ensure that the channel conveys the transmitted signal with adequate quality to the
receiver in order to enable information recovery. Communications channels can be classified
according to their ability to support analog or digital transmission of the source signals in a
simplex, duplex, or half-duplexfashion overfixed or mobilephysical channels constituted by
pairs of wires, Time Division Multiple Access (TDMA) time-slots, or a Frequency Division
Multiple Access (FDMA) frequency slot.

Thechannel impairmentsmay include superimposed, unwanted random signals, such as
thermal noise, crosstalk via multiplex systems from other users, man-made interference from
car ignition, fluorescent lighting, and other natural sources such as lightning. Just as the
natural sound pressure wave between two conversing personswill be impaired by the acous-
tic background noise at a busy railway station, similarly the reception quality of electronic
signals will be affected by the above unwanted electronic signals. In contrast, distortion man-
ifests itself differently from additive noise sources, since no impairment is explicitly added.
Distortion is more akin to the phenomenon of reverberating loudspeaker announcements in a
large, vacant hall, where no noise sources are present.

Some of the channel impairments can be mitigated or counteracted; others cannot. For ex-
ample, the effects of unpredictable additive random noise cannot be removed or “subtracted”
at the receiver. Its effects can be mitigated by increasing the transmitted signal’s power, but
the transmitted power cannot be increased without penalties, since the system’s nonlinear
distortion rapidly becomes dominant at higher signal levels. This process is similar to the
phenomenon of increasing the music volume in a car parked near a busy road to a level where
the amplifier’s distortion becomes annoyingly dominant.

In practical systems, theSignal-to-Noise Ratio(SNR) quantifying the wanted and un-
wanted signal powers at the channel’s output is a prime channel parameter. Other important
channel parametersare itsamplitude and phase response, determining its usable bandwidth
(B), over which the signal can be transmitted without excessivedistortion. Among the most
frequently used statistical noise properties are theprobability density function(PDF),cumu-
lative density function(CDF), andpower spectral density(PSD).

The fundamentalcommunications system design considerationsare whether a high-fidelity
(HI-FI) or just acceptable video or speech quality is required from a system, which predeter-
mines, among other factors, its cost, bandwidth requirements, as well as the number of chan-
nels available, and has implementational complexity ramifications. Equally important are
the issues of robustness against channel impairments, system delay, and so on. The required
transmission range and worldwide roaming capabilities, the maximum available transmission
speed in terms of symbols/sec, information confidentiality, reception reliability, convenient
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Figure 1.1: Basic transmission model of information theory.

lightweight, solar-charged design, are similarly salientcharacteristics of a communications
system.

Information theory deals with a variety of problems associated with the performance lim-
its of the information transmission system, such as that depicted in Figure 1.1. The compo-
nents of this system constitute the subject of this monograph; hence they will be treated in
greater depth later in this volume. Suffice it to say at this stage that the transmitter seen in
Figure 1.1 incorporates a source encoder, a channel encoder, an interleaver, and a modulator
and their inverse functions at the receiver. Theideal source encoderendeavors to remove as
much redundancy as possible from the information source signal without affecting its source
representation fidelity (i.e., distortionlessly), and it remains oblivious of such practical con-
straints as a finite delay and limited signal processing complexity. In contrast, a practical
source encoder will have to retain a limited signal processing complexity and delay while
attempting to reduce the source representation bit rate to as low a value as possible. This
operation seeks to achieve better transmission efficiency,which can be expressed in terms of
bit-rate economy or bandwidth conservation.

The channel encoder re-inserts redundancy or parity information but in a controlled man-
ner in order to allow error correction at the receiver. Sincethis component is designed to
ensure the best exploitation of the re-inserted redundancy, it is expected to minimize the error
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probability over the most common channel, namely, the so-called Additive White Gaussian
Noise (AWGN) channel, which is characterized by a memoryless, random distribution of
channel errors. However, over wireless channels, which have recently become prevalent, the
errors tend to occur in bursts due to the presence of deep received signal fades induced by the
distructively superimposed multipath phenomena. This is why our schematic of Figure 1.1
contains an interleaver block, which is included in order torandomize the bursty channel er-
rors. Finally, the modulator is designed to ensure the most bandwidth-efficient transmission
of the source- and channel encoded, interleaved information stream, while maintaining the
lowest possible bit error probability. The receiver simplycarries out the corresponding in-
verse functions of the transmitter. Observe in the figure that besides the direct interconnection
of the adjacent system components there are a number of additional links in the schematic,
which will require further study before their role can be highlighted. Thus, at the end of this
chapter we will return to this figure and guide the reader through its further intricate details.

Some fundamental problems transpiring from the schematic of Figure 1.1, which were
addressed in depth by a range of references due to Shannon [24–27], Nyquist [28], Hart-
ley [29], Abramson [30], Carlson [31], Raemer [32], and Ferenczy [33] and others are as
follows:

• What is the true information generation rate of our information sources? If we know
the answer, the efficiency of coding and transmission schemes can be evaluated by
comparing the actual transmission rate used with the source’s information emission
rate. The actual transmission rate used in practice is typically much higher than the
average information delivered by the source, and the closerthese rates are, the better is
the coding efficiency.

• Given a noisy communications channel, what is the maximum reliable information
transmission rate? The thermal noise induced by the random motion of electrons is
present in all electronic devices, and if its power is high, it can seriously affect the
quality of signal transmission, allowing information transmission only at low-rates.

• Is the information emission rate the only important characteristic of a source, or are
other message features, such as the probability of occurrence of a message and the
joint probability of occurrence for various messages, alsoimportant?

• In a wider context, the topic of this whole monograph is related to the blocks of Fig-
ure 1.1 and to their interactions, but in this chapter we lay the theoretical foundations of
source and channel coding as well as transmission issues anddefine the characteristics
of an ideal Shannonian communications scheme.

Although numerous excellent treatises are available on these topics, which treat the same
subjects with a different flavor [31, 33, 34], our approach issimilar to that of the above clas-
sic sources; since the roots are in Shannon’s work, references [24–27, 35, 36] are the most
pertinent and authoritative sources.

In this chapter we consider mainly discrete sources, in which each source message is
associated with a certain probability of occurrence, whichmight or might not be dependent on
previous source messages. Let us now give a rudimentary introduction to the characteristics
of the AWGN channel, which is the predominant channel model in information theory due
to its simplicity. The analytically less tractable wireless channels will be modeled mainly by
simulations in this monograph
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1.2 Additive White Gaussian Noise Channel
1.2.1 Background
In this section, we consider the communications channel, which exists between the trans-
mitter and the receiver, as shown in Figure 1.1. Accurate characterization of this channel
is essential if we are to remove the impairments imposed by the channel using signal pro-
cessing at the receiver. Here we initially consider only fixed communications links whereby
both terminals are stationary, although mobile radio communications channels, which change
significantly with time, are becoming more prevalent.

We define fixed communications channels to be those between a fixed transmitter and a
fixed receiver. These channels are exemplified by twisted pairs, cables, wave guides, optical
fiber and point-to-point microwave radio channels. Whatever the nature of the channel, its
output signal differs from the input signal. The differencemight be deterministic or random,
but it is typically unknown to the receiver. Examples of channel impairments are dispersion,
nonlinear distortions, delay, and random noise.

Fixed communications channels can often be modeled by a linear transfer function, which
describes the channel dispersion. The ubiquitous additiveGaussian noise (AWGN) is a fun-
damental limiting factor in communications via linear time-invariant (LTI) channels. Al-
though the channel characteristics might change due to factors such as aging, temperature
changes, and channel switching, these variations will not be apparent over the course of a
typical communication session. It is this inherent time invariance that characterizes fixed
channels.

An ideal, distortion-free communications channel would have a flat frequency response
and linear phase response over the frequency range of−∞ . . . +∞, although in practice it is
sufficient to satisfy this condition over the bandwidth(B) of the signals to be transmitted, as
seen in Figure 1.2. In this figure,A(ω) represents the magnitude of the channel response at
frequencyw, andφ(w) = wT represents the phase shift at frequencyw due to the circuit
delayT .

Practical channels always have some linear distortions dueto their bandlimited, nonflat
frequency response and nonlinear phase response. In addition, the group-delay response of
the channel, which is the derivative of the phase response, is often given.

1.2.2 Practical Gaussian Channels
Conventional telephony uses twisted copper wire pairs to connect subscribers to the local ex-
change. The bandwidth is approximately 3.4 kHz, and the waveform distortions are relatively
benign.

For applications requiring a higher bandwidth, coaxial cables can be used. Their atten-
uation increases approximately with the square root of the frequency. Hence, for wideband,
long-distance operation, they require channel equalization. Typically, coaxial cables can pro-
vide a bandwidth of about 50 MHz, and the transmission rate they can support is limited by
the so-called skin effect.

Point-to-point microwave radio channels typically utilize high-gain directional transmit
and receive antennas in a line-of-sight scenario, where free-space propagation conditions may
be applicable.
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Figure 1.2: Ideal, distortion-free channel model having a linear phase and a flat magnitude
response.

1.2.3 Gaussian Noise
Regardless of the communications channel used, random noise is always present. Noise can
be broadly classified as natural or man-made. Examples of man-made noise are those due to
electrical appliances, and fluorescent lighting, and the effects of these sources can usually be
mitigated at the source. Natural noise sources affecting radio transmissions include galactic
star radiations and atmospheric noise. There exists a low-noise frequency window in the
range of 1–10 GHz, where the effects of these sources are minimized.

Natural thermal noise is ubiquitous. This is due to the random motion of electrons, and
it can be reduced by reducing the temperature. Since thermalnoise contains practically all
frequency components up to some1013 Hz with equal power, it is often referred to as white
noise (WN) in an analogy to white light containing all colorswith equal intensity. This WN
process can be characterized by its uniform power spectral density (PSD)N(ω) = N0/2
shown together with its autocorrelation function (ACF) in Figure 1.3.

The power spectral density of any signal can be convenientlymeasured by the help of
a selective narrowband power meter tuned across the bandwidth of the signal. The power
measured at any frequency is then plotted against the measurement frequency. The autocor-
relation functionR(τ) of the signalx(t) gives an average indication of how predictable the
signalx(t) is after a period ofτ seconds from its present value. Accordingly, it is defined as
follows:

R(τ) = lim
T→∞

1

T

∫ ∞

−∞

x(t)x(t + τ)dt. (1.2)

For a periodic signalx(t), it is sufficient to evaluate the above equation for a single period
T0, yielding:

R(τ) =
1

T0

∫ T0/2

−T0/2

x(t)x(t + τ)dt. (1.3)
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Figure 1.3: Power spectral density and autocorrelation of WN.

The basic properties of the ACF are:
• The ACF is symmetric:R(τ) = R(−τ).
• The ACF is monotonously decreasing:R(τ) ≤ R(0).
• For τ = 0 we haveR(0) = x2(t), which is the signal’s power.
• The ACF and the PSD form a Fourier transform pair, which is formally stated as the

Wiener-Khintchine theorem, as follows:

R(τ) =
1

2π

∫ ∞

−∞

N(ω)ejωτdω

=
1

2π

∫ ∞

−∞

N0e
jωτ

2
dω

=
1

2π

N0

2

∫ ∞

−∞

ejωτdω =
N0

2
δ(τ), (1.4)

whereδ(τ) is the Dirac delta function. Clearly, for any timed-domain shift τ > 0, the noise
is uncorrelated.

Bandlimited communications systems bandlimit not only thesignal but the noise as well,
and this filtering limits the rate of change of the time-domain noise signal, introducing some
correlation over the interval of±1/2B. The stylized PSD and ACF of bandlimited white
noise are displayed in Figure 1.4.
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Figure 1.4: Power spectral density and autocorrelation of bandlimited WN.

After bandlimiting, the autocorrelation function becomes:

R(τ) =
1

2π

∫ B

−B

N0

2
ejωτdω =

N0

2

∫ B

−B

ej2πfτdf

=
N0

2

[
ej2πfτ

j2πτ

]B

−B

=
1

j2πτ
[cos 2πBτ + j sin 2πBτ − cos 2πBτ + j sin 2πBτ ]

= N0B
sin(2πBτ)

2πBτ
, (1.5)

which is the well-known sinc-function seen in Figure 1.4.
In the time-domain, the amplitude distribution of the whitethermal noise has a normal

or Gaussian distribution, and since it is inevitably added to the received signal, it is usually
referred to as additive white Gaussian noise (AWGN). Note that AWGN is therefore the
noise generated in the receiver. The probability density function (PDF) is the well-known
bell-shaped curve of the Gaussian distribution, given by

p(x) =
1

σ
√

2π
e−(x−m)/2σ2

, (1.6)

wherem is the mean andσ2 is the variance. The effects of AWGN can be mitigated by
increasing the transmitted signal power and thereby reducing the relative effects of noise. The
signal-to-noise ratio (SNR) at the receiver’s input provides a good measure of the received
signal quality. This SNR is often referred to as the channel SNR.

1.3 Information of a Source
Based on Shannon’s work [24–27, 35, 36], let us introduce thebasic terms and definitions
of information theory by considering a few simple examples.Assume that a simple 8-bit
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analog-to-digital (ADC) converter emits a sequence of mutually independent source symbols
that can take the valuesi = 1, 2, . . .256 with equal probability. One may wonder, how
much information can be inferred upon receiving one of thesesamples? It is intuitively clear
that this inferred information is definitely proportional to the “uncertainty” resolved by the
reception of one such symbol, which in turn implies that the information conveyed is related
to the number of levels in the ADC. More explicitly, the higher the number of legitimate
quantization levels, the lower the relative frequency or probability of receiving any one of
them and hence the more “surprising,” when any one of them is received. Therefore, less
probable quantized samples carry more information than their more frequent, more likely
counterparts.

Not suprisingly, one could resolve this uncertainty by simply asking a maximum of 256
questions, such as “Is the level 1?” “Is it 2?. . .” “Is it 256?” Following Hartley’s ap-
proach [29], a more efficient strategy would be to ask eight questions, such as: “Is the level
larger than 128?” No. “Is it larger than 64?” No.. . . “Is it larger than 2?” No. “Is it
larger than 1?” No. Clearly, the source symbol emitted was ofmagnitude one, provided that
the zero level was not used. We could therefore infer thatlog2 256 = 8 “Yes/No” binary
answers were needed to resolve any uncertainty as regards the source symbol’s level.

In more general terms, the information carried by any one symbol of a q-level source,
where all the levels are equiprobable with probabilities ofpi = 1/q, i = 1 . . . q, is defined
as

I = log2q. (1.7)

Rewriting Equation 1.7 using the message probabilitiespi = 1
q yields a more convenient

form:

I = log2

1

pi
= −log2pi, (1.8)

which now is also applicable in case of arbitrary, unequal message probabilitiespi, again,
implying the plausible fact that the lower the probability of a certain source symbol, the
higher the information conveyed by its occurrence. Observe, however, that for unquantized
analog sources, where as regards to the number of possible source symbols we haveq → ∞
and hence the probability of any analog sample becomes infinitesimally low, these definitions
become meaningless.

Let us now consider a sequence ofN consecutiveq-ary symbols. This sequence can take
qN number of different values, deliveringqN different messages. Therefore, the information
carried by one such sequence is:

IN = log2(q
N ) = N log2q, (1.9)

which is in perfect harmony with our expectation, delivering N times the information of a
single symbol, which was quantified by Equation 1.7. Doubling the sequence length to2N
carries twice the information, as suggested by:

I2N = log2(q
2N ) = 2N · log2q. (1.10)

Before we proceed, let us briefly summarize the basicproperties of informationfollowing
Shannon’s work [24–27,35,36]:
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• If for the probability of occurrences of the symbolsj andk we havepj < pk, then as
regards the information carried by them we have:I(k) < I(j).

• If in the limit we havepk → 1, then for the information carried by the symbolk we
haveI(k) → 0, implying that symbols, whose probability of occurrence tends to unity,
carry no information.

• If the symbol probability is in the range of0 ≤ pk ≤ 1, then as regards the information
carried by it we haveI(k) ≥ 0.

• For independent messagesk andj, their joint information is given by the sum of their
information: I(k, j) = I(k) + I(j). For example, the information carried by the
statement “My son is 14 years old and my daughter is 12” is equivalent to that of the
sum of these statements: “My son is 14 years old” and “My daughter is 12 years old.”

• In harmony with our expectation, if we have two equiprobablemessages 0 and 1 with
probabilities,p1 = p2 = 1

2 , then from Equation 1.8 we haveI(0) = I(1) = 1 bit.

1.4 Average Information of Discrete
Memoryless Sources
Following Shannon’s approach [24–27, 35, 36], let us now consider a source emitting one of
q possible symbols from the alphabets = s1, s2, . . . si . . . sq having symbol probabilities
of pi, i = 1, 2, . . . q. Suppose that a long message ofN symbols constituted by symbols
from the alphabets = s1, s2, . . . sq having symbol probabilities ofpi is to be transmitted.
Then the symbolsi appears in everyN -symbol message on the averagepi · N number of
times, provided the message length is sufficiently long. Theinformation carried by symbol
si is log21/pi and itspi · N occurrences yield an information contribution of

I(i) = pi · N · log2

1

pi
. (1.11)

Upon summing the contributions of all theq symbols, we acquire the total information carried
by theN -symbol sequence:

I =

q
∑

i=1

piN · log2

1

pi
[bits]. (1.12)

Averaging this over theN symbols of the sequence yields the average information per sym-
bol, which is referred to as the source’sentropy[25] :

H =
I

N
=

q
∑

i=1

pi · log2

1

pi
= −

q
∑

i=1

pilog2pi [bit/symbol]. (1.13)

Then theaverage source information ratecan be defined as the product of the information
carried by a source symbol, given by the entropyH and the source emission rateRs:

R = Rs · H [bits/sec]. (1.14)
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Observe that Equation 1.13 is analogous to the discrete formof the first moment or in other
words the mean of a random process with a probability densityfunction (PDF) ofp(x), as in

x =

∫ ∞

−∞

x · p(x)dx, (1.15)

where the averaging corresponds to the integration, and theinstantaneous value of the random
variablex represents the informationlog2 pi carried by messagei, which is weighted by its
probability of occurrencepi quantified for a continuous variablex by p(x).

1.4.1 Maximum Entropy of a Binary Source
Let us assume that a binary source, for whichq = 2, emits two symbols with probabilities
p1 = p andp2 = (1 − p), where the sum of the symbol probabilities must be unity.
In order to quantify the maximum average information of a symbol from this source as a
function of the symbol probabilities, we note from Equation1.13 that the entropy is given by:

H(p) = −p · log2p − (1 − p) · log2(1 − p). (1.16)

As in any maximization problem, we set∂H(p)/∂p = 0, and upon using the differentiation
chain rule of(u ·v)′ = u′ ·v +u ·v′ as well as exploiting that(logax)′ = 1

x logae we arrive
at:

∂H(p)

∂p
= −log2p − p

p
· log2e + log2(1 − p) +

(1 − p)

(1 − p)
log2e = 0

log2p = log2(1 − p)

p = (1 − p)

p = 0.5.

This result suggests that the entropy is maximum for equiprobable binary messages. Plotting
Equation 1.16 for arbitraryp values yields Figure 1.5, in which Shannon suggested that the
average information carried by a symbol of a binary source islow, if one of the symbols has
a high probability, while the other a low probability.

Example: Let us compute the entropy of the binary source having message probabili-
ties ofp1 = 1

8 , p2 = 7
8 .

The entropy is expressed as:

H = −1

8
log2

1

8
− 7

8
log2

7

8
.

Exploiting the following equivalence:

log2(x) = log10(x) · log2(10) ≈ 3.322 · log10(x) (1.17)

we have:

H ≈ 3

8
− 7

8
· 3.322 · log10

7

8
≈ 0.54 [bit/symbol],
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Figure 1.5: Entropy versus message probabilityp for a binary source.c©Shannon [25], BSTJ,
1948.

again implying that if the symbol probabilities are rather different, the entropy becomes
significantly lower than the achievable 1 bit/symbol. This is because the probability of
encountering the more likely symbol is so close to unity thatit carries hardly any infor-
mation, which cannot be compensated by the more “informative” symbol’s reception.
For the even more unbalanced situation ofp1 = 0.1 andp2 = 0.9 we have:

H = −0.1 log2 0.1 − 0.9 · log2 0.9

≈ −(0.3322 · log10 0.1 + 0.9 · 3.322 · log10 0.9)

≈ 0.3322 + 0.1368

≈ 0.47 [bit/symbol].

In the extreme case ofp1 = 0 or p2 = 1 we haveH = 0. As stated before, the
average source information rateis defined as the product of the information carried
by a source symbol, given by the entropyH and the source emission rateRs, yielding
R = Rs ·H [bits/sec]. Transmitting the source symbols via a perfect noiseless channel
yields the same received sequence without loss of information.

1.4.2 Maximum Entropy of a q-ary Source
For aq-ary source the entropy is given by:

H = −
q

∑

i=1

pi log2 pi, (1.18)

where, again, the constraint
∑

pi = 1 must be satisfied. When determining the extreme
value of the above expression for the entropyH under the constraint of

∑
pi = 1, the
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following term has to be maximized:

D =

q
∑

i=1

−pi log2 pi + λ ·
[

1 −
q

∑

i=1

pi

]

, (1.19)

whereλ is the so-called Lagrange multiplier. Following the standard procedure of maximiz-
ing an expression, we set:

∂D

∂pi
= − log2 pi −

pi

pi
· log2 e − λ = 0

leading to
log2 pi = −(log2 e + λ) = Constant fori = 1 . . . q,

which implies that the maximum entropy of aq-ary source is maintained, if all message
probabilities are identical, although at this stage the value of this constant probability is not
explicit. Note, however, that the message probabilites must sum to unity, and hence:

q
∑

i=1

pi = 1 = q · a, (1.20)

wherea is a constant, leading toa = 1/q = pi, implying that the entropy of anyq-ary
source is maximum for equiprobable messages. Furthermore,H is always bounded according
to:

0 ≤ H ≤ log2 q. (1.21)

1.5 Source Coding for a Discrete
Memoryless Source
Interpreting Shannon’s work [24–27,35,36] further, we seethat source coding is the process
by which the output of aq-ary information source is converted to a binary sequence for
transmission via binary channels, as seen in Figure 1.1. When a discrete memoryless source
generatesq-ary equiprobable symbols with an average information rateof R = Rs log2 q,
all symbols convey the same amount of information, and efficient signaling takes the form
of binary transmissions at a rate ofR bps. When the symbol probabilities are unequal, the
minimum required source rate for distortionless transmission is reduced to

R = Rs · H < Rs log2 q. (1.22)

Then the transmission of a highly probable symbol carries little information and hence as-
signinglog2 q number of bits to it does not use the channel efficiently. Whatcan be done to
improve transmission efficiency?Shannon’s source coding theoremsuggests that by using
a source encoderbefore transmission the efficiency of the system with equiprobable source
symbols can be arbitrarily approached.
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Algorithm 1 (Shannon-Fano Coding) This algorithm summarizes the Shannon-Fano cod-
ing steps. (See also Figure 1.6 and Table 1.1.)

1. The source symbols S0 . . . S7 are first sorted in descending
order of probability of occurrence.

2. Then the symbols are divided into two subgroups so that
the subgroup probabilities are as close to each other as
possible. This is symbolized by the horizontal divisions
in Table 1.1.

3. When allocating codewords to represent the source
symbols, we assign a logical zero to the top subgroup
and logical one to the bottom subgroup in the appropriate
column under ‘‘coding steps.’’

4. If there is more than one symbol in the subgroup, this
method is continued until no further divisions are
possible.

5. Finally, the variable-length codewords are output to the
channel.

Coding efficiencycan be defined as the ratio of the source information rate and the av-
erage output bit rate of the source encoder. If this ratio approaches unity, implying that
the source encoder’s output rate is close to the source information rate, the source encoder is
highly efficient. There are many source encoding algorithms, but the most powerful approach
suggested was Shannon’s method [24], which is best illustrated by means of the following
example, portrayed in Table 1.1, Algorithm 1, and Figure 1.6.

1.5.1 Shannon-Fano Coding
The Shannon-Fano coding algorithm is based on the simple concept of encoding frequent
messages using short codewords and infrequent ones by long codewords, while reducing
the average message length. This algorithm is part of virtually all treatises dealing with
information theory, such as, for example, Carlson’s work [31]. The formal coding steps listed
in Algorithm 1 and in the flowchart of Figure 1.6 can be readilyfollowed in the context of a
simple example in Table 1.1. The average codeword length is given by weighting the length
of any codeword by its probability, yielding:

(0.27 + 0.2) · 2 + (0.17 + 0.16) · 3 + 2 · 0.06 · 4 + 2 · 0.04 · 4 ≈ 2.73 [bit].
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Figure 1.6: Shannon-Fano Coding Algorithm (see also Table 1.1 and Algorithm 1).

Symb. Prob. Coding Steps Codeword
1 2 3 4

S0 0.27 0 0 00
S1 0.20 0 1 01
S2 0.17 1 0 0 100
S3 0.16 1 0 1 101
S4 0.06 1 1 0 0 1100
S5 0.06 1 1 0 1 1101
S6 0.04 1 1 1 0 1110
S7 0.04 1 1 1 1 1111

Table 1.1: Shannon-Fano Coding Example Based on Algorithm 1and Figure 1.6
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Algorithm 2 (Huffman Coding) This algorithm summarizes the Huffman coding steps.

1. Arrange the symbol probabilities pi in decreasing order
and consider them as ‘‘leaf-nodes,’’ as suggested by
Table 1.2.

2. While there is more than one node, merge the two nodes
having the lowest probability and assign 0/1 to the
upper/lower branches, respectively.

3. Read the assigned ‘‘transition bits’’ on the branches
from top to bottom in order to derive the codewords.

The entropy of the source is:

H = −
∑

i

pi log2 pi (1.23)

= −(log2 10)
∑

i

pi log10 pi

≈ −3.322 · [0.27 · log10 0.27 + 0.2 · log10 0.2

+0.17 · log10 0.17 + 0.16 · log10 0.16

+2 · 0.06 · log10 0.06 + 2 · 0.04 · log10 0.04]

≈ 2.691 [bit/symbol].

Since the average codeword length of 2.73 bit/symbol is veryclose to the entropy of 2.691
bit/symbol, a high coding efficiency is predicted, which canbe computed as:

E ≈ 2.691

2.73
≈ 98.6 %.

The straightforward3 bit/symbol binary coded decimal (BCD) assignment gives an effi-
ciency of:

E ≈ 2.691

3
≈ 89.69 %.

In summary, Shannon-Fano coding allowed us to create a set ofuniquely invertible mappings
to a set of codewords, which facilitate a more efficient transmission of the source symbols,
than straightforward BCD representations would. This was possible with no coding impair-
ment (i.e., losslessly). Having highlighted the philosophy of the Shannon-Fano noiseless or
distortionless coding technique, let us now concentrate onthe closely related Huffman coding
principle.

1.5.2 Huffman Coding
The Huffman Coding (HC) algorithm is best understood by referring to the flowchart of
Figure 1.7 and to the formal coding description of Algorithm2, while a simple practical
example is portrayed in Table 1.2, which leads to the Huffmancodes summarized in Table 1.3.
Note that we used the same symbol probabilities as in our Shannon-Fano coding example,
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Symb. Prob. Step 1 & 2 Step 3 & 4 Group Code
Code Prob. Code Prob.

S0 0.27 S0 -
S1 0.20 S1 -
S2 0.17 0 0.33 S23 0
S3 0.16 1 1
S4 0.06 0 0.12 0 00
S5 0.06 1 0 0.20 S4567 01
S6 0.04 0 0.08 1 10
S7 0.04 1 1 11

Symb. Prob. Step 5 & 6 Step 7 Codeword
Code Prob. Code Prob.

S23 0.33 0 0.6 0 00
S0 0.27 1 1.0 01
S1 0.20 0 0.4 1 10

S4567 0.20 1 11

Table 1.2: Huffman Coding Example Based on Algorithm 2 and Figure 1.7 (for final code
assignment see Table 1.3)

Symbol Probability BCD Huffman Code

S0 0.27 000 01
S1 0.20 001 10
S2 0.17 010 000
S3 0.16 011 001
S4 0.06 100 1100
S5 0.06 101 1101
S6 0.04 110 1110
S7 0.04 111 1111

Table 1.3: Huffman Coding Example Summary of Table 1.2
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Merge two of the lowest prob.
symbols into one subgroup
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bottom branches, respectively
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more than one un-

merged node ?

Yes
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Arrange source symbols in
descending order of probabilities

No

Figure 1.7: Huffman coding algorithm (see also Algorithm 2 and Table 1.2).

but the Huffman algorithm leads to a different codeword assignment. Nonetheless, the code’s
efficiency is identical to that of the Shannon-Fano algorithm.

The symbol-merging procedure can also be conveniently viewed using the example of
Figure 1.8, where the Huffman codewords are derived by reading the associated 1 and 0
symbols from the end of the tree backward, that is, toward thesource symbolsS0 . . . S7.
Again, these codewords are summarized in Table 1.3.

In order to arrive at a fixed average channel bit rate, which isconvenient in many com-
munications systems, a long buffer might be needed, causingstorage and delay problems.
Observe from Table 1.3 that the Huffman coding algorithm gives codewords that can be
uniquely decoded, which is a crucial prerequisite for its practical employment. This is be-
cause no codeword can be a prefix of any longer one. For example, for the following sequence
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Figure 1.8: Tree-based Huffman coding example.
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of codewords . . . , 00, 10, 010, 110, 1111, . . . the source sequence of. . . S0, S1, S2, S3, S8 . . .
can be uniquely inferred from Table 1.3.

In our discussions so far, we have assumed that the source symbols were completely in-
dependent of each other. Such a source is usually referred toas a memoryless source. By
contrast, sources where the probability of a certain symbolalso depends on what the previous
symbol was are often termedsources exhibiting memory. These sources are typically ban-
dlimited sample sequences, such as, for example, a set of correlated or “similar-magnitude”
speech samples or adjacent video pixels. Let us now considersources that exhibit memory.

1.6 Entropy of Discrete Sources Exhibiting Memory
Let us invoke Shannon’s approach [24–27,35,36] in order to illustrate sources with and with-
out memory. Let us therefore consider an uncorrelated random white Gaussian noise (WGN)
process, which was passed through a low-pass filter. The corresponding autocorrelation func-
tions (ACF) and power spectral density (PSD) functions wereportrayed in Figures 1.3 and
1.4. Observe in the figures that through low-pass filtering a WGN process introduces corre-
lation by limiting the rate at which amplitude changes are possible, smoothing the amplitude
of abrupt noise peaks. This example suggests that all bandlimited signals are correlated over
a finite interval. Most analog source signals, such as speechand video, are inherently corre-
lated, owing to physical restrictions imposed on the analogsource. Hence all practical analog
sources possess some grade of memory, a property that is alsoretained after sampling and
quantization. An important feature of sources with memory is that they are predictable to a
certain extent, hence, they can usually be more efficiently encoded than unpredictable sources
having no memory.

1.6.1 Two-State Markov Model for Discrete
Sources Exhibiting Memory
Let us now introduce a simple analytically tractable model for treating sources that exhibit
memory. Predictable sources that have memory can be conveniently modeled byMarkov
processes. A source having a memory of one symbol interval directly “remembers” only
the previously emitted source symbol and depending on this previous symbol it emits one
of its legitimate symbols with a certain probability, whichdepends explicitly on the state
associated with this previous symbol. A one-symbol-memorymodel is often referred to as
a first-order model. For example, if in a first-order model the previous symbol cantake
only two different values, we have two different states, andthis simple two-state first-order
Markov model is characterized by the state transition diagram of Figure 1.9. Previously, in
the context of Shannon-Fano and Huffman coding of memoryless information sources, we
used the notation ofSi, i = 0, 1, . . . for the various symbols to be encoded. In this section,
we are dealing with sources exhibiting memory and hence for the sake of distinction we use
the symbol notation ofXi, i = 1, 2, . . .. If, for the sake of illustration, the previous emitted
symbol wasX1, the state machine of Figure 1.9 is in stateX1, and in the current signaling
interval it can generate one of two symbols, namely,X1 andX2, whose probability depends
explicitly on the previous stateX1. However, not all two-state Markov models are as simple
as that of Figure 1.9, since the transitions from stateX1 to X2 are not necessarily associated
with emitting the same symbol as the transitions from stateX2 to X1. Thus more elaborate
example will be considered later in this chapter.
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Observe in Figure 1.9 that the corresponding transition probabilities from stateX1 are
given by the conditional probabilitiesp12 = P (X2/X1) andp11 = P (X1/X1) = 1 −
P (X2/X1). Similar findings can be observed as regards stateX2. These dependencies can
also be stated from a different point of view as follows. The probability of occurrence of
a particular symbol depends not only on the symbol itself, but also on the previous symbol
emitted. Thus, the symbol entropy for stateX1 andX2 will now be characterized by means of
the conditional probabilities associated with the transitions merging in these states. Explicitly,
the symbol entropy for stateXi, i = 1, 2 is given by:

Hi =
2∑

j=1

pij · log2

1

pij
i = 1, 2

= pi1 · log2

1

pi1
+ pi2 · log2

1

pi2
, (1.24)

yielding the symbol entropies, that is, the average information carried by the symbols emitted
in statesX1 andX2, respectively, as:

H1 = p11 · log2

1

p11
+ p12 · log2

1

p12

H2 = p21 · log2

1

p21
+ p22 · log2

1

p22
. (1.25)

Both symbol entropies,H1 andH2, are characteristic of the average information conveyed
by a symbol emitted in stateX1 andX2, respectively. In order to compute the overall entropy
H of this source, they must be weighted by the probability of occurrence,P1 andP2, of these
states:

H =

2∑

i=1

PiHi

=

2∑

i=1

Pi

2∑

j=1

pij log2

1

pij
. (1.26)

Assuming a highly predictable source having high adjacent sample correlation, it is plau-
sible that once the source is in a given state, it is more likely to remain in that state than to
traverse into the other state. For example, assuming that the state machine of Figure 1.9 is
in stateX1 and the source is a highly correlated, predictable source, we are likely to observe
long runs ofX1. Conversely, once in stateX2, long strings ofX2 symbols will typically
follow.

1.6.2 N -State Markov Model for Discrete Sources
Exhibiting Memory
In general, assumingN legitimate states, (i.e.,N possible source symbols) and following
similar arguments, Markov models are characterised by their state probabilitiesP (Xi), i = 1 . . .N ,
whereN is the number of states, as well as by the transition probabilitiespij = P (Xi/Xj),
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Figure 1.9: Two-state first-order Markov model.

wherepij explicitly indicates the probability of traversing from stateXj to stateXi. Their
further basic feature is that they emit a source symbol at every state transition, as will be
shown in the context of an example presented in Section 1.7. Similarly to the two-state
model, we define the entropy of a source having memory as the weighted average of the en-
tropy of the individual symbols emitted from each state, where weighting is carried out taking
into account the probability of occurrence of the individual states, namelyPi. In analytical
terms , the symbol entropy for stateXi, i = 1 . . .N is given by:

Hi =
N∑

j=1

pij · log2

1

pij
i = 1 . . .N. (1.27)

The averaged, weighted symbol entropies give the source entropy:

H =

N∑

i=1

PiHi

=

N∑

i=1

Pi

N∑

j=1

pij log2

1

pij
. (1.28)

Finally, assuming a source symbol rate ofvs, the average information emission rateR of the
source is given by:

R = vs · H [bps]. (1.29)
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Figure 1.10: Two-state Markov model example.

1.7 Examples
1.7.1 Two-State Markov Model Example
As mentioned in the previous section, we now consider a slightly more sophisticated Markov
model, where the symbols emitted upon traversing from stateX1 to X2 are different from
those when traversing from stateX2 to X1. More explicitly:

• Consider a discrete source that was described by the two-state Markov model of Fig-
ure 1.9, where the transition probabilities are

p11 = P (X1/X1) = 0.9 p22 = P (X2/X2) = 0.1

p12 = P (X1/X2) = 0.1 p21 = P (X2/X1) = 0.9,

while the state probabilities are

P (X1) = 0.8 andP (X2) = 0.2. (1.30)

The source emits one of four symbols, namely,a, b, c, andd, upon every state transi-
tion, as seen in Figure 1.10. Let us find

(a) the source entropy and
(b) the average information content per symbol in messages of one,

two, and three symbols.
• Message Probabilities

Let us consider two sample sequencesacb andaab. As shown in Figure 1.10, the
transitions leading toacb are (1 ; 1), (1 ; 2), and (2 ; 2). The probability
of encountering this sequence is0.8 · 0.9 · 0.1 · 0.1 = 0.0072. The sequenceaab
has a probability of zero because the transition froma to b is illegal. Further path
(i.e., message) probabilities are tabulated in Table 1.4 along with the information of
I = − log2 P of all the legitimate messages.
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Message Probabilities
Information conveyed

(bit/message)
Pa = 0.9 × 0.8 = 0.72 Ia = 0.474
Pb = 0.1 × 0.2 = 0.02 Ib = 5.644
Pc = 0.1 × 0.8 = 0.08 Ic = 3.644
Pd = 0.9 × 0.2 = 0.18 Id = 2.474
Paa = 0.72 × 0.9 = 0.648 Iaa = 0.626
Pac = 0.72 × 0.1 = 0.072 Iac = 3.796
Pcb = 0.08 × 0.1 = 0.008 Icb = 6.966
Pcd = 0.08 × 0.9 = 0.072 Icd = 3.796
Pbb = 0.02 × 0.1 = 0.002 Ibb = 8.966
Pbd = 0.02 × 0.9 = 0.018 Ibd = 5.796
Pda = 0.18 × 0.9 = 0.162 Ida = 2.626
Pdc = 0.18 × 0.1 = 0.018 Idc = 5.796

Table 1.4: Message Probabilities of Example

• Source Entropy
– According to Equation 1.27, the entropy of symbolsX1 andX2 is computed as

follows:

H1 = −p12 · log2p12 − p11 · log2p11

= 0.1 · log2 10 + 0.9 · log2

1

0.9
≈ 0.469 bit/symbol (1.31)

H2 = −p21 · log2p21 − p22 · log2p22

≈ 0.469 bit/symbol (1.32)

– Then their weighted average is calculated using the probability of occurrence of
each state in order to derive the average information per message for this source:

H ≈ 0.8 · 0.469 + 0.2 · 0.469 ≈ 0.469 bit/symbol.

– The average information per symbolI2 in two-symbol messages is computed
from the entropyh2 of the two-symbol messages as follows:

h2 =

8∑

1

Psymbol · Isymbol

= Paa · Iaa + Pac · Iac + . . . + Pdc · Idc

≈ 1.66 bits/2 symbols, (1.33)

giving I2 = h2/2 ≈ 0.83 bits/symbol information on average upon receiving a
two-symbol message.
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– There are eight two-symbol messages; hence, the maximum possible information
conveyed islog2 8 = 3 bits/2 symbols, or1.5 bits/symbol. However, since the
symbol probabilities ofP1 = 0.8 andP2 = 0.2 are fairly different, this scheme
has a significantly lower conveyed information per symbol, namely,I2 ≈ 0.83
bits/symbol.

– Similarly, one can find the average information content per symbol for arbitrarily
long messages of concatenated source symbols. For one-symbol messages we
have:

I1 = h1 =

4∑

1

Psymbol · Isymbol

= Pa · Ia + . . . + Pd · Id

≈ 0.72 × 0.474 + . . . + 0.18 × 2.474

≈ 0.341 + 0.113 + 0.292 + 0.445

≈ 1.191 bit/symbol. (1.34)

We note that the maximum possible information carried by one-symbol messages
is h1max = log2 4 = 2 bit/symbol, since there are four one-symbol messages in
Table 1.4.

• Observe the important tendency, in which, when sending longer messages of dependent
sources, the average information content per symbol is reduced. This is due to the
source’s memory, since consecutive symbol emissions are dependent on previous ones
and hence do not carry as much information as independent source symbols. This
becomes explicit by comparingI1 ≈ 1.191 andI2 ≈ 0.83 bits/symbol.

• Therefore, expanding the message length to be encoded yields more efficient coding
schemes, requiring a lower number of bits, if the source has amemory. This is the
essence of Shannon’s source coding theorem.

1.7.2 Four-State Markov Model for a 2-Bit Quantizer
Let us now augment the previously introduced two-state Markov-model concepts with the
aid of a four-state example. Let us assume that we have a discrete source constituted by a
2-bit quantizer, which is characterized by Figure 1.11. Assume further that due to bandlimi-
tation only transitions to adjacent quantization intervals are possible, since the bandlimitation
restricts the input signal’s rate of change. The probability of the signal samples residing in
intervals 1–4 is given by:

P (1) = P (4) = 0.1, P (2) = P (3) = 0.4.

The associated state transition probabilities are shown inFigure 1.11, along with the quan-
tized samplesa, b, c, andd, which are transmitted when a state transition takes place, that is,
when taking a new sample from the analog source signal at the sampling-ratefs.

Although we have stipulated a number of simplifying assumptions, this example attempts
to illustrate the construction of Markov models in the context of a simple practical problem.
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Figure 1.11: Four-state Markov model for a 2-bit quantizer.

Next we construct a simpler example for augmenting the underlying concepts and set aside
the above four-state Markov-model example as a potential exercise for the reader.

1.8 Generating Model Sources
1.8.1 Autoregressive Model
In evaluating the performance of information processing systems, such as encoders and pre-
dictors, it is necessary to have “standardized” or easily described model sources. Although
a set of semistandardized speech and images test sequences is widely used by researchers
in codec performance testing, in contrast to analytical model sources, real speech or image
sources cannot be used in analytical studies. A widely used analytical model source is the
Autoregressive (AR) model. A zero mean random sequencey(n) is calledan AR process of
order p, if it is generated as follows:

y(n) =

p
∑

k=1

aky(n − k) + ε(n), ∀n, (1.35)
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whereε(n) is an uncorrelated zero-mean, random input sequence with varianceσ2; that is,

E{ε(n)} = 0

E{ε2(n)} = σ2

E{ε(n) · y(m)} = 0. (1.36)

From Equation 1.35 we surmise that an AR system recursively generates the present output
from p number of previous output samples given byy(n − k) and the present random input
sampleε(n).

1.8.2 AR Model Properties
AR models are very useful in studying information processing systems, such as speech and
image codecs, predictors, and quantizers. They have the following basic properties:

1. The first term of Equation 1.35, which is repeated here for convenience,

ŷ(n) =

p
∑

k=1

aky(n − k)

defines a predictor, giving an estimateŷ(n) of y(n), which is associated with the min-
imum mean squared error between the two quantities.

2. Althoughŷ(n) andy(n) depend explicitly only on the pastp number of samples of
y(n), through the recursive relationship of Equation 1.35 this entails the entire past of
y(n). This is because each of the previousp samples depends on their predecessors.

3. Then Equation 1.35 can be written in the form of:

y(n) = ŷ(n) + ε(n), (1.37)

whereε(n) is theprediction errorandŷ(n) is the minimum variance prediction esti-
mate ofy(n).

4. Without proof, we state that for a random Gaussian distributed prediction error se-
quenceε(n) these properties are characteristic of apth order Markov processportrayed
in Figure 1.12. When this model is simplified for the case ofp = 1, we arrive at the
schematic diagram shown in Figure 1.13.

5. The power spectral density (PSD) of the prediction error sequenceε(n) is that of a
random “white-noise” sequence, containing all possible frequency components with
the same energy. Hence, its autocorrelation function (ACF)is the Kronecker delta
function, given by the Wiener-Khintchine theorem:

E{ε(n) · ε(m)} = σ2δ(n − m). (1.38)

1.8.3 First-Order Markov Model
A variety of practical information sources are adequately modeled by the analytically tractable
first-order Markov model depicted in Figure 1.13, where the prediction order isp = 1. With
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Figure 1.13: First-order Markov model.

the aid of Equation 1.35 we have

y(n) = ε(n) + ay(n − 1),

wherea is the adjacent sample correlation of the processy(n). Using the following recursion:

y(n − 1) = ε(n − 1) + a1y(n − 2)

...
...

...

y(n − k) = ε(n − k) + a1y(n − k − 1) (1.39)
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Figure 1.14: Predictive run-length codec scheme.c©Carlson [31].

we arrive at:

y(n) = ε(n) + a1[ε(n − 1) + ay(n − 2)]

= ε(n) + a1ε(n − 1) + a2y(n − 2),

which can be generalized to:

y(n) =

∞∑

j=0

ajε(n − j). (1.40)

Clearly, Equation 1.40 describes the first-order Markov process by the help of the adjacent
sample correlationa1 and the uncorrelated zero-mean random Gaussian processε(n).

1.9 Run-Length Coding for Discrete Sources Exhibiting Memory
1.9.1 Run-Length Coding Principle [31]
For discrete sources having memory, (i.e., possessing intersample correlation), the coding ef-
ficiency can be significantly improved by predictive coding,allowing the required transmis-
sion rate and hence the channel bandwidth to be reduced. Particularly amenable to run-length
coding are binary sources with inherent memory, such as black and white documents, where
the predominance of white pixels suggests that a Run-Length-Coding (RLC) scheme, which
encodes the length of zero runs, rather than repeating long strings of zeros, provides high
coding efficiency.

Following Carlson’s interpretation [31], a predictive RLCscheme can be constructed ac-
cording to Figure 1.14. The q-ary source messages are first converted to binary bit format.
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Length of 0-run Encoder Output Decoder Output
l (n-bit codeword)
0 00 · · · 000 1
1 00 · · · 001 01
2 00 · · · 010 001
3 00 · · · 011 0001
...

...
...

N − 1 11 · · · 110 00 · · · 01
≥ N = 2n − 1 11 · · · 111 00 · · · 00

Table 1.5: Run-length Coding Tablec© Carlson, 1975 [31]

For example, if an 8-bit analog-digital converter (ADC) is used, the 8-bit digital samples are
converted to binary format. This bit-stream,x(i), is then compared with the output signal
of the predictor,̂x(i), which is fed with the prediction error signale(i). The comparator
is a simple mod-2 gate, outputting a logical 1, whenever the prediction fails; that is, the
predictor’s output is different from the incoming bitx(i). If, however,x(i) = x̂(i), the com-
parator indicates this by outputting a logical 0. For highlycorrelated signals from sources
with significant memory the predictions are usually correct, and hence long strings of 0 runs
are emitted, interspersed with an occasional 1. Thus, the prediction error signale(i) can be
efficiently run-length encoded by noting and transmitting the length of zero runs.

The corresponding binary run-length coding principle becomes explicit from Table 1.5
and from our forthcoming coding efficiency analysis.

1.9.2 Run-Length Coding Compression Ratio [37]
Following Jain’s interpretation [37], let us now investigate the RLC efficiency by assuming
that a run ofr successive logical 0s is followed by a 1. Instead of directlytransmitting these
strings, we represent such a string as ann-bit word giving the length of the 0-run between
successive logical ones. When a 0-run longer thanN = 2n−1 bits occurs, this is signaled as
the all 1 codeword, informing the decoder to wait for the nextRLC codeword before releasing
the decoded sequence. Again, the scheme’s operation is characterized by Table 1.5. Clearly,
data compression is achieved if the average number of 0 data bits per rund is higher than the
number of bits,n, required to encode the 0-run length. Let us therefore compute the average
number of bits per run without RLC. If a run ofr logical zeros are followed by a 1, the run-
length is(r + 1). The expected or mean value of(r + 1), namely,d = (r + 1), is calculated
by weighting each specific(r + 1) with its probability of occurrence that is, with its discrete
PDFc(r) and then averaging the weighted components, in:

d = (r + 1) =
N−1∑

r=0

(r + 1) · c(r) + Nc(N). (1.41)
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Figure 1.15: CDF and PDF of the geometric distribution of run-lengthl.

The PDF of a run ofr zeros followed by a 1 is given by:

c(r) =

{
pr(1 − p) 0 ≤ r ≤ N − 1
pN r = N,

(1.42)

since the probability ofN consecutive zeros ispN if r = N , while for shorter runs the
joint probability ofr zeros followed by a 1 is given bypr · (1 − p). The PDF and CDF of
this distribution are shown in Figure 1.15 forp = 0.9 andp = 0.1, wherep represents the
probability of a logical zero bit. Substituting Equation 1.42 in Equation 1.41 gives:

d = N · pN +

N−1∑

r=0

(r + 1) · pr · (1 − p)

= N · pN + 1 · p0 · (1 − p) + 2 · p · (1 − p) + . . . + N · pN−1 · (1 − p)

= N · pN + 1 + 2p + 3p2 + . . . + N · pN−1 − p − 2p2 . . . − N · pN

= 1 + p + p2 + · · · pN−1. (1.43)

Equation 1.43 is a simple geometric progression, given in closed form as:

d =
1 − pN

1 − p
. (1.44)

RLC Example: Using a run-length coding memory ofM = 31 and a zero symbol
probability ofp = 0.95, characterize the RLC efficiency.
SubstitutingN andp into Equation 1.44 for the average run-length we have:

d =
1 − 0.9531

1 − 0.95
≈ 1 − 0.204

0.05
≈ 15.92. (1.45)
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Thecompression ratioC achieved by RLC is given by:

C =
d

n
=

1 − pN

n(1 − p)
≈ 15.92

5
≈ 3.18. (1.46)

The achieved average bit rate is

B =
n

d
≈ 0.314 bit/pixel,

and the coding efficiency is computed as the ratio of the entropy (i.e., the lowest possi-
ble bit rate and the actual bit rate). The source entropy is given by:

H ≈ −0.95 · 3.322 · log10 0.95 − 0.05 · 3.322 · log10 0.05

≈ 0.286 bit/symbol, (1.47)

giving a coding efficiency of:

E = H/B ≈ 0.286/0.314 ≈ 91%.

This concludes our RLC example.

1.10 Information Transmission via
Discrete Channels
Let us now return to Shannon’s classic references [24–27, 35, 36] and assume that both the
channel and the source are discrete, and let us evaluate the amount of information transmitted
via the channel. We define the channel capacity characterizing the channel and show that
according to Shannon nearly error-free information transmission is possible at rates below
the channel capacity via the binary symmetric channel (BSC). Let us begin our discourse
with a simple introductory example.

1.10.1 Binary Symmetric Channel Example
Let us assume that a binary source is emitting a logical 1 witha probability ofP (1) =
0.7 and a logical 0 with a probability ofP (0) = 0.3. The channel’s error probability is
pe = 0.02. This scenario is characterized by the binary symmetric channel (BSC) model of
Figure 1.16. The probability of error-free reception is given by that of receiving 1, when a
logical 1 is transmittedplus the probability of receiving a 0 when 0 is transmitted, whichis
also plausible from Figure 1.16. For example, the first of these two component probabilities
can be computed with the aid of Figure 1.16 as the product of the probability P (1) of a
logical 1 being transmitted and theconditional probabilityP (1/1) of receiving a 1, given the
condition that a 1 was transmitted:

P (Y1, X1) = P (X1) · P (Y1/X1) (1.48)

P (1, 1) = P (1) · P (1/1) = 0.7 · 0.98 = 0.686.
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Figure 1.16: The binary symmetric channel.c©Shannon [26], BSTJ, 1948.

Similarly, the probability of the error-free reception of alogical 0 is given by:

P (Y0, X0) = P (X0) · P (Y0/X0)

P (0, 0) = P (0) · P (0/0) = 0.3 · 0.98 = 0.294,

giving the total probability of error-free reception as:

Pcorrect = P (1, 1) + P (0, 0) = 0.98.

Following similar arguments, the probability of erroneousreception is also given by two
components. For example, using Figure 1.16, the probability of receiving a 1 when a 0 was
transmitted is computed by multiplying the probabilityP (0) of a logical 0 being transmitted
by the conditional probabilityP (1/0) of receiving a logical 1, given the fact that a 0 is known
to have been transmitted:

P (Y1, X0) = P (X0) · P (Y1/X0)

P (1, 0) = P (0) · P (1/0) = 0.3 · 0.02 = 0.006.

Conversely,

P (Y0, X1) = P (X1) · P (Y0/X1)

P (0, 1) = P (1) · P (0/1) = 0.7 · 0.02 = 0.014,

yielding a total error probability of:

Perror = P (1, 0) + P (0, 1) = 0.02,

which is constituted by the above two possible error events.
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Viewing events from a different angle, we observe thatthe total probability of receiving
1 is that of receiving a transmitted 1 correctly plus a transmitted 0 incorrectly:

P1 = P (1) · (1 − pe) + P (0) · pe (1.49)

= 0.7 · 0.98 + 0.3 · 0.02 = 0.686 + 0.006 = 0.692.

On the same note,the probability of receiving 0is that of receiving a transmitted 0 correctly
plus a transmitted 1 incorrectly:

P0 = P (0) · (1 − pe) + P (1) · pe (1.50)

= 0.3 · 0.98 + 0.7 · 0.02 = 0.294 + 0.014 = 0.308.

In the next example, we further study the performance of the BSC for a range of different
parameters in order to gain a deeper insight into its behavior.

Example: Repeat the above calculations forP (1) = 1, 0.9, 0.5, andpe = 0, 0.1, 0.2, 0.5
using the BSC model of Figure 1.16. Compute and tabulate the probabilitiesP (1, 1),
P (0, 0), P (1, 0), P (0, 1), Pcorrect, Perror, P1, andP0 for these parameter combina-
tions, including also their values for the previous example, namely, forP (1) = 0.7,
P (0) = 0.3 andpe = 0.02. Here we neglected the details of the calculations and sum-
marized the results in Table 1.6. Some of the above quantities are plotted for further
study in Figure 1.17, which reveals the interdependency of the various probabilities for
the interested reader.

Having studied the performance of the BSC, the next questionthat arises is, how much
information can be inferred upon reception of a 1 and a 0 over an imperfect (i.e., error-prone)
channel. In order to answer this question, let us first generalize the above intuitive findings in
the form ofBayes’ rule.

1.10.2 Bayes’ Rule
Let Yj represent the received symbols andXi the transmitted symbols having probabilities of
P (Yj) andP (Xi), respectively. Let us also characterize the forward transition probabilities
of the binary symmetric channel as suggested by Figure 1.18.

Then in general, following from the previous introductory example, the joint probability
P (Yj , Xi) of receivingYj , when the transmitted source symbol wasXi, is computed as the
probabilityP (Xi) of transmittingXi, multiplied by the conditional probabilityP (Yj/Xi) of
receivingYj , whenXi is known to have been transmitted:

P (Yj , Xi) = P (Xi) · P (Yj/Xi), (1.51)

a result that we have already intuitively exploited in the previous example. Since for the joint
probabilitiesP (Yj , Xi) = P (Xi, Yj) holds, we have:

P (Xi, Yj) = P (Yj) · P (Xi/Yj)

= P (Xi) · P (Yj/Xi). (1.52)
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(1 − pe) pe

pe P (1) P (0) = P (1/1) P (1, 1) P (0, 0) = P (1/0) P (1, 0) P (0, 1) P1 P0

= P (0/0) = P (0/1)

0

1 0 1 1 0 0 0 0 1 0
0.9 0.1 1 0.9 0.1 0 0 0 0.9 0.1
0.7 0.3 1 0.7 0.3 0 0 0 0.7 0.3
0.5 0.5 1 0.5 0.5 0 0 0 0.5 0.5

0.02

1 0 0.98 0.98 0 0.02 0 0.02 0.98 0.02
0.9 0.1 0.98 0.882 0.098 0.02 0.002 0.018 0.884 0.116
0.7 0.3 0.98 0.686 0.294 0.02 0.006 0.014 0.692 0.308
0.5 0.5 0.98 0.49 0.49 0.02 0.01 0.01 0.491 0.509

0.1

1 0 0.9 0.9 0 0.1 0 0.1 0.9 0.1
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0.9 0.1 0.8 0.72 0.08 0.2 0.02 0.18 0.722 0.278
0.7 0.3 0.8 0.56 0.24 0.2 0.06 0.14 0.566 0.434
0.5 0.5 0.8 0.40 0.40 0.2 0.1 0.1 0.5 0.5
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0.9 0.1 0.5 0.45 0.05 0.5 0.05 0.45 0.5 0.5
0.7 0.3 0.5 0.35 0.15 0.5 0.15 0.35 0.5 0.5
0.5 0.5 0.5 0.25 0.25 0.5 0.25 0.25 0.5 0.5
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Figure 1.18: Forward transition probabilities of the nonideal binary symmetric channel.
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Equation 1.52 is often presented in the form:

P (Xi/Yj) =
P (Xi, Yj)

P (Yj)

=
P (Yj) · P (Xi/Yj)

P (Yj)
, (1.53)

which is referred to asBayes’ rule.
Logically, the probability of receiving a particularYj = Yj0 is the sum of all joint proba-

bilities P (Xi, Yj0) over the range ofXi. This corresponds to the probability of receiving the
transmittedXi correctly, giving rise to the channel outputYj0 plus the sum of the probabilities
of all other possible transmitted symbols giving rise toYj0 :

P (Yj) =
∑

X

P (Xi, Yj) =
∑

X

P (Xi)P (Yj/Xi). (1.54)

Similarly:

P (Xi) =
∑

Y

P (Xi, Yj) =
∑

Y

P (Yj)P (Xi/Yj). (1.55)

1.10.3 Mutual Information
In this section, we elaborate further on the ramifications ofShannon’s information theory [24–
27, 35, 36]. Over nonideal channels impairments are introduced, and the received informa-
tion might be different from the transmitted information. In this section, we quantify the
amount of information that can be inferred from the receivedsymbols over noisy channels.
In the spirit of Shannon’s fundamental work [24] and Carlson’s classic reference [31], let
us continue our discourse with the definition of mutual information. We have already used
the notationP (Xi) to denote the probability that the source symbolXi was transmitted and
P (Yi) to denote the probability that the symbolYj was received. The joint probability that
Xi was transmitted andYj was received had been quantified byP (Xi, Yj), andP (Xi/Yj)
indicated the conditional probability thatXi was transmitted, given thatYj was received,
while P (Yj/Xi) was used for the conditional probability thatYj was received given thatXi

was transmitted.
In case ofi = j, the conditional probabilitiesP (Yj/Xj)j = 1 · · · q represent the error-

free transmission probabilities of the source symbolsj = 1 · · · q. For example, in Figure 1.18
the probabilitiesP (Y0/X0) andP (Y1/X1) are the probabilities of the error-free reception of
a transmittedX0 andX1 source symbol, respectively. The probabilitiesP (Yj/Xi)j 6= i, on
the other hand, give the individual error probabilities, which are characteristic of error events
that corrupted a transmitted symbolXi to a received symbol ofYj . The corresponding error
probabilities in Figure 1.18 areP (Y0/X1) andP (Y1/X0).

Let us define themutual informationof Xi andYj as:

I(Xi, Yj) = log2

P (Xi/Yj)

P (Xi)
= log2

P (Xi, Yj)

P (Xi) · P (Yj)
= log2

P (Yj/Xi)

P (Yj)
bits, (1.56)
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which quantifies the amount of information conveyed, whenXi is transmitted andYj is re-
ceived. Over a perfect, noiseless channel, each received symbol Yj uniquely identifies a
transmitted symbolXi with a probability ofP (Xi/Yj) = 1. Substituting this probability in
Equation 1.56 yields a mutual information of:

I(Xi, Yj) = log2

1

P (Xi)
, (1.57)

which is identical to the self-information ofXi and hence no information is lost over the
channel. If the channel is very noisy and the error probability becomes 0.5, then the received
symbolYj becomes unrelated to the transmitted symbolXi, since for a binary system upon
its reception there is a probability of 0.5 thatX0 was transmitted and the probability ofX1 is
also 0.5. Then formallyXi andYj are independent and hence

P (Xi/Yj) =
P (Xi, Yj)

P (Yj)
=

P (Xi) · P (Yj)

P (Yj)
= P (Xi), (1.58)

giving a mutual information of:

I(Xi, Yj) = log2

P (Xi)

P (Xi)
= log2 1 = 0, (1.59)

implying that no information is conveyed via the channel. Practical communications channels
perform between these extreme values and are usually characterized by theaverage mutual
informationdefined as:

I(X, Y ) =
∑

x,y

P (Xi, Yj) · I(Xi, Yj)

=
∑

x,y

P (Xi, Yj) · log2

P (Xi/Yj)

P (Xi)
[bit/symbol].

(1.60)

Clearly, the average mutual information in Equation 1.60 iscomputed by weighting each
componentI(Xi, Yj) by its probability of occurrenceP (Xi, Yj) and summing these contri-
butions for all combinations ofXi andYj . The average mutual informationI(X, Y ) defined
above gives the average amount of source information acquired per received symbol, as dis-
tinguished from that per source symbol, which was given by the entropyH(X). Let us now
consolidate these definitions by working through the following numerical example.

1.10.4 Mutual Information Example
Using the same numeric values as in our introductory exampleas regards to the binary sym-
metric channel in Section 1.10.1, and exploiting that from Bayes’ rule in Equation 1.53, we
have:

P (Xi/Yj) =
P (Xi, Yj)

P (Yj)
.
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The following probabilities can be derived, which will be used at a later stage, in order to
determine the mutual information:

P (X1/Y1) = P (1/1) =
P (1, 1)

P1
=

0.686

0.692
≈ 0.9913

and

P (X0/Y0) = P (0/0) =
P (0, 0)

P0
=

0.294

0.3080
≈ 0.9545,

whereP1 = 0.692 andP0 = 0.3080 represent the total probability of receiving 1 and 0,
respectively, which is the union of the respective events oferror-free and erroneous receptions
yielding the specific logical value concerned.The mutual informationfrom Equation 1.56 is
computed as:

I(X1, Y1) = log2

P (X1/Y1)

P (X1)

≈ log2

0.9913

0.7
≈ 0.502 bit (1.61)

I(X0, Y0) ≈ log2

0.9545

0.3
≈ 1.67 bit. (1.62)

These figures must be contrasted with the amount of source information conveyed by the
source symbolsX0, X1:

I(0) = log2

1

0.3
≈ log2 3.33 ≈ 1.737 bit/symbol (1.63)

and

I(1) = log2

1

0.7
≈ log2 1.43 ≈ 0.5146 bit/symbol. (1.64)

The amount of information “lost” in the noisy channel is given by the difference between
the amount of information carried by the source symbols and the mutual information gained
upon inferring a particular symbol at the noisy channel’s output. Hence, the lost information
can be computed from Equations 1.61, 1.62, 1.63, and 1.64, yielding (1.737 - 1.67)≈ 0.067
bit and (0.5146 - 0.502)≈ 0.013 bit, respectively. These values may not seem catastrophic,
but in relative terms they are quite substantial and their values rapidly escalate, as the channel
error probability is increased. For the sake of completeness and for future use, let us compute
the remaining mutual information terms, namely,I(X0, Y1) andI(X1, Y0), which necessitate
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the computation of:

P (X0/Y1) =
P (X0, Y1)

P (Y1)

P (0/1) =
P (0, 1)

P1
=

0.3 · 0.02

0.692
≈ 0.00867

P (X1/Y0) =
P (X1, Y0)

P (Y0)

P (1/0) =
P (1, 0)

P0
=

0.7 · 0.02

0.308
≈ 0.04545

I(X0, Y1) = log2

P (X0/Y1)

P (X0)
≈ log2

0.00867

0.3
≈ −5.11 bit (1.65)

I(X1, Y0) = log2

P (X1/Y0)

P (X1)
≈ log2

0.04545

0.7
≈ −3.945 bit, (1.66)

where the negative sign reflects the amount of “misinformation” as regards, for example,
X0 upon receivingY1. In this example we informally introduced the definition of mutual
information. Let us now set out to formally exploit the benefits of our deeper insight into the
effects of the noisy channel.

1.10.5 Information Loss via Imperfect Channels
Upon rewriting the definition of mutual information in Equation 1.56, we have:

I(Xi, Yj) = log2

P (Xi/Yj)

P (Xi)

= log2

1

P (Xi)
− log2

1

P (Xi/Yj)

= I(Xi) − I(Xi/Yj). (1.67)

Following Shannon’s [24–27, 35, 36] and Ferenczy’s [33] approach and rearranging Equa-
tion 1.67 yields:

I(Xi)
︸ ︷︷ ︸

Source Inf.

− I(Xi, Yj)
︸ ︷︷ ︸

Inf. conveyed to rec.

= I(Xi/Yj)
︸ ︷︷ ︸

Inf. loss

. (1.68)

Briefly returning to figure 1.18 assists the interpretation of P (Xi/Yj) as the probability or
certainty/uncertainty thatXi was transmitted, given thatYj was received, which justifies the
above definition of the information loss. It is useful to observe from this figure that, as it
was stated before,P (Yj/Xi) represents the probability of erroneous or error-free reception.
Explicitly, if j = i, thenP (Yj/Xi) = P (Yj/Xj) is the probability of error-free reception,
while if j 6= i, thenP (Yj/Xi) is the probability of erroneous reception.
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With the probabilityP (Yj/Xi) of erroneous reception in mind, we can actually associate
an error information term with it:

I(Yj/Xi) = log2

1

P (Yj/Xi)
. (1.69)

Let us now concentrate on the average mutual information’s expression in Equation 1.60 and
expand it as follows:

I(X, Y ) =
∑

X,Y

P (Xi, Yj) · log2

1

P (Xi)

−
∑

X,Y

P (Xi, Yj) log2

1

P (Xi/Yj)
. (1.70)

Considering the first term at the right-hand side (rhs) of theabove equation and invoking
Equation 1.55, we have:

∑

X

[
∑

Y

P (Xi, Yj)

]

log2

1

P (Xi)
=

∑

X

P (Xi) log2

1

P (Xi)
= H(X).

(1.71)

Then rearranging Equation 1.70 gives:

H(X) − I(X, Y ) =
∑

X,Y

P (Xi, Yj) log2

1

P (Xi/Yj)
, (1.72)

whereH(X) is the average source information per symbol andI(X, Y ) is the average con-
veyed information per received symbol.

Consequently, the rhs term must be the average information per symbol lost in the noisy
channel. As we have seen in Equation 1.67 and Equation 1.68, the information loss is given
by:

I(Xi/Yj) = log2

1

P (Xi/Yj)
. (1.73)

The average information lossH(X/Y ) equivocation, which Shannon [26] terms is computed
as the weighted sum of these components:

H(X/Y ) =
∑

X

∑

Y

P (Xi, Yj) · log2

1

P (Xi/Yj)
. (1.74)

Following Shannon, this definition allowed us to express Equation 1.72 as:

H(X)
︸ ︷︷ ︸

(av. source inf/sym.)

− I(X, Y )
︸ ︷︷ ︸

(av. conveyed inf/sym.)

= H(X/Y )
︸ ︷︷ ︸

(av. lost inf/sym.)

(1.75)
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1.10.6 Error Entropy via Imperfect Channels
Similarly to our previous approach and using the probability P (Yj/Xi) of erroneous recep-
tion associated with the information term of:

I(Yj/Xi) = log2

1

P (Yj/Xi)
(1.76)

we can define the average “error information” or error entropy. Hence, the above error infor-
mation terms in Equation 1.76 are weighted using the probabilities P (Xi, Yj) and averaged
for all X andY values, defining theerror entropy:

H(Y/X) =
∑

X

∑

Y

P (Xi, Yj) log2

1

P (Yj/Xi)
. (1.77)

Using Bayes’ rule from Equation 1.52, we have

P (Xi/Yj) · P (Yj) = P (Yj/Xi) · P (Xi)

P (Xi/Yj)

P (Xi)
=

P (Yj/Xi)

P (Yj)
. (1.78)

Following from this, for the average mutual information in Equation 1.56 we have:

I(X, Y ) = I(Y, X), (1.79)

which, after interchangingX andY in Equation 1.75, gives:

H(Y )
︸ ︷︷ ︸

destination entropy

− I(Y, X)
︸ ︷︷ ︸

conveyed inf

= H(Y/X)
︸ ︷︷ ︸

error entropy

. (1.80)

Subtracting the conveyed information from the destinationentropy gives the error entropy,
which is nonzero, if the destination entropy and conveyed information are not equal due to
channel errors. Let us now proceed following Ferenczy’s approach [33] and summarize the
most important definitions for future reference in Table 1.7before we attempt to augment
their physical interpretations using the forthcoming numerical example.

Example Using the BSC model of Figure 1.16, as an extension of the worked exam-
ples of Subsections 1.10.1 and 1.10.4 and following Ferenczy’s interpretation [33] of
Shannon’s elaborations [24–27, 35, 36], let us compute the following range of system
characteristics:
(a) Thejoint information , as distinct from the mutual information introduced ear-

lier, for all possible channel input/output combinations.
(b) The entropy, i.e., the average information of both the source and the sink.
(c) The average joint informationH(X, Y ).
(d) The average mutual information per symbol conveyed.
(e) The average information loss and average error entropy.
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Quantity Definition
Source inf. I(Xi) = − log2 P (Xi)
Received inf. I(Yj) = − log2 P (Yj)
Joint inf. IXi,Yj

= − log2 P (Xi, Yj)

Mutual inf. I(Xi, Yj) = log2
P (Xi/Yj)

P (Xi)

Av. Mut. inf. I(X, Y ) =
∑

X

∑

Y P (XiYj) log2
P (Xi/Yj)

P (Xi)

Source entropy H(X) = −∑

X P (Xi) · log2 P (Xi)
Destination entr. H(Y ) = −∑

Y P (Yj) log2 P (Yj)
Equivocation H(X/Y ) = −∑

X

∑

Y P (Xi, Yj) log2 P (Xi/Yj)
Error entropy H(Y/X) = −∑

X

∑

Y P (XiYj) log2 P (Yj/Xi)

Table 1.7: Summary of Definitionsc©Ferenczy [33]

With reference to Figure 1.16 and to our introductory example from Section 1.10.1
we commence by computing further parameters of the BSC. Recall that the source
information was:

I(X0) = log2

1

0.3
≈ 3.322 log10 3.333 ≈ 1.737 bit

I(X1) = log2

1

0.7
≈ 0.515 bit.

The probability of receiving a logical 0 was 0.308 and that oflogical 1 was 0.692, of
whether 0 or 1 was transmitted. Hence, the information inferred upon the reception of
0 and 1, respectively, is given by:

I(Y0) = log2

1

0.308
≈ 3.322 log10 3.247 ≈ 1.699 bit

I(Y1) = log2

1

0.692
≈ 0.531 bit.

Observe that because of the reduced probability of receiving a logical 1 from0.7 →
0.692 as a consequence of channel-induced corruption, the probability of receiving a
logical 0 is increased from0.3 → 0.308. This is expected to increase the average
destination entropy, since the entropy maximum of unity is achieved, when the sym-
bols are equiprobable. We note, however, that this does not give more information
about the source symbols, which must be maximized in an efficient communications
system. In our example, the information conveyed increasesfor the reduced probabil-
ity logical 1 from0.515 bit → 0.531 bit and decreases for the increased probability
0 from 1.737 bit → 1.699 bit. Furthermore, the average information conveyed is
reduced, since the reduction from 1.737 to 1.699 bit is more than the increment from
0.515 to 0.531. In the extreme case of an error probability of0.5 we would have
P (0) = P (1) = 0.5, andI(1) = I(0) = 1 bit, associated with receiving equiprobable
random bits, which again would have a maximal destination entropy, but a minimal in-
formation concerning the source symbols transmitted. Following the above interesting
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introductory calculations, let us now turn our attention tothe computation of the joint
information.
a/ The joint information, as distinct from the mutual information introduced earlier
in Equation 1.56, of all possible channel input/output combinations is computed from
Figure 1.16 as follows:

IXi,Yj
= − log2 P (Xi, Yj) (1.81)

I00 = − log2(0.3 · 0.98) ≈ −3.322 · log10 0.294 ≈ 1.766 bit

I01 = − log2(0.3 · 0.02) ≈ 7.381 bit

I10 = − log2(0.7 · 0.02) ≈ 6.159 bit

I11 = − log2(0.7 · 0.98) ≈ 0.544 bit.

These information terms can be individually interpreted formally as the information
carried by the simultaneous occurrence of the given symbol combinations. For exam-
ple, as it accrues from their computation,I00 andI11 correspond to the favorable event
of error-free reception of a transmitted 0 and 1, respectively, which hence were simply
computed by formally evaluating the information terms. By the same token, in the
computation ofI01 andI10, the corresponding source probabilities were weighted by
the channel error probability rather than the error-free transmission probability, leading
to the corresponding information terms. The latter terms, namely,I01 andI10, repre-
sent low-probability, high-information events due to the low channel error probability
of 0.02.
Lastly, a perfect channel with zero error probability wouldrender the probability of
the error-events zero, which in turn would assign infinite information contents to the
corresponding terms ofI01 andI10, while I00 andI11 would be identical to the self-
information of the 0 and 1 symbols. Then, if under zero error probability we evaluate
the effect of the individual symbol probabilities on the remaining joint information
terms, the less frequently a symbol is emitted by the source,the higher its associated
joint information term becomes and vice versa, which is seenby comparingI00 and
I11. Their difference can be equalized by assuming an identicalprobability of 0.5
for both, which would yieldI00=I11= 1-bit. The unweighted average ofI00 andI11

would then be lower than in case of the previously used probabilities of 0.3 and 0.7,
respectively, since the maximum average would be associated with the case of 0 and 1,
where the associatedlog2 terms would be 0 and−∞, respectively. The appropriately
weighted average joint information terms will be evaluted under paragraphc/ during
our later calculations. Let us now move on to evaluate the average information of the
source and sink.
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b/ Calculating the entropy, that is, the average information for both the source and the
sink, is quite straightforward and ensues as follows:

H(X) =

2∑

i=1

P (Xi) · log2

1

P (Xi)

≈ 0.3 · log2 3.333 + 0.7 · log2 1.429

≈ 0.5211 + 0.3605

≈ 0.8816 bit/symbol. (1.82)

For the computation of the sink’s entropy, we invoke Equations 1.49 and 1.50, yielding:

H(Y ) = 0.308 · log2

1

0.308
+ 0.692 log2

1

0.692
≈ 0.5233 + 0.3676

≈ 0.8909 bit/symbol. (1.83)

Again, the destination entropyH(Y ) is higher than the source entropyH(X) due to the
more random reception caused by channel errors, approaching H(Y ) = 1 bit/symbol
for a channel bit error rate of0.5. Note, however, that unfortunately this increased
destination entropy does not convey more information aboutthe source itself.
c/ Computing theaverage joint informationH(X, Y ) gives:

H(X, Y ) = −
2∑

i=1

2∑

j=1

P (Xi, Yj) log2 P (Xi, Yj)

= −
2∑

i=1

2∑

j=1

P (Xi, Yj)IXi,Yj
. (1.84)

Upon substituting theIXi,Yj
values calculated in Equation 1.81 into Equation 1.84, we

have:

H(X, Y ) ≈ 0.3 · 0.98 · 1.766 + 0.3 · 0.02 · 7.381

+ 0.7 · 0.02 · 6.159 + 0.7 · 0.98 · 0.544

≈ 0.519 + 0.044 + 0.086 + 0.373

≈ 1.022 bit/symbol-combination.

In order to interpretH(X, Y ), let us again scrutinize the definition given in Equa-
tion 1.84, which weights the joint information terms of Equation 1.81 by their prob-
ability of occurence. We have argued before that the joint information terms corre-
sponding to erroneous events are high due to the low error probability of 0.02. Ob-
serve, therefore, that these high-information symbol combinations are weighted by
their low-probability of occurrence, causingH(X, Y ) to become relatively low. It
is also instructive to consider the above terms in Equation 1.84 for the extreme cases of
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zero and 0.5 error probabilities and for different source emission probabilities, which
are left for the reader to explore. Here we proceed considering the average conveyed
mutual information per symbol.
d/ Theaverage conveyed mutual information per symbolwas defined in Equation 1.60
in order to quantify the average source information acquired per received symbol,
which is repeated here for convenience as follows:

I(X, Y ) =
∑

X

∑

Y

P (Xi, Yj) log2

P (Xi/Yj)

P (Xi)

=
∑

X

∑

Y

P (Xi, Yj) · I(Xi, Yj).

Using the individual mutual information terms from Equations 1.61–1.66 in Section 1.10.4,
we get the average mutual information representing the average amount of source in-
formation acquired from the received symbols, as follows:

I(X, Y ) ≈ 0.3 · 0.98 · 1.67 + 0.3 · 0.02 · (−5.11)

+ 0.7 · 0.02 · (−3.945) + 0.7 · 0.98 · 0.502

≈ 0.491 − 0.03066− 0.05523 + 0.3444

≈ 0.7495 bit/symbol. (1.85)

In order to interpret the concept of mutual information, in Section 1.10.4 we noted
that the amount of information “lost” owing to channel errors was given by the differ-
ence between the amount of information carried by the sourcesymbols and the mutual
information gained upon inferring a particular symbol at the noisy channel’s output.
These were given in Equations 1.61–1.64, yielding (1.737 - 1.67) ≈ 0.067 bit and
(0.5146 - 0.502)≈ 0.013 bit, for the transmission of a 0 and 1, respectively. Wealso
noted that the negative sign of the terms corresponding to the error-events reflected
the amount of misinformation as regards, for example,X0 upon receivingY1. Over
a perfect channel, the cross-coupling transitions of Figure 1.16 are eliminated, since
the associated error probabilities are 0, and hence there isno information loss over the
channel. Consequently, the error-free mutual informationterms become identical to the
self-information of the source symbols, since exactly the same amount of information
can be inferred upon reception of a symbol, as much is carriedby its appearance at the
output of the source.
It is also instructive to study the effect of different errorprobabilities and source symbol
probabilities in the average mutual information definitionof Equation 1.84 in order to
acquire a better understanding of its physical interpretation and quantitative power as
regards the system’s performance. It is interesting to note, for example, that assuming
an error probability of zero will therefore result in average mutual information, which
is identical to the source and destination entropy computedabove under paragraphb/.
It is also plausible thatI(X, Y ) will be higher than the previously computed 0.7495
bits/symbol, if the symbol probabilities are closer to 0.5,or in general in case ofq-ary
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sources closer to1/q. As expected, for a binary symbol probability of 0.5 and error
probability of 0, we haveI(X, Y )=1 bit/symbol.
e/ Lastly, let us determine theaverage information loss and average error entropy,
which were defined in Equations 1.74 and 1.80 and are repeatedhere for convenience.
Again, we will be using some of the previously computed probabilities from Sec-
tions 1.10.1 and 1.10.4, beginning with computation of the average information loss
of Equation 1.74:

H(X/Y ) = −
∑

X

∑

Y

P (Xi, Yj) log2 P (Xi/Yj)

= −P (X0, Y0) log2 P (X0/Y0) − P (X0, Y1) log2 P (X0/Y1)

−P (X1, Y0) log2 P (X1/Y0) − P (X1, Y1) log2 P (X1/Y1)

= P (0, 0) · log2 P (0/0) + P (0, 1) · log2 P (0/1)

P (1, 0) · log2 P (1/0) + P (1, 1) · log2 P (1/1)

≈ −0.3 · 0.98 · log2 0.9545− 0.3 · 0.02 · log2 0.00867

−0.7 · 0.02 · log2 0.04545− 0.7 · 0.98 · log2 0.9913

≈ 0.0198 + 0.0411 + 0.0624 + 0.0086

≈ 0.132 bit/symbol.

In order to augment the physical interpretation of the above-average information loss
expression, let us examine the main contributing factors init. It is expected to decrease
as the error probability decreases. Although it is not straightforward to infer the clear
effect of any individual parameter in the equation, experience shows that as the error
probability increases, the two middle terms correspondingto the error events become
more dominant. Again, the reader may find it instructive to alter some of the parameters
on a one-by-one basis and study the way its influence manifests itself in terms of the
overall information loss.
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Moving on to the computation of the average error entropy, wefind its definition equa-
tion is repeated below, and on inspecting Figure 1.16 we have:

H(Y/X) = −
∑

X

∑

Y

P (Xi, Yj) · log2 P (Yj/Xi)

= −P (X0, Y0) log2 P (Y0/X0) − P (X0, Y1) log2 P (Y1/X0)

−P (X1, Y0) log2 P (Y0/X1) − P (X1, Y1) log2 P (Y1/X1)

P (Y0/X0) = 0.98

P (Y0/X1) = 0.02

P (Y1/X0) = 0.02

P (Y1/X1) = 0.98

H(Y/X) = P (0, 0) · log2 P (0/0) + P (0, 1) · log2 P (0/1)

P (1, 0) · log2 P (1/0) + P (1, 1) · log2 P (1/1)

= −0.294 · log2 0.98 − 0.014 · log2 0.02

−0.006 · log2 0.02 − 0.686 · log2 0.98

≈ 0.0086 + 0.079 + 0.034 + 0.02

≈ 0.141 bit/symbol.

The average error entropy in the above expression is expected to fall as the error proba-
bility is reduced and vice versa. Substituting different values into its definition equation
further augments its practical interpretation. Using our previous results in this section,
we see that theaverage loss of information per symbol or equivocationdenoted by
H(X/Y ) is given by the difference between the source entropy of Equation 1.82 and
the average mutual information of Equation 1.85, yielding:

H(X/Y ) = H(X) − I(X, Y ) ≈ 0.8816− 0.7495 ≈ 0.132 bit/symbol,

which according to Equation 1.75, is identical to the value of H(X/Y ) computed
earlier. In harmony with Equation 1.80, the error entropy can also be computed as the
difference of the average entropyH(Y ) in Equation 1.83 of the received symbols and
the mutual informationI(X, Y ) of Equation 1.85, yielding:

H(Y ) − I(X, Y ) ≈ 0.8909− 0.7495 ≈ 0.141 bit/symbol,

as seen above forH(Y/X).

Having defined the fundamental parameters summarized in Table 1.7 and used in the
information-theoretical characterization of communications systems, let us now embark on
the definition of channel capacity. Initially, we consider discrete noiseless channels, leading
to a brief discussion of noisy discrete channels, and then weproceed to analog channels,
before exploring the fundamental message of the Shannon-Hartley law.
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1.11 Capacity of Discrete Channels [26,33]
Shannon [26] defined thechannel capacityC of a channel as the maximum achievable infor-
mation transmission rate at which error-free transmissioncan be maintained over the channel.

Every practical channel is noisy, but transmitting at a sufficiently high power the channel
error probabilitype can be kept arbitrarily low, providing us with a simple initial channel
model for our further elaborations. Following Ferenczy’s approach [33], assume that the
transmission of symbolXi requires a time interval ofti, during which an average of

H(X) =

q
∑

i=1

P (Xi) log2

1

P (Xi)

bit
symbol

(1.86)

information is transmitted, whereq is the size of the source alphabet used. This approach
assumes that a variable-length coding algorithm, such as the previously described Shannon-
Fano or the Huffman coding algorithm may be used in order to reduce the transmission rate
to as low as the source entropy. Then the average time required for the transmission of a
source symbol is computed by weightingti with the probability of occurrence of symbol
Xi, i = 1 . . . q:

tav =

q
∑

i=1

P (Xi)ti
sec

symbol
· (1.87)

Now we can compute the average information transmission rate v by dividing the average
information content of a symbol by the average time requiredfor its transmission:

v =
H(X)

tav

bit
sec

. (1.88)

The maximum transmission ratev as a function of the symbol probabilityP (Xi) must be
found. This is not always an easy task, but a simple case occurs when the symbol duration
is constant; that is, we haveti = t0 for all symbols. Then the maximum ofv is a function
of P (Xi) only and we have shown earlier that the entropyH(X) is maximized by equiprob-
able source symbols, whereP (Xi) = 1

q . Then from Equations 1.86 and 1.87 we have an
expression for the channel’s maximum capacity:

C = vmax =
H(X)

tav
=

log2q

t0

bit
sec

. (1.89)

Shannon [26] characterized the capacity of discrete noisy channels using the previously
defined mutual information describing the amount of averageconveyed information, given
by:

I(X, Y ) = H(Y ) − H(Y/X), (1.90)

whereH(Y ) is the average amount of information per symbol at the channel’s output, while
H(Y/X) is the error entropy. Here a unity symbol-rate was assumed for the sake of simplicity.
Hence, useful information is transmitted only via the channel if H(Y ) > H(Y/X). Via a
channel withpe = 0.5, where communication breaks down, we haveH(Y ) = H(Y/X),
and the information conveyed becomesI(X, Y ) = 0. The amount of information conveyed
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Figure 1.19: BSC model.

is maximum if the error entropyH(Y/X) = 0. Therefore, Shannon [26] defined the noisy
channel’s capacity as the maximum value of the conveyed informationI(X, Y ):

C = I(X, Y )MAX = [H(Y ) − H(Y/X)]MAX , (1.91)

where the maximization of Equation 1.91 is achieved by maximizing the first term and mini-
mizing the second term.

In general, the maximization of Equation 1.91 is an arduous task, but for the BSC seen
in Figure 1.19 it becomes fairly simple. Let us consider thissimple case and assume that the
source probabilities of 1 and 0 areP (0) = P (1) = 0.5 and the error probability ispe. The
entropy at the destination is computed as:

H(Y ) = −1

2
log2

1

2
− 1

2
log2

1

2
= 1 bit/symbol,

while the error entropy is given by:

H(Y/X) = −
∑

X

∑

Y

P (Xi, Yj) · log2 P (Yj/Xi). (1.92)

In order to be able to compute the capacity of the BSC as a function of the channel’s error
probability, let us substitute the required joint probabilities of:

P (0, 0) = P (0)(1 − pe)

P (0, 1) = P (0)pe

P (1, 0) = P (1)pe

P (1, 1) = P (1)(1 − pe). (1.93)
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and the conditional probabilities of:

P (0/0) = (1 − pe)

P (0/1) = pe

P (1/0) = pe

P (1/1) = (1 − pe). (1.94)

into Equation 1.92, yielding:

H(Y/X) = −[P (0)(1 − pe) · log2(1 − pe) + P (0) · pe log2 pe

+P (1) · pe log2 pe + P (1)(1 − pe) log2(1 − pe)]

= −[P (0) + P (1)](1 − pe) log2(1 − pe)

+[P (0) + P (1)]pe log2 pe

= −(1 − pe) · log2(1 − pe) − pe · log2 pe. (1.95)

Finally, upon substitutingH(Y ) andH(Y/X) from above into Equation 1.91, the BSC’s
channel capacity becomes:

C = 1 + (1 − pe) log2(1 − pe) + pe log2 pe. (1.96)

Following Ferenczy’s [33] interpretation of Shannon’s lessons [24–27, 35, 36], the graphic
representation of the BSC’s capacity is depicted in Figure 1.20 using variouspe error proba-
bilities.

Observe, for example, that forpe = 10−2 the channel capacity isC ≈ 0.9 bit/symbol,
that is, close to its maximum ofC = 1 bit/symbol, but for higherpe values it rapidly
decays, falling toC = 0.5 bit/symbol aroundpe = 10−1. If pe = 50%, we haveC =
0 bit/symbol; since no useful information transmission takes place, the channel delivers
random bits. Notice also that ifP (0) 6= P (1) 6= 0.5, thenH(Y ) < 1 bit/symbol and hence
C < Cmax = 1 bit/symbol, even ifpe = 0.

1.12 Shannon’s Channel Coding Theorem [30,38]
In the previous section, we derived a simple expression for the capacity of the noisy BSC in
Equation 1.96, which was depicted in Figure 1.20 as a function of the channel’s error proba-
bility pe. In this section, we focus on Shannon’schannel coding theorem, which states that as
long as the information transmission rate does not exceed the channel’s capacity, the bit error
rate can be kept arbitrarily low [35,36]. In the context of the BSC channel capacity curve of
Figure 1.20, this theorem implies that noise over the channel does not preclude the reliable
transmission of information; it only limits the rate at which transmission can take place. Im-
plicitly, this theorem prophesies the existence of an appropriate error correction code, which
adds redundancy to the original information symbols. This reduces the system’s useful infor-
mation throughput but simultaneously allows error correction coding. Instead of providing a
rigorous proof of this theorem, following the approach suggested by Abramson [30], which
was also used by Hey and Allen [38] in their compilation of Feyman’s lectures, we will make
it plaussible.
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The theorem is stated more formally as follows. Let us assumethat a message ofK useful
information symbols is transmitted by assigning it to anN -symbol so-called block code,
where the symbols are binary and the error probability ispe. Then, according to Shannon,
upon reducing thecoding rateR = K

N beyond every limit, the error probability obeys the
following relationship:

R =
K

N
≤ C = 1 + (1 − pe) log2(1 − pe) + pe · log2 pe. (1.97)

As Figure 1.20 shows upon increasing the bit error ratepe, the channel capacity reduces
gradually toward zero, which forces the channel coding rateR = K

N to zero in the limit. This
inequality therefore implies that an arbitrarily low BER ispossible only when the coding rate
R tends to zero, which assumes an infinite-length block code and an infinite coding delay. By
scrutinizing Figure 1.20, we can infer that, for example, for a BER of10−1 an approximately
R = K

N ≈ 1
2 so-called half-rate code is required in order to achieve asymptotically perfect

communications, while forBER = 10−2 an approximatelyR ≈ 0.9 code is required.
Shannon’s channel coding theorem does not specify how to create error correction codes,

which can achieve this predicted performance; it merely states their existence. Hence, the
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error correction coding community has endeavored over the years to create such good codes
but until 1993 had only limited success. Then in that year Berrou et al. [39] invented the
family of iteratively decoded turbo-codes, which are capable of approaching the Shannonian
predictions within a fraction of a dB.

Returning to the channel coding theorem, Hey and Feynman [38] offered a witty approach
to deepening the physical interpretation of this theorem, which we briefly highlight below.
Assuming that the block-coded sequences are long, in each block on the average there are
t = pe · N number of errors. In general,t number of errors can be allocated over the block
of N positions in

Ct
N =

(
N

t

)

=
N !

t!(N − t)!

different ways, which are associated with the same number oferror patterns. The number
of additional parity bits added during the coding process isP = (N − K), which must
be sufficiently high for identifying all theCt

N number of error patterns, in order to allow
inverting (i.e., correcting) the corrupted bits in the required positions. Hence, we have [38]:

N !

t!(N − t)!
≤ 2(N−K). (1.98)

Upon exploiting the Stirling formula of

N ! ≈
√

2πN ·
(

N

e

)N

=
√

2π ·
√

N · NN · e−N

and taking the logarithm of both sides, we have:

loge N ! ≈ loge

√
2π +

1

2
loge N + N loge N − N.

Furthermore, whenN is large, the first and second terms are diminishingly small in compar-
ison to the last two terms. Thus, we have:

loge N ! ≈ N loge N − N.

Then, after taking the logarithm, the factorial expressionon the left-hand side (L) of Equa-
tion 1.98 can be written as:

L ≈ [N loge N − N ] − [t loge t − t] − [(N − t) loge(N − t) − (N − t)] .
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Now taking into account thatt ≈ pe · N , we have [38]:

L ≈ [N loge N − N ] − [peN loge(peN) − peN ]

− [(N − peN) loge(N − peN) − (N − peN)]

≈ [N loge N − N ] − [peN loge pe + peN loge N − peN ]

− [N loge(N(1 − pe)) − peN loge(N(1 − pe)) − (N − peN)]

≈ [N loge N − N ] − [peN loge pe + peN loge N − peN ]

− [N loge N + N loge(1 − pe) − peN loge N

− peN loge(1 − pe) − (N − peN)]

≈ N [loge N − 1 − pe loge pe − pe loge N + pe

− loge N − loge(1 − pe) + pe loge N

+ pe loge(1 − pe) + 1 − pe]

≈ N [−pe loge pe − loge(1 − pe) + pe loge(1 − pe)]

≈ N [−pe loge pe − (1 − pe) loge(1 − pe)].

If we consider thatloge a = log2 a · loge 2, then we can convert theloge terms tolog2 as
follows [38]:

L ≈ N loge 2[−pe log2 pe − (1 − pe) log2(1 − pe)].

Finally, upon equating this term with the logarithm of the right-hand side expression of Equa-
tion 1.98, we arrive at:

N loge 2[−pe log2 pe − (1 − pe) log2(1 − pe)] ≤ (N − K) loge 2,

which can be simplified to:

−pe log2 pe − (1 − pe) log2(1 − pe) ≤ 1 − K

N

or to a form, identical to Equation 1.97:

K

N
≤ 1 + (1 − pe) log2(1 − pe) + pe log2 pe.

1.13 Capacity of Continuous Channels [27,33]
During our previous discussions, it was assumed that the source emitted discrete messages
with certain finite probabilities, which would be exemplified by an 8-bit analog-to-digital
converter emitting one of 256 discrete values with a certainprobability. However, after digi-
tal source encoding and channel encoding according to the basic schematic of Figure 1.1 the
modulator typically converts the digital messages to a finite set of bandlimited analog wave-
forms, which are chosen for maximum “transmission convenience.” In this context, trans-
mission convenience can imply a range of issues, depending on the communications channel.
Two typical constraints are predominantly power-limited or bandwidth-limited channels, al-
though in many practical scenarios both of these constraints become important. Because
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of their limited solar power supply, satellite channels tend to be more severely power-limited
than bandlimited, while typically the reverse situation isexperienced in mobile radio systems.

The third part of Shannon’s pioneering paper [27] considersmany of these issues. Thus,
in what follows we define the measure of information for continuous signals, introduce a con-
cept for the continuous channel capacity, and reveal the relationships among channel band-
width, channel capacity, and channel signal-to-noise ratio, as stated by the Shannon-Hartley
theorem. Finally, the ideal communications system transpiring from Shannon’s pioneering
work is characterized, before concluding with a brief discussion of the ramifications of wire-
less channels as regards the applicability of Shannon’s results.

Let us now assume that the channel’s analog input signalx(t) is bandlimited and hence
that it is fully characterized by its Nyquist samples and by its probability density function
(PDF)p(x). The analogy of this continuous PDF and that of a discrete source are character-
ized byP (Xi) ≈ p(Xi)∆X , which reflects the practical way of experimentally determining
the histogram of a bandlimited analog signal by observing the relative frequency of events,
when its amplitude resides in a∆X wide amplitude bin-centered aroundXi. As an analogy
to the discrete average information or entropy expression of:

H(X) = −
∑

i

P (Xi) · log2 P (Xi), (1.99)

Shannon [27] introduced theentropy of analog sources, as it was also noted and exploited,
for example, by Ferenczy [33], as follows:

H(x) = −
∫ ∞

−∞

p(x) log2 p(x)dx. (1.100)

For our previously used discrete sources, we have shown thatthe source entropy is max-
imized for equiprobable messages. The question that arisesis whether this is also true for
continuous PDFs. Shannon [27] derived the maximum of the analog signal’s entropy under
the constraints of:

∫ ∞

−∞

p(x)dx = 1 (1.101)

σ2
x =

∫ ∞

−∞

x2 · p(x)dx = Constant (1.102)

based on the calculus of variations. He showed that the entropy of a signalx(t) having a
constant variance ofσ2

x is maximum, ifx(t) has a Gaussian distribution given by:

p(x) =
1√
2πσ

e−(x2/2σ2). (1.103)

Then the maximum of the entropy can be derived upon substituting this PDF into the
expression of the entropy. Let us first take the natural logarithm of both sides of the PDF and
convert it to base two logarithm by taking into account thatloge a = log2 a · loge 2, in order
to be able to use it in the entropy’slog2 expression. Then the PDF of Equation 1.103 can be
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written as:

− log2 p(x) = + log2

√
2πσ + (x2/2σ2) · 1

loge 2
, (1.104)

and upon exploiting thatloge 2 = 1/ log2 e, the entropy is expressed according to Shan-
non [27] and Ferenczy [33] as:

Hmax(x) = −
∫

p(x) · log2 p(x)dx

=

∫

p(x) · log2

√
2πσdx +

∫

p(x)
x2 · log2 e

2σ2
dx

= log2

√
2πσ

∫

p(x)dx +
log2 e

2σ2

∫

x2p(x)dx

︸ ︷︷ ︸

σ2

= log2

√
2πσ +

σ2

2σ2
log2 e

= log2

√
2πσ +

log2 e

2

= log2

√
2πσ +

1

2
log2 e

= log2

√
2πeσ. (1.105)

Since the maximum of the entropy is proportional to the logarithm of the signal’s average
powerSx = σ2

x, upon quadrupling the signal’s power the entropy is increased by one bit
because the range of uncertainty as regards where the signalsamples can reside is expanded.

We are now ready to formulate the channel capacity versus channel bandwidth and ver-
sus channel SNR relationship of analog channels. Let us assume white, additive, signal-
independent noise with a power ofN via the channel. Then the received (signal+noise)
power is given by:

σ2
y = S + N. (1.106)

By the same argument, the channel’s output entropy is maximum if its output signaly(t) has
a Gaussian PDF and its value is computed from Equation 1.105 as:

Hmax(y) =
1

2
log2(2πeσ2

y) =
1

2
log2 2πe(S + N). (1.107)

We proceed by taking into account the channel impairments, reducing the amount of infor-
mation conveyed by the amount of the error entropyH(y/x) giving:

I(x, y) = H(y) − H(y/x), (1.108)

where again the noise is assumed to be Gaussian and hence:

H(y/x) =
1

2
log2(2πeN). (1.109)
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Upon substituting Equation 1.107 and Equation 1.109 in Equation 1.108, we have:

I(x, y) =
1

2
log2

(
2πe(S + N)

2πeN

)

=
1

2
log2

(

1 +
S

N

)

, (1.110)

where, again, both the channel’s output signal and the noiseare assumed to have Gaussian
distribution.

The analog channel’s capacityis then calculated upon multiplying the information con-
veyed per source sample by the Nyquist sampling rate offs = 2 · fB, yielding [35]:

C = fB · log2

(

1 +
S

N

)
bit
sec

. (1.111)

Equation 1.111 is the well-knownShannon-Hartley law,1 establishing the relationship among
the channel capacityC, channel bandwidthfB, and channel signal-to-noise ratio (SNR).

Before analyzing the consequences of the Shannon-Hartley law following Shannon’s de-
liberations [35], we make it plausible from a simple practical point of view. As we have seen,
the root mean squared (RMS) value of the noise is

√
N , and that of the signal plus noise at

the channel’s output is
√

S + N . The receiver has to decide from the noisy channel’s output
signal what signal has been input to the channel, although this has been corrupted by an ad-
ditive Gaussian noise sample. Over an ideal noiseless channel, the receiver would be able to
identify what signal sample was input to the receiver. However, over noisy channels it is of
no practical benefit to identify the corrupted received message exactly. It is more beneficial to
quantify a discretized version of it using a set of decision threshold values, where the resolu-
tion is dependent on how corrupted the samples are. In order to quantify this SNR-dependent
receiver dynamic range resolution, let us consider the following argument.

Having very densely spaced receiver detection levels wouldoften yield noise-induced
decision errors, while a decision-level spacing of

√
N according to the RMS noise-amplitude

intuitively seems a good compromise between high information resolution and low decision
error rate. Then assuming a transmitted sample, which resides at the center of a

√
N wide

decision interval, noise samples larger than
√

N/2 will carry samples across the adjacent
decision boundaries. According to this spacing, the numberof receiver reconstruction levels
is given by:

q =

√
S + N√

N
=

(

1 +
S

N

) 1

2

, (1.112)

which creates a scenario similar to the transmission of equiprobableq-ary discrete symbols
via a discrete noisy channel, each conveyinglog2 q amount of information at the Nyquist
sampling rate offs = 2 · fB. Therefore, the channel capacity becomes [35]:

C = 2 · fB · log2 q = fB · log2

(

1 +
S

N

)

, (1.113)

1Comment by the Authors: Although the loose definition of capacity is due to Hartley, the underlying relationship
is entirely due to Shannon.
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Figure 1.21: Graphical representation of the Shannon-Hartley law. c©Ferenczy [33].

as seen earlier in Equation 1.111.

1.13.1 Practical Evaluation of the Shannon-Hartley Law
The Shannon-Hartley law of Equation 1.111 and Equation 1.113 reveals the fundamental
relationship of the SNR, bandwidth, and channel capacity. This relationship can be further
studied following Ferenczy’s interpretation [33] upon referring to Figure 1.21.

Observe from the figure that a constant channel capacity can be maintained, even when
the bandwidth is reduced, if a sufficiently high SNR can be guaranteed. For example, from
Figure 1.21 we infer that atfB = 10 KHz and SNR= 30 dB the channel capacity is as
high as C= 100 kbps. Surprisingly,C ≈ 100 kbps can be achieved even forfB = 5 KHz,
if SNR = 60 dB is guaranteed.

Figure 1.22 provides an alternative way of viewing the Shannon-Hartley law, where the
SNR is plotted as a function offB, parameterized with the channel capacityC. It is important
to notice how dramatically the SNR must be increased in orderto maintain a constant channel
capacityC, as the bandwidthfB is reduced below0.1 · C, whereC andfB are expressed
in kbit/s and Hz, respectively. This is due to thelog2(1 + SNR) function in Equation 1.111,
where a logarithmically increasing SNR value is necessitated to compensate for the linear
reduction in terms offB.
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From our previous discourse, the relationship between the relative channel capacityC/fB

expressed from Equation 1.113, and the channel SNR now becomes plausible. This rela-
tionship is quantified in Table 1.8 and Figure 1.23 for convenience. Notice that due to the

logarithmic SNR scale expressed in dBs, theC/fB

[
bps
Hz

]

curve becomes near-linear, allow-

ing a near-linearly proportional relative channel capacity improvement upon increasing the
channel SNR. A very important consequence of this relationship is that if the channel SNR
is sufficiently high to support communications using a high number of modulation levels, the
channel is not exploited to its full capacity upon usingC/fB values lower than is afforded by
the prevailing SNR. Proposing various techniques in order to exploit this philosophy was the
motivation of reference [40].

The capacityC of a noiseless channel withSNR = ∞ is C = ∞, although noiseless
channels do not exist. In contrast, the capacity of an ideal system withfB = ∞ is finite [31,
34]. Assuming additive white Gaussian noise (AWGN) with a double-sided power spectral
density (PSD) ofη/2, we haveN = η

2 · 2 · fB = η · fB, and applying the Shannon-Hartley
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SNR C/fB

Ratio dB bit/sec/Hz
1 0 1
3 4.8 2
7 8.5 3
15 11.8 4
31 14.9 5
63 18.0 6
127 21.0 7

Table 1.8: Relative Channel Capacity versus SNR

Figure 1.23: Relative channel capacity (C/fB) versus SNR (dB).
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law gives [31]:

C = fB · log2

(

1 +
S

ηfB

)

=

(
S

η

) (
ηfB

S

)

log2

(

1 +
S

ηfB

)

=

(
S

η

)

log2

(

1 +
S

ηfB

) ηfB
S

. (1.114)

Our aim is now to determineC∞ = limfB→∞C. Upon exploiting that:

limx→0(1 + x)
1

x = e (1.115)

wherex = S/(η · fB), we have

C∞ = limfB→∞C =
S

η
log2 e = 1.45 ·

(
S

η

)

, (1.116)

which is the capacity of the channel withfB = ∞. The practically achievable transmis-
sion rateR is typically less than the channel capacityC, although complex turbo-coded
modems [39] can approach its value. For example, for a telephone channel with a signal-to-
noise ratio ofS/N = 103 = 30 dB and a bandwidth ofB = 3.4 kHz from Equation 1.113,
we haveC = 3.4 · log2(1 + 103)kbit

sec ≈ 3.4 · 10 = 34 kbit/s, which is fairly close to
the rate of the V.34 CCITT standard 28.8 kbit/s telephone-channel modem that was recently
standardized.

In this chapter, we have been concerned with various individual aspects of Shannon’s
information theory [24–27,35,36]. Drawing nearer to concluding our discourse on the foun-
dations of information theory, let us now outline in broad terms the main ramifications of
Shannon’s work [24–27].

1.13.2 Shannon’s Ideal Communications System
for Gaussian Channels
The ideal Shannonian communications system shown in Figure1.24 has the following char-
acteristics. The system’s information-carrying capacityis given by the information rate
C = fB log2(1 + S/N), while as regards its error rate we havepe → 0. The transmitted and
received signals are bandlimited Gaussian random variables, which facilitate communicating
at the highest possible rate over the channel.

Information from the source is observed forT seconds, whereT is the symbol duration
and encoded as equiprobableM -ary symbols with a rate ofR =

log
2

M
T . Accordingly, the

signaling waveform generator of Figure 1.24 assigns a bandlimited AWGN representation
having a maximum frequency offB from the set ofM = 2RT possible waveforms to the
source message, uniquely representing the signalx(t) to be transmitted for a duration ofT .
The noisy received signaly(t) = x(t) + n(t) is compared to allM = 2RT prestored wave-
forms at the receiver, and the most “similar” is chosen to identify the most likely transmitted
source message. The observation intervals at both the encoder and decoder amount toT ,



72 1.14. Shannon’s Message for Wireless Channels

AWGN
channel

Waveform
detector

M-ary
decoder

Signaling
waveform
generator

M-ary
encoder

Waveform
storage

Waveform
storage

Source Sink-----

6 6

-

Figure 1.24: Shannon’s ideal communications system for AWGN channels.

yielding an overall coding delay of2T . Signaling at a rate equal to the channel capacity is
only possible, if the source signal’s observation intervalis infinitely long, that is,T → ∞.

Before concluding this chapter, we offer a brief discussionof the system-architectural
ramifications of transmitting over wireless channels rather than over AWGN channels.

1.14 Shannon’s Message for Wireless Channels
In wireless communications over power- and bandlimited channels it is always of prime con-
cern to maintain an optimum compromise in terms of the contradictory requirements of low
bit rate, high robustness against channel errors, low delay, and low complexity. The mini-
mum bit rate at which distortionless communications is possible is determined by the entropy
of the speech source message. Note, however, that in practical terms the source rate corre-
sponding to the entropy is only asymptotically achievable as the encoding memory length or
delay tends to infinity. Any further compression is associated with information loss or coding
distortion. Note that the optimum source encoder generatesa perfectly uncorrelated source-
coded stream, where all the source redundancy has been removed; therefore, the encoded
symbols are independent, and each one has the same significance. Having the same signif-
icance implies that the corruption of any of the source-encoded symbols results in identical
source signal distortion over imperfect channels.

Under these conditions, according to Shannon’s pioneeringwork [24], which was ex-
panded, for example, by Hagenauer [41] and Viterbi [42], thebest protection against trans-
mission errors is achieved if source and channel coding are treated as separate entities. When
using a block code of lengthN channel coded symbols in order to encodeK source symbols
with a coding rate ofR = K/N , the symbol error rate can be rendered arbitrarily low, ifN
tends to infinity and the coding rate to zero. This condition also implies an infinite coding
delay. Based on the above considerations and on the assumption of additive white Gaus-
sian noise (AWGN) channels, source and channel coding have historically been separately
optimized.

Mobile radio channels are subjected to multipath propagation and so constitute a more
hostile transmission medium than AWGN channels, typicallyexhibiting path-loss, log-normal
slow fading and Rayleigh fast-fading. Furthermore, if the signaling rate used is higher than
the channel’s coherence bandwidth, over which no spectral-domain linear distortion is ex-
perienced, then additional impairments are inflicted by dispersion, which is associated with



1.14. Shannon’s Message for Wireless Channels 73

frequency-domain linear distortions. Under these circumstances the channel’s error distri-
bution versus time becomes bursty, and an infinite-memory symbol interleaver is required
in Figure 1.1 in order to disperse the bursty errors and henceto render the error distribu-
tion random Gaussian-like, such as over AWGN channels. For mobile channels, many of
the above mentioned, asymptotically valid ramifications ofShannon’s theorems have limited
applicability.

A range of practical limitations must be observed when designing mobile radio speech or
video links. Although it is often possible to further reducethe prevailing typical bit rate of
state-of-art speech or video codecs, in practical terms this is possible only after a concomitant
increase of the implementational complexity and encoding delay. A good example of these
limitations is the half-rate GSM speech codec, which was required to approximately halve
the encoding rate of the 13 kbps full-rate codec, while maintaining less than quadrupled
complexity, similar robustness against channel errors, and less than doubled encoding delay.
Naturally, the increased algorithmic complexity is typically associated with higher power
consumption, while the reduced number of bits used to represent a certain speech segment
intuitively implies that each bit will have an increased relative significance. Accordingly,
their corruption may inflict increasingly objectionable speech degradations, unless special
attention is devoted to this problem.

In a somewhat simplistic approach, one could argue that because of the reduced source
rate we could accommodate an increased number of parity symbols using a more powerful,
implementationally more complex and lower rate channel codec, while maintaining the same
transmission bandwidth. However, the complexity, quality, and robustness trade-off of such
a scheme may not always be attractive.

A more intelligent approach is required to design better speech or video transceivers for
mobile radio channels [41]. Such an intelligent transceiver is portrayed in Figure 1.1. Perfect
source encoders operating close to the information-theoretical limits of Shannon’s predic-
tions can only be designed for stationary source signals, a condition not satisfied by most
source signals. Further previously mentioned limitationsare the encoding complexity and
delay. As a consequence of these limitations the source-coded stream will inherently contain
residual redundancy, and the correlated source symbols will exhibit unequal error sensitivity,
requiring unequal error protection. Following Hagenauer [41], we will refer to the additional
knowledge as regards the different importance or vulnerability of various speech-coded bits
as source significance information (SSI). Furthermore, Hagenauer termed the confidence as-
sociated with the channel decoder’s decisions as decoder reliability information (DRI). These
additional links between the source and channel codecs are also indicated in Figure 1.1. A
variety of such techniques have successfully been used in robust source-matched source and
channel coding.

The role of the interleaver and de-interleaver seen in Figure 1.1 is to rearrange the channel
coded bits before transmission. The mobile radio channel typically inflicts bursts of errors
during deep channel fades, which often overload the channeldecoder’s error correction capa-
bility in certain speech or video segments. In contrast other segments are not benefiting from
the channel codec at all, because they may have been transmitted between fades and hence are
error-free even without channel coding. This problem can becircumvented by dispersing the
bursts of errors more randomly between fades so that the channel codec is always faced with
an “average-quality” channel, rather than the bimodal faded/nonfaded condition. In other
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words, channel codecs are most efficient if the channel errors are near-uniformly dispersed
over consecutive received segments.

In its simplest manifestation, an interleaver is a memory matrix filled with channel coded
symbols on a row-by-row basis, which are then passed on to themodulator on a column-by-
column basis. If the transmitted sequence is corrupted by a burst of errors, the de-interleaver
maps the received symbols back to their original positions,thereby dispersing the bursty
channel errors. An infinite memory channel interleaver is required in order to perfectly ran-
domize the bursty errors and therefore to transform the Rayleigh-fading channel’s error statis-
tics to that of a AWGN channel, for which Shannon’s information theoretical predictions
apply. Since in interactive video or speech communicationsthe tolerable delay is strictly
limited, the interleaver’s memory length and efficiency arealso limited.

A specific deficiency of these rectangular interleavers is that in case of a constant ve-
hicular speed the Rayleigh-fading mobile channel typically produces periodic fades and error
bursts at traveled distances ofλ/2, whereλ is the carrier’s wavelength, which may be mapped
by the rectangular interleaver to another set of periodic bursts of errors. Hence a range of ran-
dom interleaving algorithms have been proposed in the literature.

Returning to Figure 1.1, the soft-decision information (SDI) or channel state information
(CSI) link provides a measure of confidence with regard to thelikelihood that a specific
symbol was transmitted. Then the channel decoder often usesthis information in order to
invoke maximum likelihood sequence estimation (MLSE) based on the Viterbi algorithm
and thereby improve the system’s performance with respect to conventional hard-decision
decoding. Following this rudimentary review of Shannon’s information theory, let us now
turn our attention to the characterization of wireless communications channels.

1.15 Summary and Conclusions
An overview of Shannonian information theory has been given, in order to establish a firm
basis for our further discussions throughout the book. Initially we focussed our attention
on the basic Shannonian information transmission scheme and highlighted the differences
between Shannon’s theory valid for ideal source and channelcodecs as well as for Gaussian
channels and its ramifications for Rayleigh channels. We also argued that practical finite-
delay source codecs cannot operate at transmission rates aslow as the entropy of the source.
However, these codecs do not have to operate losslessly, since perceptually unobjectionable
distortions can be tolerated. This allows us to reduce the associated bit rate.

Since wireless channels exhibit bursty error statistics, the error bursts can only be random-
ized with the aid of infinite-length channel interleavers, which are not amenable to real-time
communications. Although with the advent of high-delay turbo channel codecs it is possible
to operate near the Shannonian performance limits over Gaussian channels, over bursty and
dispersive channels different information-theoretical channel capacity limits apply.

We considered the entropy of information sources both with and without memory and
highlighted a number of algorithms, such as the Shannon-Fano, the Huffman and run-length
coding algorithms, designed for the efficient encoding of sources exhibiting memory. This
was followed by considering the transmission of information over noise-contaminated chan-
nels leading to Shannon’s channel coding theorem. Our discussions continued by consider-
ing the capacity of communications channels in the context of the Shannon-Hartley law. The
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chapter was concluded by considering the ramifications of Shannon’s messages for wireless
channels.

1.16 Structure and novel aspects of the book
In this section we provide an overview of the remainder of this book and summarise its novel
aspects.

In Chapter 1 we provide a rudimentary introduction to information theory, in order to
lay the foundations for the rest of the book, while inChapter 2, we provide a brief overview
of the system components and techniques used throughout themonograph.

In Chapter 6 we demonstrate the application of IrVLCs for the joint source and channel
coding of video information, as described in Section 4.1.2.The proposed scheme employs
the serial concatenation and iterative decoding of a video codec with a channel codec, in the
manner detailed in Section 4.3.3.2. Our novel video codec represents the video information
using Variable Dimension Vector Quantisation (VDVQ) tiles, which are similar to the VQ
tiles described in Section 4.2.1, but having various dimensions. The VDVQ tiles employed
are represented using the corresponding RVLC codewords selected from the VDVQ/RVLC
codebook, as described in Section 4.2.5. However, the legitimate use of the VDVQ tiles
and their corresponding RVLC codewords is limited by a number of code constraints, which
ensure that the VDVQ tiles employed perfectly tessellate, among other desirable design ob-
jectives. As a result, different sub-sets of the RVLC codewords are available at different
points during the encoding of the video information and the proposed approach adopts an
IrVLC philosophy.

In the video codec of Chapter 6, the VDVQ/RVLC-induced code constraints are uniquely
and unambiguously described by a novel VDVQ/RVLC trellis structure, which resembles
the symbol-based VLEC trellis [1, 2] described in Section 4.2.6.3. Hence, the employment
of the VDVQ/RVLC trellis structure allows the consideration of all legitimate transmission
frame permutations. This fact is exploited in the video encoder in order to perform novel
MMSE VDVQ/RVLC encoding, using a variant of the Viterbi algorithm [3] described in
Section 4.2.6.2.

Additionally, the employment of the VDVQ/RVLC trellis structure during video decoding
guarantees the recovery of legitimate – although not necessarily error-free – video informa-
tion. As a result, the video decoder never has to discard video information. This is unlike in
conventional video decoders, where a single transmission error may render an entire trans-
mission frame invalid. Furthermore, the novel modificationof the BCJR algorithm [4] of
Section 4.3.2.2 is employed during APP SISO VDVQ/RVLC decoding in order to facilitate
the iterative exchange of soft information with the serially concatenated channel decoder and
in order to perform the soft MMSE reconstruction of the videosequence. Finally, since the
VDVQ/RVLC trellis structure describes the complete set of VDVQ/RVLC-induced code con-
straints, all of the associated redundancy is beneficially exploited with the aid of the modified
BCJR algorithm.

Owing to its aforementioned benefits and its employment of a joint source and channel
coding philosophy, the video transmission scheme of Chapter 6 is shown to outperform the
corresponding benchmarkers employing a separate source and channel coding philosophy.
Our findings were originally published in [5,6].
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In Chapter 7, we investigate the application of IrVLCs to UEP, as described in Sec-
tion 4.1.3. Here, a number of component VLC codebooks havingdifferent error correction
capabilities are employed to encode various fractions of the source symbol frame. In the case
where the various fractions of the source symbol frame have different error sensitivities, this
approach may be expected to yield a higher reconstruction quality than equal protection, as
noted in [7–9], for example.

Chapter 7 also investigates the application of IrVLCs to near-capacity operation, as de-
scribed in Section 4.1.1. Here, a number of component VLC codebooks having different
inverted Extrinsic Information Transfer Chart (EXIT) functions are employed to encode var-
ious fractions of the source symbol frame. We show that the inverted IrVLC EXIT function
may be obtained as a weighted average of the inverted component VLC EXIT functions, as
described in Section 4.4. Additionally, the EXIT chart matching algorithm [10] described in
Section 4.4 is employed to shape the inverted IrVLC EXIT function to match the EXIT func-
tion of a serially concatenated inner channel code and to create a narrow but still open EXIT
chart tunnel. In this way, iterative decoding convergence to an infinitesimally low probability
of error is facilitated at near capacity SNRs, as described in Section 4.3.4.4.

Furthermore, in Chapter 7, the UEP and near-capacity operation of the described scheme
is assessed using novel plots that characterise the computational complexity of iterative de-
coding. More specifically, the average number of ACS operations required to reconstruct each
source symbol with a high quality is plotted against the channel SNR. These plots are em-
ployed to compare the novel IrVLC-based scheme with a suitably designed IrCC and regular
VLC based benchmarkers, quantifying the advantages of the IrVLCs Furthermore, these plots
demonstrate that the complexity associated with the bit-based VLEC trellis of Section 4.2.6.1
is significantly lower than that of the symbol-based trellisdescribed in Section 4.2.6.3. Our
findings were originally published in [11,12] and we proposed attractive near-capacity IrVLC
schemes in [13–18].

In Chapter 8 we introduce a novel RV-FDM as an alternative to the IV-FD lower bound of
(4.8) for the characterisation of the error correction capability that is associated with VLEC
codebooks. Unlike the IV-FD lower bound, the RV-FDM assumesvalues from the real-valued
domain, hence allowing the comparison of the error correction capability of two VLEC code-
books having equal IV-FD lower bounds, as described in Section 4.2.6.4. Furthermore, we
show that a VLEC codebook’s RV-FDM affects the number of inflection points that appear
in the corresponding inverted EXIT function. This complements the property [19] that the
area below an inverted VLEC EXIT function equals the corresponding coding rate, as well as
the property that a free distance of at least two yields an inverted VLEC EXIT function that
reaches the top right hand corner of the EXIT chart, as described in Section 4.3.4.4.

These properties are exploited by a novel GA in order to design beneficial VLEC code-
books having arbitrary inverted EXIT function shapes. Thisis in contrast to the methods
of [20–22], which are incapable of designing codebooks having specific EXIT function
shapes without imposing a significant level of ‘trial-and-error’ based human interaction, as
described in Section 4.4. This novel GA is shown to be attractive for the design of IrVLC
component codebooks for EXIT chart matching, since Chapter8 also demonstrates that our
ability to create open EXIT chart tunnels at near-capacity channel SNRs depends on the avail-
ability of a suite of component codes having a wide variety ofEXIT function shapes.
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Finally, a suite of component VLEC codebooks designed by thenovel GA is found to
facilitate higher-accuracy EXIT chart matching than a benchmarker suite designed using the
state-of-the-art method of [22]. Our novel RV-FDM and GA were originally published in
[15,16].

In Chapter 9, we propose a novel modification to the EXIT chartmatching algorithm
of [10] that additionally seeks a reduced APP SISO decoding complexity by considering
the complexities associated with each of the component codes. Furthermore, another novel
modification of Chapter 9 facilitates the EXIT chart matching of irregular codes that employ
a suite of component codes having the same coding rate. This is achieved by removing the
EXIT chart matching constraint of (4.30), facilitating thedesign of a novel IrURC.

Additionally, Chapter 9 demonstrates the joint EXIT chart matching of two serially con-
catenated irregular codecs, namely an outer IrVLC and an inner IrURC. This is achieved by
iteratively matching the inverted outer EXIT function to the inner EXIT function and vice
versa. By employing an irregular inner code, in addition to an irregular outer code, we can
afford a higher degree of design freedom than the proposals of [10], which employ a reg-
ular inner code. Hence, the proposed approach is shown to facilitate even nearer-capacity
operation, which is comparable to that of IrLDPC and irregular turbo codes, as described in
Section 4.4. Our findings were originally published in [17, 18] and we additionally demon-
stated the joint EXIT chart matching of serially concatenated irregular codecs in [23].

Finally, in Chapter 10, we compare the results and findings ofthe previous chapters and
draw our conclusions.

In summary, the novel aspects of this research monograph are:
• a novel VDVQ/RVLC-TCM scheme for the iterative joint sourceand channel decoding

of video information;
• its VDVQ/RVLC trellis structure;
• the adaptation of the Viterbi algorithm for MMSE VDVQ/RVLC encoding;
• the adaptation of the BCJR algorithm for APP SISO VDVQ/RVLC decoding and

MMSE video reconstruction;
• IrVLC schemes for near-capacity operation;
• complexity versus channel SNR plots which are parameterised by the reconstruction

quality;
• the RV-FDM for characterising the error correction capability of VLECs having the

same IV-FD;
• the characterisation of the relationship between a VLEC’s RV-FDM and the shape of

its inverted EXIT function;
• a GA for designing VLECs having specific EXIT functions;
• a suite of VLECs that are suitable for a wide range of IrVLC applications;
• the adaptation of the EXIT chart matching algorithm to facilitate the use of component

codes having the same coding rate;
• the adaptation of the EXIT chart matching algorithm to additionally seek a reduced

APP SISO decoding computational complexity;
• the joint EXIT chart matching algorithm for designing schemes employing a serial

concatenation of two irregular codecs;
• an IrVLC-IrURC scheme for very near capacity joint source and channel coding.



Chapter 7
Irregular Variable Length Codes
for EXIT Chart Matching

7.1 Introduction
As demonstrated in Section 6.6, a serially concatenated [131] transmission scheme is capable
of achieving iterative decoding [132] convergence to an infinitesimally low probability of
error at near-capacity Signal to Noise Ratios (SNRs), if theEXtrinsic Information Transfer
(EXIT) functions of the inner and outer codecs are well matched. This motivated the design
of Irregular Convolutional Coding (IrCC) schemes in [10], as described in Section??.

The inverted EXIT function of an outer IrCC channel codec canbe specifically shaped
in order to match the EXIT function of a serially concatenated inner codec. This is possible,
because IrCCs amalgamate a number of component Convolutional Codes (CC) [51] having
different coding rates, each of which is employed to generate a specific fraction of the IrCC-
encoded bit stream. As described in Section??, the composite inverted IrCC EXIT function
is given as a weighted average of the inverted EXIT functionsof the individual component
CCs, where each weight is given by the particular fraction ofthe IrCC-encoded bit stream that
is generated by the corresponding component CC. Hence, it isthe specific selection of these
fractions that facilitates the shaping of the inverted composite IrCC EXIT function. Using the
EXIT chart matching algorithm of [10], the inverted IrCC EXIT chart may be matched to the
EXIT function of the inner codec in this way. This facilitates the creation of an open EXIT
chart tunnel [158] at low channel SNRs, which approach the channel’s capacity bound.

However, the constituent bit-based CCs [51] of the IrCC codec of [10] are unable to ex-
ploit the unequal source symbol occurrence probabilities that are typically associated with
audio, speech, image and video sources [61, 62]. Note that unequal source symbol occur-
rence probabilities were exemplified in Section 6.3.2. Since the exploitation of all available
redundancy is required for near-capacity operation [24], the Huffman source encoder [65] of
Chapter 1 must be employed to remove this source redundancy before IrCC encoding com-
mences. However, the reconstruction of the Huffman encodedbits with a particularly low
Bit Error Ratio (BER) is required in order that Huffman decoding [65] can achieve a low



256 7.1. Introduction

Symbol Error Ratio (SER), owing to its high error sensitivity, which often leads to loss of
synchronisation.

This motivates the application of the Variable Length ErrorCorrection (VLEC) code
[89] and Reversible Variable Length Coding (RVLC) [99] classes of Variable Length Codes
(VLCs) as an alternative to the concatenated Huffman and CC coding of sequences of source
symbols having values with unequal probabilities of occurrence. Unlike CCs, these joint
source and channel coding VLC schemes are capable of exploiting unequal source symbol oc-
currence probabilities, as described in Chapter??. More specifically, source symbols having
indices ofk ∈ [1 . . .K] and associated with unequal probabilities of occurrence{P (k)}K

k=1

are mapped to binary codewords of varying lengths{Ik}K
k=1 from aK-entry codebookVLC

during VLC encoding. Typically, the more frequently a particular source symbol value oc-
curs, the shorter its VLC codeword, resulting in a reduced average codeword length of

L(VLC) =

K∑

k=1

P (k) · Ik. (7.1)

In order that each valid VLC codeword sequence may be uniquely decoded, a lower bound
equal to the source entropy of

E = −
K∑

k=1

P (k) · log2(P (k)) (7.2)

is imposed upon the average codeword lengthL(VLC). Any discrepancy betweenL(VLC)
andE is quantified by the coding rate of

R(VLC) =
E

L(VLC)
(7.3)

and may be attributed to the intentional introduction of redundancy into the VLEC or RVLC
codewords. Naturally, this intentionally introduced redundancy imposes code constraints
that limit the set of legitimate sequences of VLC-encoded bits. Like the code constraints
of CCs [51], the VLC code constraints may be exploited for providing an error correcting
capability during VLC decoding [89]. Note that the lower theVLC coding rate, the higher
the associated potential error correction capability, as described in Chapter??. Furthermore,
unlike in CC decoding, any redundancy owing to the unequal occurrence probabilities of the
source symbol values may also be exploited during VLC decoding [89].

Depending on the coding rateR(VLC) of the VLECs or RVLCs, the associated code
constraints render their decoding substantially less sensitive to bit errors than Huffman de-
coding is, as described in Chapter??. Hence, a coding gain of 1 dB at an SER of10−5

has been observed by employing VLEC coding having a particular coding rate instead of a
concatenated Huffman and Bose-Chaudhuri-Hocquenghem (BCH) [198,199] coding scheme
having the same coding rate [89].

Hence the application of EXIT chart matching invoking Irregular Variable Length Cod-
ing (IrVLC) is motivated for the sake of near-capacity jointsource and channel coding of
source symbol sequences having values exhibiting unequal occurrence probabilities. In this
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chapter, we therefore employ a novel IrVLC scheme as our outer source codec, which we
serially concatenate [131,132] with an inner channel codecfor the sake of exchanging extrin-
sic information. As shown in Figure 7.1, instead of the component CCs employed in IrCC
schemes, the proposed IrVLC scheme employs component VLC codebooks. These have dif-
ferent coding rates and are used for encoding appropriatelyselected fractions of the input
source symbol stream. In this way, the resultant composite inverted EXIT function may be
shaped for ensuring that it does not cross the EXIT function of the inner channel codec.

Characterise
candidate
component

codes

component
codes

Select Design
component
fractionscodes

component
candidate
Design

Figure 7.1: Conventional irregular coding design process.This chapter presents modifica-
tions to the aspects of this process that are indicated usinga bold box.

Note that the proposed scheme has an Unequal Error Protection (UEP) capability [200],
since different fractions of the input source symbol streamare protected by different VLC
codebooks having different coding rates and, hence, different error correction capabilities. In
a manner similar to that of [7–9] for example, this UEP capability may be employed to appro-
priately protect audio-, speech-, image- and video-encoded bit sequences, which are typically
generated using diverse encoding techniques and exhibit various error sensitivities. For ex-
ample, video coding typically achieves compression by employing Motion Compensation
(MC) [64] to exploit the characteristic inter-frame redundancy of video information and the
Discrete Cosine Transform (DCT) [63] to exploit the intra-frame redundancy, as described
in Section 6.1. As noted in [61], typically a higher degree ofvideo reconstruction distortion
typically results from transmission errors that affect theMC-generated motion vectors than
from those inflicted on the DCT-encoded information. Hence,the proposed scheme’s UEP
capability may be employed to protect the MC-encoded information with a relatively strong
error correction capability, whilst employing a relatively weak error correction code to protect
the DCT-encoded information. This approach may hence be expected to yield a lower degree
of video reconstruction distortion than equal protection,as noted in [7–9], for example.

The rest of this chapter is outlined as follows. In Section 7.2, we propose iteratively de-
coded schemes, in which we opt for serially concatenating IrVLC with Trellis Coded Modula-
tion (TCM) [129]. Furthermore, Section 7.2 additionally introduces our benchmark schemes,
where IrVLC is replaced by regular VLCs having the same coding rate. The design and EXIT
chart aided characterisation of these schemes is detailed in Section 7.3. In Section 7.4, we
quantify the attainable performance improvements offeredby the proposed IrVLC arrange-
ments compared to the regular VLC benchmarker schemes. Furthermore, in Section 7.4 we
additionally consider a Huffman coding and IrCC based benchmarker. Section 7.4 also em-
ploys a novel method of quantifying the computational complexity required for the schemes
considered in order to achieve different source sample reconstruction qualities at a range of
Rayleigh fading channel SNRs. This method is employed to select our preferred scheme and
to characterise the benefits of UEP. Finally, we offer our conclusions in Section 7.5.
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7.2 Overview of proposed schemes
In this section we provide an overview of a number of seriallyconcatenated [131] and iter-
atively decoded [132] joint source and channel coding schemes. Whilst the novel schemes
introduced in this paper may be tailored for operating in conjunction with any inner channel
codec, we opt for employing TCM [129] in each of our considered schemes. This provides
error protection without any bandwidth expansion or effective bit-rate reduction by accommo-
dating the additional redundancy by transmitting more bitsper channel symbol. The choice of
TCM is further justified, sinceA PosterioriProbability (APP) TCM Soft-In Soft-Out (SISO)
decoding, similarly to APP SISO IrVLC decoding, operates onthe basis of Add-Compare-
Select (ACS) operations within a trellis structure. Hence,the APP SISO IrVLC and TCM
decoders can share resources in systolic-array based chips, facilitating a cost effective imple-
mentation. Furthermore, we will show that TCM exhibits attractive EXIT characteristics in
the proposed IrVLC context even without requiring TTCM- or BICM-style internal iterative
decoding [197].

Our considered schemes differ in their choice of the outer source codec. Specifically,
we consider a novel IrVLC codec and an equivalent regular VLC-based benchmarker in this
role. In both cases we employ both Symbol-Based (SB) [2] and Bit-Based (BB) [90] VLC
decoding, resulting in a total of four different configurations. We refer to these four schemes
as the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM arrangements, as appropriate. A
schematic that is common to each of these four considered schemes is provided in Figure 7.2.

π

π

+ Lo
e(u)Lo

p(u) −

Lo
a(u)

π−1

+

Li
a(u

′)

y

−

Li
e(u

′) Li
p(u

′)

y

Q
e

encoder
TCMM VLC

encoders
xs

s1

sM

u1

uM
u

Rayleigh
fading
channel

decoder
TCM
SISO

Lo
p(u

1) Lo
p(u

M)

Lo
a(u

1) Lo
a(u

M)

For SBVLC decoding

For BBVLC decoding

Lo
p(s

1)

Q−1
ẽ
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Figure 7.2: Schematic of the SBIrVLC-, BBIrVLC-, SBVLC- andBBVLC-TCM schemes.
In the IrVLC schemes, theM number of VLC encoders, APP SISO decoders and MAP
sequence estimators are each based upon one ofN number of component VLC codebooks.
By contrast, in the VLC benchmarkers, all of theM number of VLC encoders, decoders and
sequence estimators are based upon the same VLC codebook.
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7.2.1 Joint source and channel coding
The schemes considered are designed for facilitating the near-capacity detection of source
samples received over an uncorrelated narrowband Rayleighfading channel. We consider
the case of independent identically distributed (i.i.d.) source samples, which may represent
the prediction residual error that remains following the predictive coding of audio, speech,
image or video information [61,62], for example. Note that this was exemplified in the novel
video codec of Chapter 6, in which Frame Differencing (FD) was employed, as depicted in
Figure 6.1. A Gaussian source sample distribution is assumed here, since this has widespread
applications owing to the wide applicability of the centrallimit theorem [201]. Additionally,
a zero mean and unity source sample variance was assumed, resulting in the Probability
Distribution Function (PDF) shown in Figure 7.3. Note however that with the aid of suitable
adaptation, the techniques proposed in this chapter may be just as readily applied to arbitrary
source sample distributions.
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Figure 7.3: Gaussian PDF for unity mean and variance. The x axis is labelled with the
K = 16 Lloyd-Max quantisation levels{êk}K

k=1 as provided in [74]. The decision boundaries
are employed to decompose the Gaussian PDF intoK = 16 sections. The integral of the PDF
between each pair of adjacent decision boundaries is provided.

In the blockQ of the transmitter depicted in Figure 7.2, each real-valuedsource sample
of the source sample framee is quantised [74, 75] to one of theK = 16 quantisation levels
{êk}K

k=1 provided in Figure 7.3. In each case, the selected quantisation level is that which
represents the source sample with the minimum squared error. Figure 7.3 provides decision
boundaries, which are located halfway between each adjacent pair of quantisation levels.
Each pair of adjacent decision boundaries specifies the range of source sample values that
are quantised to the quantisation level at the centre of gravity of this interval, resulting in the
minimum squared error. Following quantisation, each source sample in the source sample



260 7.2.1. Joint source and channel coding

framee is represented by a symbol in the source symbol frames that represents the index of
the selected quantisation levelêk and has a value ofk ∈ [1 . . .K].

Owing to the lossy nature of quantisation, distortion is imposed upon the reconstructed
source sample framêe that is obtained following inverse quantisation in the block, as de-
scribed in Section??. Note that the set of quantisation levels depicted in Figure7.3 represents
those of Lloyd-Max quantisation [74,75]. This employs the K-means algorithm [98] to search
for the set of quantisation levels that minimises the expected quantisation distortion. In the
case of the quantisation levels seen in Figure 7.3, the expected Signal to Quantisation Noise
Ratio (SQNR) is about 20 dB. Note however that again, with theaid of suitable adaptation,
the techniques advocated in this chapter may be just as readily applied to arbitrary quantisers.

Also note that Lloyd-Max quantisation results in a large variation in the occurrence prob-
abilities of the resultant source symbol values. These occurrence probabilities are given by
integrating the source PDF between each pair of adjacent decision boundaries, resulting
in the values provided in Figure 7.3. These source symbol values’ occurrence probabili-
ties {P (k)}K

k=1 are repeated in Table 7.1 and can be seen to vary by more than anorder
of magnitude. These probabilities correspond to the varying source symbol informations
{− log2(P (k))}K

k=1 provided in Table 7.1, motivating the application of VLC andgiving a
source entropy ofE = 3.77 bits per source symbol, according to (7.2).

In the transmitter of the proposed scheme, the Lloyd-Max quantised source symbol frame
s is decomposed intoM = 300 sub-frames{sm}M

m=1, as shown in Figure 7.2. In the case
of the SBIrVLC- and SBVLC-TCM schemes, this decomposition is necessary for the sake
of limiting the computational complexity of VLC decoding, since the number of transitions
in the symbol-based VLC trellis is inversely proportional to the number of sub-frames in
this case [2], as described in Section??. We opt for employing the same decomposition of
the source symbol frames into sub-frames in the case of the BBIrVLC- and BBVLC-TCM
schemes for the sake of ensuring that we make a fair comparison with the SBIrVLC- and
SBVLC-TCM schemes. This is justified, since the decomposition considered benefits the
performance of the BBIrVLC- and BBVLC-TCM schemes, as will be detailed below. Each
source symbol sub-framesm comprisesJ = 100 source symbols. Hence, the total number of
source symbols in a source symbol frame becomesM ·J = 30 000. As described above, each
Lloyd-Max quantised source symbol in the sub-framesm has aK-ary valuesm

j ∈ [1 . . .K],
where we havej ∈ [1 . . . J ].

As described in Section 7.1, we employN number of component VLC codebooks to
encode the source symbols, where we opted forN = 15 for the SBIrVLC and BBIrVLC
schemes andN = 1 for the regular SBVLC and BBVLC schemes. Each Lloyd-Max quan-
tised source symbol sub-framesm is VLC-encoded using a single component VLC codebook
VLCn, where we haven ∈ [1 . . .N ]. In the case of the SBIrVLC and BBIrVLC schemes,
the particular fractionCn of the set of source symbol sub-frames that is encoded by the
specific component VLC codebookVLCn is fixed and will be derived in Section 7.3. The
specific Lloyd-Max quantised source symbols having the value ofk ∈ [1 . . .K] and encoded
by the specific component VLC codebookVLCn are represented by the codewordVLCn,k,
which has a length ofIn,k bits. TheJ = 100 VLC codewords that represent theJ = 100
Lloyd-Max quantised source symbols in each source symbol sub-framesm are concatenated
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k P (k) − log2(P (k)) Ik Huffk

1 0.0082 6.93 7 0000000
2 0.0244 5.35 6 000001
3 0.0427 4.55 5 00010
4 0.0605 4.05 4 0010
5 0.0762 3.72 4 0100
6 0.0887 3.49 4 0110
7 0.0974 3.36 3 101
8 0.1019 3.29 3 110
9 0.1019 3.29 3 111
10 0.0974 3.36 3 100
11 0.0887 3.49 4 0111
12 0.0762 3.72 4 0101
13 0.0605 4.05 4 0011
14 0.0427 4.55 5 00011
15 0.0244 5.35 5 00001
16 0.0082 6.93 7 0000001

Table 7.1: The probabilities of occurrenceP (k) and informations− log2(P (k)) of the
K = 16 source symbol valuesk ∈ [1 . . .K] that result from the Lloyd-Max quantisation of
Gaussian distributed source samples. The corresponding source symbol entropy isE = 3.77
bits per source symbol, according to (7.2). Also provided isthe composition of theK = 16
codewords in the corresponding Huffman codebookHuff = {Huffk}K

k=1 [65], having the
codeword lengths{Ik}K

k=1. According to (7.1), the average Huffman codeword length is
L(Huff) = 3.81 bits per source symbol, which corresponds to a Huffman coding rate of
RHuff = 0.99, according to (7.3).

to provide the transmission sub-frame

um = {VLCn,sm
j }J

j=1.

Owing to the variable lengths of the VLC codewords, each of theM = 300 transmission
sub-frames typically comprises a different number of bits.In order to facilitate the VLC
decoding of each transmission sub-frameum, it is necessary to explicitly convey its length

Im =
J∑

j=1

In,sm
j

to the receiver. Furthermore, this highly error sensitive side information must be reliably
protected against transmission errors. This may be achieved using a low rate block code, for
example. For the sake of avoiding obfuscation, this is not shown in Figure 7.2. Note that the
choice of the specific number of sub-framesM in each frame constitutes a trade-off between
the computational complexity of SBVLC decoding or the performance of BBVLC decoding
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and the amount of side information that must be conveyed. In Section 7.3, we shall comment
on the amount of side information that is required for reliably conveying the specific number
of bits in each transmission sub-frame to the decoder.

In the scheme’s transmitter, theM = 300 number of transmission sub-frames{um}M
m=1

are concatenated. As shown in Figure 7.2, the resultant transmission frameu has a length of
∑M

m=1 Im bits.
In the proposed scheme, the VLC codec is protected by a serially concatenated TCM

codec. Following VLC encoding, the bits of the transmissionframeu are interleaved using
the functionπ in order to provide the interleaved transmission frameu′, which is TCM en-
coded in order to obtain the channel’s input symbolsx, as shown in Figure 7.2. These are
transmitted over an uncorrelated narrowband Rayleigh fading channel and are received as the
channel’s output symbolsy, as seen in Figure 7.2.

7.2.2 Iterative decoding
In the receiver, APP SISO TCM- and VLC-decoding are performed iteratively, as shown
in Figure 7.2. Both of these decoders invoke the Bahl-Cocke-Jelinek-Raviv (BCJR) algo-
rithm [4] on the basis of their trellises. Symbol-based trellises are employed in the case of
TCM [129], SBIrVLC and SBVLC [2] decoding, whilst BBIrVLC and BBVLC decoding
rely on bit-based trellises [90]. All BCJR calculations areperformed in the logarithmic prob-
ability domain and using an eight-entry lookup table for correcting the Jacobian approxima-
tion in the Log-MAP algorithm [197]. The proposed approach requires only Add, Compare
and Select (ACS) computational operations during iterative decoding, which will be used as
our complexity measure, since it is characteristic of the complexity/area/speed trade-offs in
systolic-array based chips.

As usual, extrinsic soft information, represented in the form of Logarithmic Likelihood
Ratios (LLRs) [124], is iteratively exchanged between the TCM and VLC decoding stages
for the sake of assisting each other’s operation [131,132],as described in Section??. In Fig-
ure 7.2,L(·) denotes the LLRs of the bits concerned (or the log-APPs of thespecific symbols
as appropriate), where the superscripti indicates inner TCM decoding, whileo corresponds
to outer VLC decoding. Additionally, a subscript denotes the dedicated role of the LLRs
(or log-APPs), witha, p ande indicatinga priori, a posterioriand extrinsic information,
respectively.

During each decoding iteration, the inner TCM decoder is provided witha priori LLRs
pertaining to the interleaved transmission frameLi

a(u′), as shown in Figure 7.2. These LLRs
are obtained from the most recent operation of the outer VLC decoding stage, as will be
highlighted below. In the case of the first decoding iteration, no previous VLC decoding has
been performed and hence thea priori LLRs Li

a(u′) provided for TCM decoding are all zero-
valued, corresponding to a probability of 0.5 for both ‘0’ and ‘1’. Given the channel’s output
symbolsy and thea priori LLRs Li

a(u
′), the BCJR algorithm is employed for obtaining the

a posterioriLLRs Li
p(u

′), as shown in Figure 7.2.
During iterative decoding, it is necessary to prevent the re-use of already exploited infor-

mation, since this would limit the attainable iteration gain [197], as described in Section??.
This is achieved following TCM decoding by the subtraction of Li

a(u
′) from Li

p(u
′), as

shown in Figure 7.2. The resultant extrinsic LLRsLi
e(u

′) are de-interleaved in the block
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π−1 and forwarded asa priori LLRs for VLC decoding. As described in Section??, inter-
leaving is employed in order to mitigate correlation withinthea priori LLR frames. This is
necessary since the BCJR algorithm assumes that alla priori LLRs that can influence any
particular decoding decision are uncorrelated.

Just asM = 300 separate VLC encoding processes are employed in the proposed scheme’s
transmitter,M = 300 separate VLC decoding processes are employed in its receiver. In par-
allel to the composition of the bit-based transmission frameu from itsM = 300 sub-frames,
thea priori LLRs Lo

a(u) are decomposed intoM = 300 sub-frames, as shown in Figure 7.2.
This is achieved with the aid of the explicit side information that conveys the number of bits
Im in each transmission sub-frameum. Each of theM = 300 VLC decoding processes is
provided with thea priori LLR sub-frameLo

a(um) and in response it generates thea pos-
teriori LLR sub-frameLo

p(u
m), m ∈ [1 . . .M ]. Thesea posteriori LLR sub-frames are

concatenated in order to provide thea posterioriLLR frameLo
p(u), as shown in Figure 7.2.

Following the subtraction of thea priori LLRs Lo
a(u), the resultant extrinsic LLRsLo

e(u) are
interleaved and forwarded asa priori information to the next TCM decoding iteration.

In the case of SBIrVLC and SBVLC decoding, each of theM = 300 VLC decoding
processes additionally provides log-APPs pertaining to the corresponding source symbol sub-
frameLo

p(s
m). This comprises a set ofK number of log-APPs for each source symbolsm

j

in the sub-framesm, wherej ∈ [1 . . . J ]. Each of these log-APPs provides the logarithmic
probability that the corresponding source symbolsm

j has the particular valuek ∈ [1 . . .K].
In the receiver of Figure 7.2, the source symbols’ log-APP sub-frames are concatenated to
provide the source symbol log-APP frameLo

p(s). By inverse-quantising this soft information
in the blockQ−1, we may obtain a frame of Minimum Mean Squared Error (MMSE) source
sample estimates̃e, which approximates the reconstructed source sample frameê described
in Section 7.2.1. More specifically, each source sample estimate is obtained by using the
corresponding set ofK source symbol value probabilities to find the weighted average of the
K number of quantisation levels{êk}K

k=1.
Conversely, in the case of BBIrVLC and BBVLC decoding, no symbol-baseda posteriori

output is available. In this case, each source symbol sub-framesm is estimated from the cor-
respondinga priori LLR sub-frameLo

a(u
m). This may be achieved by employing Maximum

A posterioriProbability (MAP) sequence estimation operating on a bit-based trellis struc-
ture, as shown in Figure 7.2. Unlike in APP SISO SBIrVLC and SBVLC decoding, bit-based
MAP sequence estimation cannot exploit the knowledge that each sub-framesm comprises
J = 100 source symbols. For this reason, the resultant hard decision estimatẽsm of each
source symbol sub-framesm may or may not containJ = 100 source symbols. In order that
we may prevent the loss of synchronisation that this would imply, source symbol estimates
are removed from, or appended to the end of each source symbolsub-frame estimatẽsm for
ensuring that they each comprise exactlyJ = 100 source symbol estimates. Note that it is the
decomposition of the source symbol frames into sub-frames that provides this opportunity
to mitigate the loss of synchronisation that is associated with bit-based MAP VLC sequence
estimation. Hence the decomposition of the source symbol frames into sub-frames benefits
the performance of the BBIrVLC- and BBVLC-TCM schemes, as mentioned above.

Following MAP sequence estimation, the adjusted source symbol sub-frame estimates
s̃m are concatenated for the sake of obtaining the source symbolframe estimatẽs. This may
be inverse-quantised in order to obtain the source sample frame estimatẽe. Note that for the
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reconstruction of a source sample frame estimateẽ from a givena priori LLR frameLo
a(u),

a higher level of source distortion may be expected in the BBIrVLC- and BBVLC-TCM
schemes than in the corresponding SBIrVLC- and SBVLC-TCM schemes. This is due to
the BBIrVLC- and BBVLC-TCM schemes’ reliance on hard decisions as opposed to the soft
decisions of the SBIrVLC- and SBVLC-TCM schemes. However, this reduced performance
substantially benefits us in terms of a reduced complexity, since the bit-based VLC decoding
trellis employed during APP SISO BBIrVLC and BBVLC decodingand MAP sequence esti-
mation contains significantly less transitions than the symbol-based VLC decoding trellis of
APP SISO SBIrVLC and SBVLC decoding, as described in Section??.

In the next section we detail the design of our IrVLC scheme and characterise each of
the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes with the aid of EXIT chart
analysis.

7.3 Parameter design for the proposed schemes
7.3.1 Scheme hypothesis and parameters
As described in Section 7.1, the SBIrVLC and BBIrVLC schemesmay be constructed by
employing a number of component VLC codebooks having different coding rates, each of
which encodes an appropriately chosen fraction of the inputsource symbols. We opted for
usingN = 15 component VLC codebooks{VLCn}15

n=1, that were specifically designed for
encodingK = 16-level Lloyd-Max quantised Gaussian i.i.d. source samples. As shown in
Figure 7.1, theseN = 15 component VLC codebooks were selected from a large number of
candidates using a significant amount of ‘trial-and-error’based human interaction in order to
provide a suite of ‘similarly-spaced’ EXIT functions. Morespecifically, theN = 15 com-
ponent VLC codebooks comprised 13 different Variable Length Error Correcting (VLEC)
designs having various so-called minimum block-, convergence- and divergence-distances as
defined in Section??, complemented by a Symmetric Reversible Variable Length Coding
(SRVLC) and an Asymmetric Reversible Variable Length Coding (ARVLC) design. These
codebooks were designed using Algorithms C and E of Section??.

As described in Section??, the free distance lower bound of a VLC codebookVLCn

can be calculated as

d̄free(VLCn) = min(dbmin
(VLCn), ddmin

(VLCn) + dcmin
(VLCn)),

wheredbmin
(VLCn) is defined as the minimum block distance between any pair of equal-

length codewords in the VLC codebookVLCn, whilst ddmin
(VLCn) anddcmin

(VLCn)
are the minimum divergence and convergence distances between any pair of unequal-length
codewords, respectively. In all codebooks, a free distancelower bound ofd̄free(VLCn) ≥ 2
was employed, since this supports iterative decoding convergence to an infinitesimally low
probability of error [161], as described in Section??. The resultant average VLC codeword
lengths were found to range from 3.94 to 12.18 bits/symbol, according to (7.1). When com-
pared to the source symbol entropy ofE = 3.77 bits per source symbol, these correspond
to coding rates spanning the range of 0.31 to 0.96, accordingto (7.3). The properties and
composition of theN = 15 component VLC codebooks{VLCn}15

n=1 are summarised in
Table 7.2.
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VLCn Properties Composition

VLC1 (VLEC,2,1,1,2,0.96) 6,6,5,5,4,4,3,3,3,3,4,4,5,5,6,6,
857E1FD3074A55133A

VLC2 (ARVLC,2,1,1,2,0.91) 6,6,5,5,4,4,4,3,3,4,4,4,5,5,6,6,
1EB624C9A1D58F6E4A1

VLC3 (SRVLC,2,1,1,2,0.86) 7,6,6,5,5,4,4,3,3,4,4,5,5,6,6,7,
7D9C248FCAAC0EDBC641

VLC4 (VLEC,3,1,1,2,0.81) 8,7,7,6,6,5,4,2,3,3,4,5,6,7,7,8,
81F6F9E86322ACEDE0E77E

VLC5 (VLEC,4,1,1,2,0.75) 8,8,7,6,6,5,4,2,3,4,5,6,7,7,8,8,
36EF61EB5BA44D179F5D7E81

VLC6 (VLEC,2,2,1,2,0.70) 8,7,7,6,6,6,4,4,4,4,6,6,6,7,7,8,
E6C99FCADB9035628FF0E2EA

VLC7 (VLEC,3,2,1,3,0.64) 8,8,7,7,6,6,6,4,5,5,6,6,7,7,7,9,
7FDE5CD3E65403625A267AAD7C

VLC8 (VLEC,3,2,2,3,0.60) 9,8,8,7,7,6,6,4,6,6,6,6,7,8,8,9,
696F594FCBA5A03159B3F8B35583

VLC9 (VLEC,5,2,2,4,0.57) 10,10,9,8,8,7,6,4,5,5,6,7,8,9,9,10,
126307A57CE367501B2AAC9A69CF9ED

VLC10 (VLEC,4,3,2,4,0.52) 11,10,9,8,8,7,7,6,6,6,7,7,8,9,9,11,
1673E8F0CB2DAAA401F9CC68CD55E37BF

VLC11 (VLEC,4,3,3,4,0.47) 11,11,10,9,9,8,7,6,6,7,8,8,9,10,10,12,
11FA38AB9536B72B800F4D67B3355A655663

VLC12 (VLEC,7,3,3,6,0.43) 12,12,11,10,10,9,8,6,7,7,8,9,11,11,12,13,
2F696B8EC5D38F93A5007715A363233BBA2B899

VLC13 (VLEC,5,4,3,5,0.39) 13,12,11,10,10,9,9,8,9,9,9,10,10,11,11,14,
17455A1FFED72B7CC9380079C479A5F32C9555A
A4D

VLC14 (VLEC,9,4,4,8,0.35) 15,14,14,12,12,11,10,8,9,9,10,11,13,13,14,15,
18DA499F59CAB71C9B55C9C003DE1361552D2CD
7ACFB4D3B

VLC15 (VLEC,8,5,5,8,0.31) 16,15,15,13,13,12,12,10,10,11,12,12,14,14,15,16,
31D97570AE9A5A9C6A59664D4003FE87CE53537
C671CE53464F3A

Table 7.2: Properties and composition of the 15 component VLC codebooks{VLCn}15
n=1.

The properties of each component VLC codebookVLCn are provided using the format
(Type,dbmin

(VLCn), ddmin
(VLCn), dcmin

(VLCn), d̄free(VLCn), R(VLCn)). The com-
position of each component VLC codebookVLCn is specified by providing theK = 16
codeword lengths{In,k}K

k=1, together with the hexadecimal representation of the ordered
concatenation of theK = 16 VLC codewords in the codebook.
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As will be detailed below, our SBIrVLC and BBIrVLC schemes were designed under the
constraint that they have an overall coding rate ofRIrVLC = 0.52. This value was chosen,
since it is the coding rate of the VLC codebookVLC10, which we employ in our SBVLC
and BBVLC benchmarkers usingN = 1 codebook. This coding rate results in an average
interleaver length ofM · J · E/RIrVLC = 217 500 bits for all the schemes considered.
Note that this interleaver length is nearly three times longer than any of those considered in
Chapter 6.

Each of the schemes considered employs the same TCM codec, having the Linear Feed-
back Shift Register (LFSR) schematic of Figure 6.9. As shownin Figure 6.9, the TCM
encoder generates a set of four bits to represent each set of three input bits, giving a coding
rate ofRTCM = 3/4. Three of the four output bits are systematic replications of the three
input bits, whilst the fourth output bit is generated with the aid of theLTCM = 6 modulo-2
memory elements. Note that the TCM codec is a recursive component having an infinite im-
pulse response, since feedback is employed in the shift register of Figure 6.9. As a result, the
TCM codec supports iterative decoding convergence to an infinitesimally low probability of
error [159], as is the case for our component VLC codebooks, as described above. Hence, we
may expect the proposed scheme to achieve iterative decoding convergence to an infinitesi-
mally low probability of error, provided that the channel quality is sufficiently high to create
an open EXIT chart tunnel and the iterative decoding trajectory approaches the inner and
outer codecs’ EXIT functions sufficiently closely, as discussed in Section??. Furthermore,
Figure 6.10 provides the constellation diagram for theMTCM = 16-ary set-partitioned [129]
QAM scheme of the TCM codec. This was employed together with In-phase Quadrature-
phase (IQ)-interleaving [196] for transmission over an uncorrelated narrowband Rayleigh
fading channel.

Ignoring the modest bitrate contribution of conveying the side information, the effective
throughput of the schemes considered isη = RIrVLC · RTCM · log2(MTCM) = 1.56 bits
per channel use. This implies that iterative decoding convergence to an infinitesimally low
probability of error cannot be achieved when channel capacities of less than 1.56 bits per
channel use [24] are attained at lowEc/N0 values, whereEc is the transmit energy per
Rayleigh fading channel use andN0 is the average noise energy. Note that the uncorrelated
narrowband Rayleigh fading channel’s capacity for 16QAM isless than 1.56 bits per channel
use forEb/N0 values below 2.6 dB [116], whereEb = Ec/η is the transmit energy per bit
of source entropy. Given this point on the corresponding channel capacity versusEb/N0

function, we will be able to quantify how closely the proposed schemes may approach this
ultimate limit.

Recall from Section 7.2 that it is necessary to convey the length of each transmission
sub-frameum to the receiver in order to facilitate its VLC decoding. The amount of side
information required may be determined by considering the range of transmission sub-frame
lengths that can result from VLC encoding using each of theN = 15 component codebooks.
When allJ = 100 source symbols in a particular source symbol sub-framesm are repre-
sented by the codeword from the component VLC codebookVLCn having the maximal
lengthmaxk∈[1...K] I

n,k, a maximal transmission sub-frame length of

In
max = J · max

k∈[1...K]
In,k
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results. Similarly, a minimal transmission sub-frame length of

In
min = J · min

k∈[1...K]
In,k

results, when all source symbols are represented by the minimal length VLC codeword. A
transmission sub-frameum encoded using the component VLC codebookVLCn will there-
fore have one of(In

max − In
min + 1) number of lengths in the rangeIm ∈ [In

min . . . In
max].

Hence, the length of the transmission sub-frameIm can be represented using a fixed-length
codeword comprising⌈log2(I

n
max − In

min + 1)⌉ number of bits. When considering the VLC
codeword lengths provided in Table 7.2, it was found for all schemes that a single 10-bit
fixed-length codeword of side information is sufficient for conveying the length of each of
theM = 300 transmission sub-framesum in each transmission frameu. As suggested in
Section 7.2, this error sensitive side information may be protected by a low-rate block code
in order to ensure its reliable transmission. Using aRrep = 1/3-rate repetition code results
in a total of10 · M/Rrep = 9 000 bits of side information per frame, which represents an
average of just 4% of the transmitted information, when appended to the transmission frame
u, which has an average length ofM · J · E/RIrVLC = 217 500 bits for all of the schemes
considered.

7.3.2 EXIT chart analysis and optimisation
We now consider the EXIT characteristics of the various components of our various schemes.
In all cases, EXIT functions were generated using uncorrelated Gaussian distributeda pri-
ori LLRs and all mutual information measurements were made using the histogram-based
approximation of the LLR PDFs [152].

In Figures 7.4 and 7.5, we provide the EXIT functionsIi
e(I

i
a, Eb/N0) of the TCM scheme

for a number ofEb/N0 values above the channel capacity bound of 2.6 dB. Note that owing to
its recursive nature, the APP SISO TCM decoder can be seen to achieve unity extrinsic mutual
informationIi

e for unity a priori mutual informationIi
a [159]. Additionally, the inverted

EXIT functionsIo,n
a (Io

e ) plotted for theN = 15 component VLC codebooks, together with
their coding ratesR(VLCn), are given in Figure 7.4 for symbol-based APP SISO VLC
decoding and in Figure 7.5 for bit-based APP SISO VLC decoding. Similarly to APP SISO
TCM decoding, APP SISO VLC decoding achieves unity extrinsic mutual informationIo

e for
unity a priori mutual informationIo

a in all cases, owing to the employment of codebooks
having a free distance lower bound ofd̄free ≥ 2 [161], as discussed in Section??. Note
that the EXIT functions obtained for symbol- and bit-based APP SISO VLC decoding are
slightly different. This is because unlike the bit-based APP SISO VLC decoder, the symbol-
based APP SISO VLC decoder is capable of exploiting the knowledge that there areJ = 100
source symbols in each source symbol sub-framesm, as described in Section??.

The inverted EXIT function of an IrVLC schemeIo
a(Io

e ) can be obtained as the appropri-
ately weighted superposition of theN = 15 component VLC codebooks’ EXIT functions,

Io
a(Io

e ) =

N∑

n=1

αnIo,n
a (Io

e ), (7.4)
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Figure 7.4: Inverted VLC EXIT functions, which were obtained using symbol-based APP
SISO VLC decoding. The inverted EXIT function is provided for the corresponding
SBIrVLC arrangement, together with TCM EXIT functions for anumber ofEb/N0 values.
Decoding trajectories are provided for the SBIrVLC-TCM scheme at a channelEb/N0 value
of 3.2 dB, as well as for the SBVLC-TCM scheme at a channelEb/N0 value of 3.7 dB. In-
verted VLC EXIT functions are labelled using the formatVLCn (R(VLCn), Cn

SB , αn
SB).
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Figure 7.5: Inverted VLC EXIT functions, which were obtained using bit-based APP SISO
VLC decoding. The inverted EXIT function is provided for thecorresponding BBIrVLC
arrangement, together with TCM EXIT functions for a number of Eb/N0 values. Decoding
trajectories are provided for the BBIrVLC-TCM scheme at a channelEb/N0 value of 3.2 dB,
as well as for the BBVLC-TCM scheme at a channelEb/N0 value of 3.7 dB. Inverted VLC
EXIT functions are labelled using the formatVLCn (R(VLCn), Cn

BB , αn
BB).
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whereαn is the fraction of the transmission frameu that is generated by the specific compo-
nent codebookVLCn. Note that since all of theN = 15 component VLC codebooks’ EXIT
functions achieve unity extrinsic mutual informationIo

e for unity a priori mutual information
Io
a , the same is true for the composite IrVLC EXIT function. Alsonote that the values ofαn

are subject to the constraints

N∑

n=1

αn = 1, αn ≥ 0 ∀ n ∈ [1 . . .N ]. (7.5)

The specific fraction of source symbol sub-framessm that should be encoded by the specific
component codebookVLCn in order that it generates a fractionαn of the transmission frame
u, is given by

Cn = αn · R(VLCn)/RIrVLC, (7.6)

whereRIrVLC = 0.52 is the desired overall coding rate. Again, the specific values ofCn are
subject to the constraints

N∑

n=1

Cn =

N∑

n=1

αn · R(VLCn)/RIrVLC = 1, Cn ≥ 0 ∀ n ∈ [1 . . .N ]. (7.7)

As described in Section??, an open EXIT chart tunnel [158] can be achieved at suffi-
ciently high channelEb/N0 values, since both the VLC and the TCM APP SISO decoders
support iterative decoding convergence to unity mutual information. Hence, beneficial values
of {Cn}N

n=1 may be chosen by ensuring that there is an open EXIT chart tunnel between
the inverted IrVLC EXIT function and the EXIT function of TCMat anEb/N0 value that
is close to the channel capacity bound. This may be achieved using the iterative EXIT-chart
matching process of [10] to adjust the values of{Cn}N

n=1 under the constraints of (7.5) and
(7.7) for the sake of minimising the error function

{Cn}N
n=1 = argmin

{Cn}N
n=1

(∫ 1

0

e(I)2dI

)

, (7.8)

where
e(I) = Ii

e(I, Eb/N0) − Io
a(I) (7.9)

is the difference between the inverted IrVLC EXIT function and the EXIT function of TCM
at a particular targetEb/N0 value. Note that in order to ensure that the design results inan
open EXIT tunnel, we must impose the additional constraint of

e(I) > 0 ∀ I ∈ [0, 1]. (7.10)

Open EXIT tunnels were found to be achievable for both the SBIrVLC- and the BBIrVLC-
TCM schemes at a thresholdEb/N0 value of 3.1 dB, which is just 0.5 dB from the channel
capacity bound of 2.6 dB. The inverted SBIrVLC EXIT functionis shown in Figure 7.4,
which is slightly different from the BBIrVLC EXIT function shown in Figure 7.5, owing to
the slight differences in the EXIT functions obtained for bit- and symbol-based APP SISO
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decoding, as described above. The corresponding values ofCn andαn are provided for both
the SBIrVLC- and the BBIrVLC-TCM schemes in Figures 7.4 and 7.5, respectively, and il-
lustrated in Figures 7.6 and 7.7, respectively. Note that inthe case of both the SBIrVLC- and
BBIrVLC-TCM schemes, there are just three activated component VLC codebooks, which
have corresponding values ofCn andαn that are higher than zero.

The source symbol frames and the transmission frameu are depicted in Figures 7.6 and
7.7. Note that in both cases, the horizontal bar representing the source symbol frames is
RIrVLC = 0.52 times as long as that representing the transmission frameu, since an overall
coding rate ofRIrVLC = 0.52 is employed. Each bar is decomposed into three sections,
representing the three activated component VLCs, namelyVLC5, VLC11 andVLC13 in
the case of the SBIrVLC-TCM scheme andVLC5, VLC11 andVLC15 in the case of the
BBIrVLC-TCM scheme. The length of each section correspondsto the fractionCn of the
source symbol frames or the fractionαn of the transmission frameu that is coded using the
associated component VLC codebook.

α13

SB = 0.08

u:

s:

RIrV LC = 0.52

α5

SB = 0.20 α11

SB = 0.72

R(VLC11) = 0.47

C5

SB = 0.29 C11

SB = 0.65 C13

SB = 0.06

R(VLC5) = 0.75 R(VLC13) = 0.39

Figure 7.6: Illustration depicting the corresponding fractions of the source symbol frames
and the transmission frameu that are encoded using the three component VLC codebooks
VLC5, VLC11 andVLC13 in the SBIrVLC-TCM scheme.
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BB = 0.08

C5

BB = 0.32 C15

BB = 0.05C11

BB = 0.63

R(VLC5) = 0.75 R(VLC15) = 0.31R(VLC11) = 0.47

u:

s:

RIrV LC = 0.52

Figure 7.7: Illustration depicting the corresponding fractions of the source symbol frames
and the transmission frameu that are encoded using the three component VLC codebooks
VLC5, VLC11 andVLC15 in the BBIrVLC-TCM scheme.

In the case of the SBVLC- and BBVLC-TCM benchmarkers, an openEXIT chart tunnel
between the inverted EXIT function of their only component VLC codebookVLC10 and the
TCM EXIT function was only found to be achieved forEb/N0 values above a threshold value
of 3.6 dB. ThisEb/N0 value is 1.0 dB from the channel capacity bound of 2.6 dB, a discrep-
ancy that is twice that of the SBIrVLC- and BBIrVLC-TCM schemes’ 0.5 dB value. We can
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therefore expect our SBIrVLC- and BBIrVLC-TCM schemes to becapable of operating sig-
nificantly closer to the channel’sEb/N0 capacity bound in comparison to our benchmarkers,
achieving a gain of about 0.5 dB.

7.4 Simulation results
In this section, we discuss our findings when communicating over an uncorrelated narrow-
band Rayleigh fading channel having a range ofEb/N0 values above the channel capacity
bound of 2.6 dB. In all simulations, we considered the transmission of a single source sample
framee, since this comprises a sufficiently large number of samples, namelyM ·J = 30 000.

7.4.1 IrCC-based benchmarker
In addition to the proposed SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes, in
this section we also consider the operation of an additionalbenchmarker which we refer to as
the Huffman-IrCC-TCM scheme, as depicted in the schematic of Figure 7.8. In contrast to the
SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes of Figure7.2, in the Huffman-
IrCC-TCM scheme the transmission frameu is generated by both Huffman and concatenated
IrCC encoding the source symbol frames, rather than by invoking VLC encoding.

In the Huffman-IrCC-TCM scheme, Huffman coding is employedon a sub-frame by sub-
frame basis, as described in Section 7.2. Table 7.1 providesthe composition of theK = 16
codewords in the Huffman codebookHuff = {Huffk}K

k=1, having the codeword lengths of
{Ik}K

k=1. Compared to the source symbol entropy ofE = 3.77 bits per source symbol, the
average Huffman codeword length isL(Huff) = 3.81 bits per source symbol and the coding
rate isRHuff = 0.99, according to (7.1) and (7.3), respectively.

As shown in Figure 7.8, the frame of Huffman encoded bitsv is protected by theN = 17-
component IrCC scheme of [175], which employs a coding memory of LIrCC = 4. The
inverted EXIT functions of theN = 17 component CC codes are provided in Figure 7.9.
The EXIT chart matching algorithm of [10] was employed to design the IrCC scheme. This
was tailored to have an overall coding rate ofRIrCC = 0.525 so that the combined Huffman
coding and IrCC coding rateRHuff · RIrCC = 0.52 equals that of the outer codecs in the
SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes. Just like the SBIrVLC and
BBIrVLC designs detailed in Section 7.3, an open EXIT chart tunnel was found to be achiev-
able between the inverted IrCC EXIT function and the TCM EXITfunction at anEb/N0

value of 3.1 dB, resulting in the inverted IrCC EXIT functionof Figure 7.9.
In the Huffman-IrCC-TCM receiver, iterative APP SISO IrCC and TCM decoding pro-

ceeds, as described in Section 7.2. Note that in addition to thea posterioriLLR frameLo
p(u)

pertaining to the transmission frameu, the APP SISO IrCC decoder can additionally provide
thea posterioriLLR frameLo

p(v) pertaining to the frame of Huffman encoded bitsv. It is
on the basis of this that bit-based MAP Huffman sequence estimation may be invoked on a
sub-frame by sub-frame basis in order to obtain the source symbol frame estimatẽs, as shown
in Figure 7.8.

7.4.2 Iterative decoding convergence performance
For each of our schemes and for each value ofEb/N0 investigated, we consider the recon-
structed source sample frameẽ and evaluate the SNR associated with the ratio of the source
signal’s energy and the reconstruction error energy that may be achieved following iterative
decoding convergence. This relationship is plotted for each of the SBIrVLC-, BBIrVLC-,
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Figure 7.8: Schematic of the Huffman-IrCC-TCM scheme. All of theM number of Huffman
encoders and MAP sequence estimators are based upon the sameHuffman coding codebook.

SBVLC- and BBVLC-TCM schemes, as well as for the Huffman-IrCC-TCM scheme, in
Figure 7.10.

As shown in Figure 7.10, the source sample reconstruction SNR attained following the
achievement of iterative decoding convergence increases,as the channel’sEb/N0 value in-
creases for all schemes considered. This may be explained byconsidering the associated
EXIT chart tunnels, which gradually open and become wider astheEb/N0 value is increased
from the channel’s capacity bound, allowing the iterative decoding trajectory to progress fur-
ther, as explained in Section??. Note that an open EXIT chart tunnel implies that iterative
decoding convergence to an infinitesimally low probabilityof error can be achieved, provided
that the iterative decoding trajectory approaches the inner and outer codecs’ EXIT functions
sufficiently closely, as described in Section??. However, it can be seen in Figure 7.10 that
high source sample reconstruction SNRs were not achieved atthe thresholdEb/N0 values,
for which open EXIT chart tunnels may be created. This is because our217 500-bit inter-
leaver is unable to entirely eradicate the correlation within the a priori LLR framesLo

a(u)
andLi

a(u′), which the BCJR algorithm assumes to be uncorrelated [4]. Asa result, the it-
erative decoding trajectory does not perfectly match with the inner and outer codecs’ EXIT
functions and the EXIT chart tunnel must be further widened before the iterative decoding
trajectory can reach the top right hand corner of the EXIT chart, which is associated with an
infinitesimally low probability of error, as described in Section??.

For sufficiently highEb/N0 values, the iterative decoding trajectory of all considered
schemes was found to approach the top right hand corner of theEXIT chart, yielding source
sample reconstruction SNRs of 20 dB. As described in Section7.2.1, this represents the in-
finitesimally low probability of error scenario, where quantisation noise provides the only
significant degradation. As shown in Figure 7.10, source sample reconstruction SNRs of
20 dB may be achieved by the SBIrVLC- and BBIrVLC-TCM schemesat Eb/N0 values
above 3.2 dB, which is just 0.1 dB from the corresponding thresholdEb/N0 value of 3.1 dB,
as described in Section 7.3.2. In the case of the SBVLC- and BBVLC-TCM schemes, Fig-
ure 7.10 also shows a 0.1 dB discrepancy between the threshold Eb/N0 value of 3.6 dB and
the lowestEb/N0 value, for which a source sample reconstruction SNR of 20 dB may be
achieved, namely 3.7 dB. By contrast, Figure 7.10 shows a 0.3dB discrepancy between the
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Figure 7.9: Inverted CC EXIT functions. The inverted EXIT function is provided for the
corresponding IrCC arrangement, together with the TCM EXITfunction corresponding to
an Eb/N0 value of 3.4 dB. A decoding trajectory is provided for the Huffman-IrCC-TCM
scheme at a channelEb/N0 value of 3.4 dB. Inverted CC EXIT functions are labelled using
the formatCCn (R(CCn), Cn, αn).
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Figure 7.10: Reconstruction SNR versusEb/N0 for a Gaussian source usingK = 16-
level Lloyd-Max quantisation for the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM
schemes, as well as for the Huffman-IrCC-TCM scheme, communicating over an uncorre-
lated narrowband Rayleigh fading channel following iterative decoding convergence.

thresholdEb/N0 value of 3.1 dB and the lowestEb/N0 value for which the Huffman-IrCC-
TCM scheme may achieve a source sample reconstruction SNR of20 dB, namely 3.4 dB.

For each of our schemes, the iterative decoding trajectory that reaches the(1, 1) point of
the EXIT chart at the lowest channelEb/N0 value considered is provided in either Figure 7.4,
7.5 or 7.9, as appropriate. Note that the iterative decodingtrajectories of the SBIrVLC-,
BBIrVLC-, SBVLC- and BBVLC-TCM schemes approach the corresponding inner and outer
EXIT functions fairly closely, facilitating iterative decoding convergence to the(1, 1) point of
the EXIT chart at a channelEb/N0 value that is just 0.1 dB above the threshold value. This is
in contrast to the iterative decoding trajectories of Figure 6.11, which did not exhibit a close
match with the inner and outer EXIT functions, requiring anEb/N0 value that is 0.5 dB
above the threshold value in order that the(1, 1) point of the EXIT chart may be reached.
The improved matching of the SBIrVLC-, BBIrVLC-, SBVLC- andBBVLC-TCM schemes’
iterative decoding trajectories is a benefit of employing aninterleaver that is nearly three
times longer than any of those employed in Chapter 6, facilitating the improved mitigation
of correlation within the iteratively exchanged extrinsicinformation. However, the iterative
decoding trajectory of the Huffman-IrCC-TCM scheme does not approach the inner and outer
EXIT functions as closely as those of the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-
TCM schemes. As a result, the channel’sEb/N0 value must be increased by 0.3 dB beyond
the thresholdEb/N0 value before the EXIT chart tunnel becomes sufficiently widefor the
iterative decoding trajectory to reach the(1, 1) point of the EXIT chart. This may be attributed
to the APP SISO IrCC decoder’s relatively high sensitivity to any residual correlation within
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thea priori LLR frameLo
a(u) that was insufficiently mitigated by the217 500-bit interleaver,

as will be detailed in Section 7.4.3.

7.4.3 Interleaver length and latency
As described in Section 7.2.2, interleaving is employed before thea priori LLR frameLo

a(u)
is forwarded to the outer APP SISO decoder of each of the schemes considered. This is
necessary, since the BCJR algorithm employed by the APP SISOdecoders assumes that all
a priori LLRs that can influence any particular decoding decision areuncorrelated, as de-
scribed in Section??. However, despite the employment of a long average interleaver length
of 217 500 bits, APP SISO IrCC decoding applied to the Huffman-IrCC-TCM scheme is
still sensitive to the residual correlation within thea priori LLR frameLo

a(u). As a result,
the Huffman-IrCC-TCM scheme suffers from a gradually eroding iterative decoding perfor-
mance, when the EXIT chart tunnel is narrow, as explained above. Let us now consider the
relatively high sensitivity of APP SISO IrCC decoding to theresidual correlation within the
a priori LLR frameLo

a(u) in greater detail.
In the IrCC encoder [175] of the Huffman-IrCC-TCM scheme, which employs a coding

memory ofLIrCC = 4, each bit of the Huffman encoded framev is encoded in conjunction
with the preceedingLIrCC = 4 bits, in order to generate an average of1/RIrCC = 1.92 bits
for the transmission frameu [51]. Hence, each set of 1.92 bits in the transmission frame
u is directly influenced by the values of the preceedingLIrCC = 4 sets of 1.92 bits, which
are each in turn directly influenced by their preceedingLIrCC = 4 sets of 1.92 bits and so
on, providing indirect influences. Similarly, each set of 1.92 bits in the transmission frame
u has a direct influence upon the values of the followingLIrCC = 4 sets of 1.92 bits, each
of which in turn has a direct influence upon their followingLIrCC = 4 sets of 1.92 bits
and so on, providing further indirect influences. These dependencies between the sets of
1/RIrCC = 1.92 bits are illustrated in Figure 7.11.

Figure 7.11: Dependencies between sets of1/RIrCC = 1.92 IrCC-encoded bits, for a coding
memory ofLIrCC = 4.

The aforementioned influences amongst the bits in the transmission frameu are exploited
during APP SISO IrCC decoding, by employing the BCJR algorithm in order to consider the
a priori LLRs in the frameLo

a(u) that pertain to both the preceeding and following bits of
u. However, the BCJR algorithm assumes that alla priori LLRs in the frameLo

a(u) that can
influence a particular decoding decision are uncorrelated,as described in Section??. Since
all bits in the transmission frameu are either directly or indirectly influenced by each other,
we could argue that APP SISO IrCC decoding is sensitive toall correlation within thea priori
LLR frameLo

a(u). However, each set of 1.92 bits in the transmission frameu is only directly
influenced by the values of the preceedingLIrCC = 4 sets of 1.92 bits and only has direct
influence upon the values of the followingLIrCC = 4 sets of 1.92 bits in the Huffman-IrCC-
TCM scheme. Hence, we can say that APP SISO IrCC decoding is only directly sensitive
to correlation within the sets of1/RIrCC × LIrCC + 1/RIrCC + 1/RIrCC × LIrCC = 17.28
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consecutivea priori LLRs. We may therefore conclude that the sensitivity of APP SISO IrCC
decoding to correlation within thea priori LLR frameLo

a(u) is dependent on both the IrCC
coding memoryLIrCC and on the coding rateRIrCC. Note that this implies that a shorter
interleaver and latency may be afforded, provided that a higher IrCC coding rate and/or a
lower memory was employed.

By contrast, during VLC encoding in the context of the SBIrVLC-, BBIrVLC-, SBVLC-
and BBVLC-TCM schemes, the source symbols of the source symbol frames are encoded in
isolation using VLC codewords having an average length ofE/RIrVLC = 7.25 bits, which
are concatenated to provide the transmission frameu. During APP SISO VLC decoding us-
ing the BCJR algorithm, alla priori LLRs in the frameLo

a(u) are considered for the sake of
investigating the lengths of the VLC codewords. Despite this however, we could argue that
only thea priori LLRs in the frameLo

a(u) that pertain to a particular VLC codeword have
a direct influence upon its APP SISO decoding. We can therefore say that APP SISO VLC
decoding in the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM schemes is only particu-
larly sensitive to correlation within the sets of7.25 consecutivea priori LLRs. Additionally,
we may conclude that the sensitivity of APP SISO VLC decodingto correlation within thea
priori LLR frameLo

a(u) is dependent on only the VLC coding rate. Again, this impliesthat
a shorter interleaver and latency may be afforded, if a higher VLC coding rate was employed.

Whilst APP SISO VLC decoding applied in the context of the SBIrVLC-, BBIrVLC-,
SBVLC- and BBVLC-TCM schemes is only particularly sensitive to correlation within sets
of 7.25 consecutivea priori LLRs in the frameLo

a(u), APP SISO IrCC decoding in the
Huffman-IrCC-TCM scheme is particularly sensitive to correlation within sets of 17.28 con-
secutivea priori LLRs, which are about 2.4 times longer. This therefore explains the obser-
vation that the Huffman-IrCC-TCM scheme would require a longer interleaver and latency
to achieve iterative decoding convergence to an infinitesimally low probability of error for
channelEb/N0 values between 3.2 dB and 3.4 dB.

7.4.4 Performance during iterative decoding
The achievement of iterative decoding convergence requires the completion of a sufficiently
high number of decoding iterations. Clearly, each decodingiteration undertaken is associated
with a particular computational complexity, the sum of which represents the total computa-
tional complexity of the iterative decoding process. Hence, the completion of a sufficiently
high number of decoding iterations in order to achieve iterative decoding convergence may
be associated with a high computational complexity. In order to quantify how this computa-
tional complexity scales as iterative decoding proceeds, we recorded the total number of ACS
operations performed per source sample during APP SISO decoding and MAP sequence es-
timation.

Furthermore, the performance of the considered schemes wasalso assessedduring the
iterative decoding process, not only after its completion once convergence has been achieved.
This was achieved by evaluating the source sample reconstruction SNR following the com-
pletion ofeachdecoding iteration. The total computational complexity associated with this
SNR was calculated as the sum of the computational complexities associated with all decod-
ing iterations completed so far during the iterative decoding process. Clearly, as more and
more decoding iterations are completed, the resultant source sample reconstruction SNR can
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be expected to increase until iterative decoding convergence is achieved. However, the asso-
ciated total computational complexity will also increase as more and more decoding iterations
are completed. Hence, this approach allows the characterisation of the tradeoff between re-
construction quality and computational complexity.

For each considered Rayleigh channelEb/N0 value, a set of source sample reconstruction
SNRs and their corresponding computational complexities was obtained, as described above.
Note that the size of these sets was equal to the number of decoding iterations required to
achieve iterative decoding convergence at the particularEb/N0 value. It would therefore be
possible to display the source sample reconstruction SNR versus both theEb/N0 and the
computational complexity in a three-dimensional surface plot, for each of the SBIrVLC-,
BBIrVLC-, SBVLC- and BBVLC-TCM schemes. For clarity however, these surfaces are
projected in the direction of the source sample reconstruction SNR axis into two dimensions
in the novel plot of Figure 7.12. We employ contours of constant source sample reconstruc-
tion SNR, namely 15 dB and 20 dB, to parameterise the relationship between the Rayleigh
fading channel’sEb/N0 value and the associated computational complexity. Note that the
plot of Figure 7.10 may be thought of as a cross-section through the surfaces represented by
Figure 7.12, perpedicular to the computational complexityaxis at1 · 107 ACS operations per
source sample. Note that this particular value of computational complexity is sufficiently high
to achieve iterative decoding convergence at all values ofEb/N0, in each of the considered
schemes.

Note that the SBIrVLC and SBVLC decoders have a computational complexity per source
sample that depends on the number of symbols in each source symbol sub-framesm, namely
J . This is because the number of transitions in their symbol-based trellises is proportional
to J2 [2], as described in Section??. Hence the results provided in Figure 7.12 for the
SBIrVLC- and SBVLC-TCM schemes are specific to theJ = 100 scenario. By contrast, the
TCM, BBIrVLC, BBVLC and IrCC decoders have a computational complexity per source
sample that is independent of the number of symbols in each source symbol sub-framesm,
namelyJ . This is because the number of transitions in their trellises is proportional toJ
[106,129,197], as described in Section??. Hence the results for the BBIrVLC- and BBVLC-
TCM schemes, as well as for the Huffman-IrCC-TCM scheme, provided in Figure 7.12 are
not specific for theJ = 100 case.

As shown in Figure 7.12, source sample reconstruction SNRs of up to 20 dB can be
achieved within 0.6 dB of the channel’sEb/N0 capacity bound of 2.6 dB for the SBIrVLC-
and BBIrVLC-TCM schemes, within 1.1 dB for the SBVLC- and BBVLC-TCM schemes
and within 0.8 dB for the Huffman-IrCC-TCM scheme. Note thatthese findings agree with
those of the EXIT chart analysis and the asymptotic performance analysis.

7.4.5 Complexity analysis
We now comment on the computational complexities of the considered schemes and select
our preferred arrangement.

In all considered schemes and at all values ofEb/N0, a source sample reconstruction SNR
of 15 dB can be achieved at a lower computational complexity than an SNR of 20 dB can, as
shown in Figure 7.12. This is because a reduced number of decoding iterations is required
for achieving the extrinsic mutual information value associated with a lower reconstruction
quality, as stated above. However, for all considered schemes operating at high values of
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Figure 7.12: Computational complexity versusEb/N0 for a Gaussian source usingK = 16-
level Lloyd-Max quantisation for the SBIrVLC-, BBIrVLC-, SBVLC- and BBVLC-TCM
schemes, as well as for the Huffman-IrCC-TCM scheme, communicating over an uncorre-
lated narrowband Rayleigh fading channel, parameterised with the source sample reconstruc-
tion SNR.
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Eb/N0, this significant 5 dB reduction in source sample reconstruction SNR facilitates only
a relatively modest reduction of the associated computational complexity, which was between
9% in the case of the Huffman-IrCC-TCM scheme and 36% for the BBIrVLC-TCM scheme.
Hence we may conclude that the continuation of iterative decoding until near-perfect conver-
gence is achieved can be justified at all values ofEb/N0.

Additionally, it may be seen that a given source sample reconstruction SNR may be
achieved at a reduced computational complexity for all considered schemes as theEb/N0

value increases. This may be explained by the widening of theEXIT chart tunnel, as the
Eb/N0 value increases. As a result, less decoding iterations are required for reaching the
extrinsic mutual information that is associated with a specific source sample reconstruction
SNR considered.

In each of the considered schemes it was found that VLC and CC decoding is associ-
ated with a higher contribution to the total computational complexity than TCM decoding.
Indeed, in the case of the SBIrVLC- and SBVLC-TCM schemes, itwas found that VLC de-
coding accounts for about 97% of the numbers of ACS operations per source sample, having
a complexity of about 32.3 times higher than that of TCM decoding. By contrast, in the
BBIrVLC- and BBVLC-TCM schemes, VLC decoding accounts for only 70% of the opera-
tions, having a complexity of about 2.3 times that of TCM decoding. Similarly, CC decoding
accounts for only 60% of the ACS operations in the Huffman-IrCC-TCM scheme, having a
complexity of about 1.4 times that of TCM decoding.

The high complexity of the SBIrVLC and SBVLC decoders may be attributed to the
specific structure of their trellises, which contain significantly more transitions than those of
the BBIrVLC, BBVLC and IrCC decoders [2], as described in Section ??. As a result, the
SBIrVLC- and SBVLC-TCM schemes have a complexity that is about an order of magnitude
higher than that of the BBIrVLC- and BBVLC-TCM schemes, as well as the Huffman-IrCC-
TCM scheme, as shown in Figure 7.12. In the light of this, the employment of the SBIrVLC-
and SBVLC-TCM schemes cannot be readily justified.

Observe in Figure 7.12 that at highEb/N0 values, the SBIrVLC- and BBIrVLC-TCM
schemes have a higher computational complexity than the correspondingSBVLC- or BBVLC-
TCM scheme. This is due to the influence of their low rate component VLC codebooks.
These codebooks comprise codewords with many different lengths, which introduce many
transitions, when represented in a trellis structure, as described in Section??. The observed
computational complexity discrepancy is particularly high in the case of the schemes that
employ the symbol-based VLC trellis, owing to its particular nature. For this reason, the
SBIrVLC-TCM scheme has a computational complexity that is 240% higher than that of the
SBVLC-TCM scheme.

By contrast, we note that at high values ofEb/N0 the BBIrVLC-TCM scheme has only
about a 60% higher computational complexity than the BBVLC-TCM scheme. Similarly, the
BBIrVLC-TCM scheme has only twice the computational complexity of the Huffman-IrCC-
TCM scheme. Coupled with the BBIrVLC-TCM scheme’s ability to operate within 0.6 dB
of the Rayleigh fading channel’sEb/N0 capacity bound, we are able to identify this as our
preferred arrangement.
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7.4.6 Unequal error protection performance
Let us now examine the UEP performance of our preferred BBIrVLC-TCM scheme. As
described in Section 7.1, the UEP capability of IrVLC is manifested because different frac-
tions of the source symbol frames are encoded with different component VLC codebooks
having a variety of coding rates and, hence, error correction capabilities. More specifically,
the lower the coding rate of a component VLC codebook, the higher the associated potential
error correction capability, as described in Section??.

As argued above, the composite source sample reconstruction SNR was evaluated follow-
ing the completion of each decoding iteration during our simulations. The total computational
complexity associated with this SNR was calculated as the sum of the computational com-
plexities associated with all decoding iterations completed so far during the iterative decoding
process. These computational complexities were plotted againstEb/N0 and parameterised
by the source sample reconstruction SNR in Figure 7.12. Notethat the composite BBIrVLC-
TCM ACS-complexity versesEb/N0 plots are repeated in Figure 7.13. In addition to record-
ing the composite source sample reconstruction SNR after each decoding iteration, we also
recorded the reconstruction SNRs associated with the fractions of the source sample frame
e that were protected by each of the three activated componentVLC codebooksVLC5,
VLC11 andVLC15. For each case, the associated computational complexitiesare plotted
againstEb/N0 and parameterised by the source sample reconstruction SNR in Figure 7.13.

As shown in Figure 7.13, the lower the coding rateR(VLCn) of the component VLC
codebookVLCn that is employed to protect a fractionCn

BB of the source sample frame
e, the lower the computational complexity that is required toreconstruct it with a particular
reconstruction SNR at a particularEb/N0 value. Indeed, at highEb/N0 values the complex-
ity associated with reconstructing the fraction of the source sample framee that is protected
by theR(VLC5) = 0.75 coding rate component VLC codebookVLC5 is about twice as
high as that associated with theR(VLC11) = 0.47 coding rate component VLC codebook
VLC11. This is, in turn, about 1.5 times as high as that associated with the component VLC
codebookVLC15, having a coding rate ofR(VLC11) = 0.31. In the scenario, where only
a limited iterative decoding computational complexity canbe afforded at the receiver, the
fractions of the source sample framee that are protected by the different component VLC
codebooks would be reconstructed with SNRs that are commensurate with the associated
coding rates, demonstrating the UEP capability of the BBIrVLC-TCM scheme.

As described in Section 7.1, each of the activated componentVLC codebooksVLC5,
VLC11 andVLC15 in the BBIrVLC-TCM scheme is employed to protect a differentfrac-
tion of the source sample framee. More specifically, the component VLC codebooksVLC5,
VLC11 andVLC15 each protect a fractionC5

BB = 0.32, C11
BB = 0.63 andC15

BB = 0.05 of
the source sample framee, respectively. Note that the composite computational complexity
versusEb/N0 plots depend on each of the component plots. Furthermore, wemay expect the
composite plots to be dominated by the components plots associated with the largest fraction
of the source sample frame. Specifically, these are the component plots associated with the
component VLC codebookVLC11, which is employed to protect a fractionC11

BB = 0.63 of
the source sample framee. However, Figure 7.13 shows that the composite plots are actually
dominated by the component plots associated with the component VLC codebookVLC5,
which is employed to protect only a fractionC5

BB = 0.32 of the source sample framee. This
may be explained as follows.
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Figure 7.13: Computational complexity versusEb/N0 for a Gaussian source usingK = 16-
level Lloyd-Max quantisation for the BBIrVLC-TCM scheme, communicating over an un-
correlated narrowband Rayleigh fading channel, parameterised with the source sample re-
construction SNR. Separate plots are provided for the quantised source samples that are VLC
encoded using each of the component VLC codebooksVLC5, VLC11 andVLC15, to-
gether the composite BBIrVLC-TCM plots of Figure 7.12. Components are labelled using
the formatVLCn (R(VLCn), Cn

BB , αn
BB).
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A composite error-free reconstruction SNR of 20 dB can only be achieved if error free
reconstruction is attained for all three of the fractions ofthe source sample framee that are
protected by the three activated component VLC codebooksVLC5, VLC11 andVLC15.
Hence, the composite computational complexity versusEb/N0 plot that is parameterised by
an error-free reconstruction SNR of 20 dB is dominated by that associated with the specific
component VLC codebook having the weakest error correctioncapability, namelyVLC5, as
shown in Figure 7.13 and observed above. Note that the component VLC codebookVLC5

has the weakest error correction capability of the three activated codebooks, since it has the
highest coding rate ofR(VLC5) = 0.75, as shown in Figure 7.13. This effect may also
explain the domination of the composite plot that is parameterised by a reconstruction SNR
of 15 dB corresponding to that associated with the componentVLC codebookVLC5, despite
a relatively low fraction ofC5 = 0.32 being protected by this codebook.

7.5 Summary and Conclusions
In this chapter, we have investigated the application of IrVLCs for EXIT chart matching. This
was prompted by the observation that the serially concatenated video transmission scheme
of Chapter 6 could have facilitated operation at channelEb/N0 values that are closer to the
capacity bound, if the EXIT functions of its inner and outer codecs were better matched. More
specifically, this would have facilitated the creation of anopen EXIT chart tunnel at near-
capacityEb/N0 values, implying that iterative decoding convergence to aninfinitesimally
low probability of error may be achieved, if the iterative decoding trajectory approaches the
inner and outer codecs’ EXIT functions sufficiently closely.

In analogy to IrCCs, the novel IrVLC scheme of this chapter employs a number of com-
ponent VLC codebooks having different coding rates for the sake of generating particular
fractions of the transmission frame, as described in Section 7.1. We demonstrated that this
provides a UEP capability, which may be employed to appropriately protect the various com-
ponents of audio-, speech-, image- and video-coded information, which typically have dif-
ferent error sensitivities. Furthermore, we showed in Figures 7.4 and 7.5 that the composite
inverted IrVLC EXIT function is given by a weighted average of the inverted EXIT functions
of the individual component VLC codebooks, where each weight is given by the specific
fraction of the transmission frame that is generated by the corresponding component. Finally,
we demonstrated that this inverted IrVLC EXIT function may be shaped to match the EXIT
function of a serially concatenated TCM codec using the EXITchart matching algorithm
of [10].

It was noted that an IrVLC scheme’s component VLC codebooks should have a suite
of widely varying inverted EXIT functions in order that accurate EXIT chart matching can
be performed. Hence, a significant amount of ‘trial-and-error’ based human interaction was
required in order to select our component VLC codebooks. In Chapter 8 we shall therefore
propose and characterise an efficient technique for designing high quality suites of com-
ponent VLC codebooks that does not require ‘trial-and-error’ based human interaction. In
addition to this, Chapter 8 will investigate the relationship between the suite of component
VLC codebooks and the resultant IrVLC EXIT chart matching accuracy. Furthermore, the
application of IrVLCs for EXIT chart matching will be further explored in Chapter 9, where
the EXIT functions of IrVLCs and of novel Irregular Unity Rate Codes (IrURCs) will be
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jointly matched to each other, facilitating the creation ofan open EXIT chart tunnel at chan-
nelEb/N0 values that are even closer to the channel’s capacity bound.

During the EXIT chart matching investigations of this chapter, an open EXIT chart tunnel
was created in Figures 7.4 and 7.5 for the IrVLC-TCM schemes considered and in Figure 7.9
for the Huffman-IrCC-TCM benchmarker for channelEb/N0 values above a threshold of
3.1 dB. This is just 0.5 dB from the Rayleigh fading channel’sEb/N0 capacity bound of
2.6 dB, which corresponds to our schemes’ effective throughput of 1.56 bits per channel
use. By contrast, an open EXIT chart tunnel was only facilitated in Figures 7.4 and 7.5
for the conventional regular VLC-TCM benchmarkers for the increased channelEb/N0 val-
ues in excess of a threshold of 3.6 dB, which is 1.0 dB from the channel’s capacity bound,
corresponding to twice the discrepancy of the IrVLC-TCM schemes. Note that the above-
mentioned discrepancy of the VLC-TCM benchmarkers is similar to the 1.29 dB discrepancy
of the VDVQ/RVLC-TCM scheme of Chapter 6, which also does notemploy irregular coding
techniques.

The iterative decoding performance and computational complexity of the considered
schemes was investigated in a novel context using plots of the computational complexity
required to achieve particular source sample reconstruction SNRs as a function of the chan-
nel’sEb/N0 value in Figure 7.12. Recall that we observed that the iteratively decoded video
transmission scheme of Chapter 6 would have been capable of achieving iterative decoding
convergence to an infinitesimally low probability of error at channelEb/N0 values that are
closer to the threshold at which an open EXIT chart tunnel canbe achieved, if a longer inter-
leaver was employed. This prompted the consideration of an interleaver having a length of
217 500 bits in this chapter, which is nearly three times longer thanany of those considered
in Chapter 6. Indeed, it was found that the IrVLC- and VLC-TCMschemes were capable of
achieving a high-quality source sample reconstruction within 0.1 dB of the threshold chan-
nel Eb/N0 values, which were the lowest values at which an open EXIT chart tunnel was
achieveable.

However, in the case of the Huffman-IrCC-TCM scheme, high quality source sample
reconstruction was only achieveable for channelEb/N0 values above 3.4 dB, which is 0.3 dB
above the threshold at which an open EXIT chart tunnel may be achieved. This was explained
in Section 7.4.3 by the relatively high sensitivity of the APP SISO IrCC decoder to any
residual correlation within thea priori LLRs, that was insufficiently mitigated by the217 500-
bit interleaver. This resulted in a poor match between the iterative decoding trajectory and
the inverted IrCC EXIT function. More specifically, we concluded that an APP SISO IrCC
decoder’s sensitivity to this correlation depends on both its coding rate and, in particular,
its coding memory, which had the relatively high value ofLIrCC = 4 in the IrCC scheme
considered. We additionally concluded that an APP SISO VLC decoder’s sensitivity to the
aforementioned correlation depends only on its coding rateand that shorter interleavers and
latencies could be afforded, if a higher coding rate was employed. Note that the effect of the
VLC coding rate upon its sensitivity to correlation within the a priori LLRs frame will be
investigated in Chapter 8, whilst the effect of the interleaver length upon iterative decoding
shall be investigated in greater detail in Chapter 9.

Recall that the outer APP SISO video decoder of the iteratively decoded video trans-
mission scheme of Chapter 6 operated on the basis of the trellis outlined in Section 6.3.4,
which is reminiscent of the symbol-based VLC trellis of [2].This was the rationale of why
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this video transmission scheme was associated with a highercomputational complexity than
the benchmarkers, which employed the bit-based VLC trellisof [90] as the basis of their
outer APP SISO decoders. Hence, in this chapter we characterised the computational com-
plexity associated with employing both symbol- and bit-based trellises as the basis of APP
SISO VLC decoding. In both cases, we concluded that the computational complexity as-
sociated with continuing iterative decoding until convergence is achieved is justified owing
to the significantly improved reconstruction quality that results. As predicted in Chapter 6,
the schemes that employed bit-based trellises for APP SISO VLC decoding were found to
achieve iterative decoding convergence with a significantly lower computational complexity
than the schemes employing symbol-based trellises in Figure 7.12.

Owing to its reduced iterative decoding computational complexity, the IrVLC-TCM scheme
employing the bit-based VLC trellis as the basis of APP SISO VLC decoding was identified
as our preferred arrangement in Section 7.4.5. Additionally, for this reason, only bit-based
trellises will be employed as the basis of APP SISO VLC decoding in Chapters 8 and 9. Note
that in this chapter, the source symbol frame was decomposedinto M = 300 sub-frames in
order that the computational complexity associated with the symbol-based VLC trellis could
be limited. However, explicit side information was required in order to convey the length
of each of the corresponding transmission sub-frames to thereceiver, resulting in a trade-
off between the computational complexity associated with the symbol-based VLC trellis and
the amount of side information required. Indeed, in all IrVLC-TCM parameterisations con-
sidered, the required side information was found to accountfor 4% of the total information
conveyed in Section 7.3. In this chapter, the source symbol frame was also decomposed into
M = 300 sub-frames, when the bit-based VLC trellis was employed, inorder that a fair
comparison could be obtained. However, since Chapters 8 and9 will only consider the em-
ployment of the bit-based VLC trellis rather than the symbol-based VLC trellis, a significant
reduction in the amount of required side information will beachieved by employing a single
source symbol sub-frame per activated component VLC codebook.



Chapter 10
Conclusions and Future Research

10.1 Chapter 1: Introduction
This chapter constitutes the general background of our studies throughout the book. More
specifically, a brief overview of the literature of source encoding and soft source decoding
was presented in Section??. Then the development of iterative decoding techniques and
their convergence analysis was described in Section??. Furthermore, as a special case of
iterative decoding, joint source-channel decoding was introduced and the main contributions
to the open literature were summarised in Section??. Finally, the organisation of the book
was described in Section??, while our novel contributions were highlighted in Section??.

10.2 Chapter 1: Information Theory Basics
In this chapter we focussed our attention on the basic Shannonian information transmission
scheme and highlighted the differences between Shannon’s theory valid for ideal source and
channel codecs as well as for Gaussian channels and its ramifications for Rayleigh channels.
We also argued that practical finite-delay source codecs cannot operate at transmission rates
as low as the entropy of the source. However, these codecs do not have to operate losslessly,
since perceptually unobjectionable distortions can be tolerated. This allows us to reduce the
associated bit rate.

Since wireless channels exhibit bursty error statistics, the error bursts can only be ran-
domized with the aid of infinite-length channel interleavers, which are not amenable to real-
time interactive multimedia communications. Although with the advent of high-delay turbo
channel codecs it is possible to operate near the Shannonianperformance limits over Gaus-
sian channels, over bursty and dispersive channels different information-theoretical channel
capacity limits apply.

We considered the entropy of information sources both with and without memory and
highlighted a number of algorithms, such as the Shannon-Fano, the Huffman and run-length
coding algorithms, designed for the efficient encoding of sources exhibiting memory. This
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was followed by considering the transmission of information over noise-contaminated chan-
nels leading to Shannon’s channel coding theorem. Our discussions continued by consider-
ing the capacity of communications channels in the context of the Shannon-Hartley law. The
chapter was concluded by considering the ramifications of Shannon’s messages for wireless
channels.

10.3 Chapter ??: Sources and Source Codes
Chapter??commenced with the description of general source models, among which a mem-
oryless source model having a known finite alphabet such as that described in Section??was
used throughout the monograph. Then various source codes such as Huffman codes, RVLCs
and VLEC codes were introduced in Section??, along with their construction methods. An
important contribution of this chapter is that a generic algorithm was presented for the con-
struction of efficient RVLCs and VLEC codes. The philosophy of our proposed algorithm is
that we first construct an initial RVLC or VLEC code using existing methods such as those
described in [?,?,?], then we optimise the codeword length distribution of the resultant code
length-by-length. For example, Fig. 10.1 shows the evolution of the codeword length his-
tograms of the RVLC designed for the English Alphabet in Section ??. After 12 iterations of
optimisation, the best codeword length distribution is found, resulting in a RVLC having the
lowest average codeword length ofAL = 4.18732.
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Figure 10.1: Evolution of the RVLC codeword length histograms. The RVLC is designed for
the English Alphabet and its detailed construction processis described in Section??. The
codeword length distribution is optimised via a number of iterations for the sake of reducing
the average codeword length.

Consequently, as shown in Table??, Table?? and Table??, for a variety of memoryless
sources, the proposed algorithm was capable of generating RVLCs of higher code efficiency
and/or shorter maximum codeword length than the algorithmspreviously disseminated in the
literature. Furthermore, as seen from Table??and Table??, the proposed algorithm was also
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capable of constructing VLEC codes having similar code efficiency as those generated by the
existing algorithm [?], but incurring a significantly lower complexity.

In Section??, various VLC decoding methods were presented. First, the source infor-
mation, such as the number of bits/symbols in the transmitted frames, and the constraints
imposed by a source code and formulated in terms of the corresponding codebook were trans-
lated into a trellis representation, such as the symbol-based trellis described in Section?? or
the bit-based trellis described in Section??. Then MAP/ML sequence estimation or MAP
decoding may be performed, which were introduced in Section?? and Section??, respec-
tively. It has been shown in Section?? that trellis based soft-decoding provides an effective
way of capitalising on the available information as much as possible. In general, the more
information is utilised, the better the performance. This information can be explicit, such as
the transmission frame length information, or implicit, such as the code constraint of a VLC.
For example, soft-decoding generally outperforms hard-decoding, and the symbol-level trel-
lis based decoding outperforms the bit-level trellis baseddecoding. Furthermore, as expected,
VLCs having higher free distances outperform VLCs having lower free distances at the price
of a reduced system throughput. Fig. 10.2 provides some quantitative results, summarising
the conclusions of Section??. It can be seen from Fig. 10.2a that soft-decision decoding sig-
nificantly outperforms hard-decision decoding and the attainableEb/N0 gain improves upon
increasing the VLC’s free distance. Moreover, as seen from Fig. 10.2b, the performance of
soft ML decoding improves upon increasing the free distanceof the VLC used.
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Figure 10.2: Comparison of the various VLC decoding schemesinvestigated in Section??.
Fig. 10.2a compares the performance of soft-decision and hard-decision decoding based
schemes, where theEb/N0 gain is defined as the difference of the minimumEb/N0 values
required for achieving a SER of10−5 for transmission over AWGN channels, when using
ML decoding. Fig. 10.2b demonstrates the effects of different VLC free distances,df = 1
(RVLC-1) anddf = 2 (RVLC-2). The Huffman code (HUFF) based scheme is used as a
benchmarker, where theEb/N0 gain is defined as the difference of the minimumEb/N0

values required for achieving a SER of10−5 for transmission over AWGN channels, when
using soft ML decoding.
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10.4 Chapter ??: Iterative Source/Channel Decoding
Chapter?? provides an investigation of iterative source/channel decoding techniques. In
this chapter, the source code, the channel code and the ISI channel are viewed as a serially
concatenated system. Hence, iterative decoding may be performed, provided that the source
decoder, channel decoder and the channel equaliser designed for the ISI channel are all SISO
modules.

This chapter commenced with an overview of various concatenated schemes, as described
in Section??. Then a SISO APP decoding algorithm was introduced in Section ??. This
algorithm provides a general description of any trellis-based APP decoding/detection scheme,
which can be applied to source decoding, channel decoding and channel equalisation. Hence
it constitutes the core module of iterative decoding schemes.

EXIT charts were introduced in Section??. The mutual information between the data bits
at the transmitter and the soft values at the receiver was used for characterising the decoding
behaviour of a SISO APP module, resulting in the so-called EXIT functions. A histogram-
based algorithm and its simplified version were introduced in Section?? in order to evaluate
the EXIT functions of a SISO APP module, followed by several examples of typical EXIT
functions of SISO APP modules embedded in different positions of a concatenation scheme.
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Figure 10.3: Free distance versusEb/N0 gain and throughput, where theEb/N0 gain is
based on the minimum SNR value required for achieving a SER of10−4 for transmission
over AWGN channels and the scheme using the Huffman code (HUFF) is used as a bench-
marker. The system model is described in Fig.??, where the transmitter is constituted by
a VLC encoder and a convolutional encoder, and the receiver is constituted by an APP con-
volutional decoder as well as an APP VLC decoder, which performs channel decoding and
source decoding iteratively.

Given the EXIT characteristics of the constituent modules of a concatenated scheme,
we may either predict or explain its convergence behaviour.This is carried out for iterative
source/channel decoding for transmission over non-dispersive AWGN channels in Section??
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and for transmission over dispersive AWGN channels in Section ??. In the scenario of non-
dispersive AWGN channels, it was shown in Fig.?? that the free distance of the source code
has to be larger thandf = 2 in order that the iterative decoding scheme becomes capableof
converging to the perfect mutual-information point of (1,1), which implies attaining infinites-
imally low SERs. Furthermore, it was shown in Fig.??-Fig. ?? that given a specific channel
code, the system’s convergence threshold decreases upon increasing the free distance of the
source code, resulting in an improved SER performance. Fig.10.3 serves as a summary of
our main results provided in Section??. It is worth noting that when the free distance of the
VLC code is increased fromdf = 1 to df = 2, i.e. when using the code RVLC-2 instead of
the code HUFF or RVLC-1, the system’s throughput is only slightly decreased, but a signifi-
cantEb/N0 gain is attained. Further increasing the free distance willcontinue to increase the
attainableEb/N0 gain, while incurring a considerable loss of throughput.

In the scenario of dispersive channels, it was shown by both our EXIT chart analysis
and our Monte Carlo simulations provided in Section?? that the redundancy in the source
codes is capable of effectively eliminating the ISI imposedby the channel, provided that
channel equalisation and source decoding are performed jointly and iteratively. Furthermore,
the higher the free distance of the source code, the closer the SER performance approaches
the SER bound of non-dispersive AWGN channels.

Additionally, in Section?? precoding was shown to be an effective way of ”modifying”
the EXIT characteristic of a channel equaliser. Most importantly, in conjunction with pre-
coding the EXIT function of a channel equaliser becomes capable of reaching the point of
(IA = 1, IE = 1) as shown in Fig.??, which is critical for avoiding potential error floors at
the receiver’s output. It was demonstrated in Fig.??-Fig. ?? that the choice of the precoder
depends on both the EXIT characteristics of the channel equaliser and that of the source de-
coder so that these two are matched to each other, hence achieving the lowest possibleEb/N0

convergence threshold.
Fig. 10.4 summarises the main results of Section??. It can be seen from Fig. 10.4

that the SER performance of both the scheme using RVLC-2 and that using VLEC-3 can be
improved, when using appropriate precoders. However, although the precoder of1 + D2 is
optimal for the scheme using RVLC-2, the precoder of1 + D constitutes a better choice for
the scheme using VLEC-3.

Finally, the performance of a three-stage iterative receiver was evaluated in Section??.
The receiver of Fig. ?? consists of a channel equaliser, a channel decoder and a source
decoder, where the extrinsic information is exchanged among all the three SISO modules,
which hence constitutes a joint source-channel decoding and equalisation scheme. It was
shown in Fig.?? that by exploiting the source redundancy in the iterative decoding process,
the system’s performance was improved by 2 dB in terms of theEb/N0 values required for
achieving the same SER, when compared to the separate source/channel decoding scheme.
The convergencebehaviour of this scheme was analysed usingEXIT charts in Section??after
we introduced the convergence analysis technique for multi-stage concatenated schemes in
Chapter??.
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Figure 10.4: The effects of precoding and those of VLC free distances ofdf = 2 for the
RVLC-2 anddf = 3 for the VLEC-3 schemes on the attainable SER performance, when
communicating over dispersive AWGN channels, where theEb/N0 value is the minimum
SNR value required for achieving a SER of10−4. The system model is described in Fig.??
and Fig.??, where the transmitter is constituted by a VLC encoder as well as a precoder if
precoding is employed, and the receiver is constituted by anAPP channel equaliser as well as
an APP VLC decoder, which performs channel equalisation andsource decoding iteratively.

10.5 Chapter ??: Three-Stage Serially Concatenated Turbo
Equalisation

Chapter?? investigated the design of the three-stage serially concatenated turbo MMSE
equalisation scheme seen in Fig.??, which consisted of an inner channel equaliser, a unity-
rate recursive intermediate channel code and an outer channel code. Firstly, a brief intro-
duction to SISO MMSE equalisation was offered in Section??, followed by an example
of conventional two-stage turbo equalisation in Section??. The main body of this chapter
focused on the optimisation of three-stage turbo equalisation schemes by using EXIT chart
analysis.

With the aid of the EXIT modules as proposed in Fig.?? of Section??, 3D EXIT chart
analysis may be simplified to 2D EXIT analysis as shown in Fig.??, ?? and?? of Section
??. It was also shown in Fig.?? of Section?? that by employing a unity-rate recursive
convolutional code as the intermediate constituent code, the three-stage scheme becomes
capable of converging to the perfect mutual information point.

Moreover, the outer constituent code was optimised in Section ?? for achieving the low-
est possibleEb/N0 convergence threshold. Interestingly, it was observed in Fig. ?? that
relatively weak codes having short memories resulted in a lower convergence threshold than
strong codes having long memories.

Additionally, the activation order of the component decoders was optimised in Section
?? for achieving the convergence at the lowest possibleEb/N0 value, while maintaining a
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low decoding complexity. It was found in Table?? that by invoking the outer and interme-
diate decoder of Fig.?? more frequently the total number of decoder activations is reduced,
resulting in a decreased decoding complexity.

The BER performance of the optimised scheme was evaluated inSection??, which ver-
ified the EXIT chart analysis provided in Section??. The iterative decoding process was
visualised using both 3D and 2D EXIT charts as shown in Fig.??-??of Section??. Further-
more, the effects of different interleaver block lengths were discussed in Fig.?? of Section
??. Generally, the longer the interleaver length, the closer the simulated performance matches
the EXIT chart analysis. It was found in Fig.?? that an interleaver length on the order of
105 bits is sufficiently high for achieving a good match with the decoding trajectory recorded.
Fig. 10.5 provides some quantitative results summarised from Section??. It can be seen from
Fig. 10.5 that when the interleaver depth is increased fromL = 103 bits toL = 104 bits, a
significant coding gain may be attained. Further increasingthe interleaver depth toL = 105

bits, however, results in a marginal increase of the coding gain. Naturally, the attainable
iteration gain is increased upon increasing the interleaver depth.
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Figure 10.5: Achievable coding gains at a BER of10−4 for the three-stage turbo equalisa-
tion scheme of Fig.?? using different interleaver depths. The turbo equalisation scheme
is constituted by a RSC(2,1,2) code as the outer code, a unity-rate RSC(1,1,2) code as the
intermediate code and an inner MMSE equaliser as described in Section??.

In Section??, the maximum achievable information rate of the three-stage turbo equali-
sation scheme of Fig.?? was analysed. Then an IRCC was invoked as the outer constituent
code, whose EXIT function was optimised for matching that ofthe combined module of the
inner channel equaliser and the intermediate channel decoder, so that the EXIT tunnel-area
between these two EXIT functions was minimised. The Monte Carlo simulation results pro-
vided in Fig.?? of Section?? show that the performance of the resultant scheme is only 0.5
dB away from the channel capacity.
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Finally, the employment of non-unity rate intermediate codes was also considered in Sec-
tion ??. It was shown in Fig.?? that as expected, the maximum achievable information rate
of such schemes was reduced in comparison to the schemes using unity-rate intermediate
codes. By contrast, theEb/N0 convergence threshold may be decreased, when only regu-
lar convolutional codes are used. A number of optimised serially concatenated codes were
obtained and listed in Table??.

As a summary, Fig. 10.6 compares the distance to capacity forthe various MMSE turbo
equalisation schemes discussed in Chapter??.
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Figure 10.6: Distance to capacity for the various MMSE turboequalisation schemes of Chap-
ter ??, where the scheme of Sch-A represents the conventional two-stage turbo equalisation
scheme of Fig.??. The schemes of Sch-B, Sch-C and Sch-D denotes the same three-stage
turbo equalisation scheme of Fig.??, but differ in the channel codes used. The scheme of
Sch-B employs a unity-rate RSC(1,1,2) code as the intermediate code and a RSC(2,1,2) code
as the outer code. The scheme of Sch-C uses a SCC of SCC-A2 described in Table??, which
is constituted by a rate-3/4 RSC(3,4,2) code as the intermediate code and a RSC(2,3,3) code
as the outer code. The scheme of Sch-D employs the same unity-rate RSC(1,1,2) code used
in the scheme of Sch-B as the intermediate code, while using the IRCC described in Section
??as the outer code.

In Part II of this book, we have introduced the novel concept of Irregular Variable Length
Coding (IrVLC) and investigated its applications, characteristics and performance in the con-
text of wireless telecommunications. As discussed throughout Part II of the book, IrVLCs
encode various components of the source signal with different sets of binary codewords, hav-
ing a range of appropriately selected lengths. Three particular applications of IrVLCs were
investigated in this volume, namely joint source and channel coding, EXtrinsic Information
Transfer (EXIT) chart matching and Unequal Error Protection (UEP). These are detailed in
the following sections, together with a discussion of our future work.
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10.6 Chapter 6: Joint source and channel coding
In Chapter 6 we exemplified the application of IrVLCs for the joint source and channel cod-
ing of video information. This application was motivated bythe observation that Shannon’s
source and channel coding separation theorem [24] is invalid in the context of practical video
transmission. While source and channel coding can be performed in isolation without impos-
ing any performance loss, if the assumptions discussed in Section 6.1 apply, these conditions
are not fulfilled in the case of practical video transmission. We therefore proposed the novel
joint source and channel coding scheme of Section 6.2, whichemploys both Variable Dimen-
sion Vector Quantisation (VDVQ) [194] as a special case of Vector Quantisation (VQ) [80]
and the Reversible Variable Length Coding (RVLC) [99] classof Variable Length Codes
(VLCs).

Here, the employment of VDVQ tiles having a range of dimensions facilitates the effi-
cient representation of both large areas of the video frame that have a low luminance-variance
and small areas of high variance, as exemplified in Figure 6.5. Additionally, the employment
of RVLC codewords having various lengths facilitates the representation of more frequently
occurring VDVQ tiles with the aid of shorter codewords, giving a reduced average codeword
length and providing source coding. Furthermore, channel coding is provided by the redun-
dancy that is inherent in the RVLC codewords [99], facilitating an error correction capability
during RVLC decoding. The VDVQ/RVLC video codec advocated therefore employs a joint
source and channel coding philosophy.

In Section 6.3.3 we imposed a number of constraints governing the allocation of the
VDVQ tiles and RVLC codebooks in order to represent the various components of the video
source frame. More specifically, these code constraints enforced the legitimate tessellation
of the VDVQ tiles having a range of dimensions and ensured that the various fractions of
the source video frame were encoded using the same number of bits. Since the set of RVLC
codewords that can be employed during video encoding variesdepending on which compo-
nent of the source video frame is being encoded, the VDVQ/RVLC video codec can be said
to employ IrVLCs.

In the VDVQ/RVLC video codec, the complete set of the above-mentioned code con-
straints was described by the novel trellis structure of Section 6.3.4, which is reminiscent of
a symbol-based VLC trellis [2]. Hence, the employment of this trellis structure facilitated
the consideration of all legitimate transmission frame permutations. This fact was exploited
in order to perform novel Minimum Mean Squared Error (MMSE) VDVQ/RVLC encoding
using a variation of the Viterbi algorithm [3], as describedin Section 6.4.

Additionally, the employment of the trellis structure during VDVQ/RVLC decoding was
shown to guarantee the recovery of legitimate – although notnecessarily error-free – video
information in Section 6.5. This ensured that useful video information was never discarded,
unlike in the conventional video decoders of [181,182], where a single transmission error may
render an entire video frame invalid. A novel modification ofthe Bahl-Cocke-Jelinek-Raviv
(BCJR) algorithm [4] was employed duringA PosterioriProbability (APP) Soft-In Soft-Out
(SISO) VDVQ/RVLC decoding in order to facilitate the iterative exchange [132] of extrinsic
information with a serially concatenated APP SISO Trellis Coded Modulation (TCM) [129]
decoder, as well as to facilitate the soft MMSE reconstruction of the video sequence. Since
the VDVQ/RVLC trellis structure describes the complete setof VDVQ/RVLC-induced code
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constraints, all of the associated redundancy was beneficially exploited with the aid of the
modified BCJR algorithm.

In Section 6.6 the serially concatenated and iteratively decoded VDVQ/RVLC-TCM scheme
of Section 6.2 was shown to outperform two suitably designedseparate source- and channel-
coding benchmarkers. This was attributed to the benefits of the VDVQ/RVLC codec de-
scribed above, which were realised owing to the joint sourceand channel coding philosophy
adopted. Indeed, Figure 6.12 shows that the VDVQ/RVLC-TCM scheme was capable of
achieving subjectively pleasing video reconstructions having a Peak Signal to Noise Ratio
(PSNR) of 29.5 dB at a channel Signal to Noise Ratio (SNR) thatis 1.1 dB lower than that
of the VQ based benchmarker [181] and 1.6 dB lower than that ofthe MPEG-4 [68] based
benchmarker [182].

10.7 Chapters 7 – 9: EXIT chart matching
In Chapters 7 – 9 we considered the application of IrVLCs for EXIT chart matching. This was
motivated by the fact that an open EXIT chart tunnel was only created for the VDVQ/RVLC-
TCM scheme of Section 6.2, if the Rayleigh fading channel SNRwas in excess of a threshold
that was 1.29 dB higher than the channel’s SNR capacity bound, as shown in Figure 10.1.
Note that as described in Section??, an infinitesimally low probability of decoding error
can only be achieved, if the EXIT chart tunnel is open and if the iterative decoding trajec-
tory approaches the inner and outer EXIT functions sufficiently closely to facilitate itera-
tive decoding convergence to the(1, 1) point of the EXIT chart. Hence, operation closer
than 1.29 dB from the channel’s capacity bound was preventedfor the VDVQ/RVLC-TCM
scheme, as shown in Figure 6.12. Note that similar discrepancies of 1 dB were obtained
for the SBVLC-TCM and BBVLC-TCM schemes of Section 7.3.2, asshown in Figure 10.1.
Like the VDVQ/RVLC-TCM scheme of Section 6.2, the SBVLC-TCMand BBVLC-TCM
schemes employed the serial concatenation and iterative decoding of a VLC-based outer
codec with a TCM inner codec and were not designed using EXIT chart matching. Further-
more, Figure 10.1 shows that a similar discrepancy of 1.4 dB between the thresholdEb/N0

value and the channel’s attainable capacity bound was obtained for the VLC-URC scheme
of Section 9.5.4, which employs Unity Rate Coding (URC) for the inner codec instead of
TCM. Instead of the capacity bound, the channel’sattainablecapacity bound is considered
in this case, since it is this that imposes the fundamental limit on the VLC-URC scheme’s
operation, as described in Section 9.5.3. This is justified,since we will propose a solution
to the associated effective throughput loss in Section 10.12, outlining our future work. The
corresponding EXIT chart obtained for the VLC-URC scheme ofSection 9.5.4 was provided
in Figure 9.10, together with those of the other schemes introduced in Section 9.5.4, which
are repeated for convenience in Figure 10.7.

In Section 6.6, we observed that open EXIT chart tunnels could have been created for
channel SNRs that are closer to the channel’s capacity bound, if the inverted VDVQ/RVLC
EXIT function of Figure 6.11 offered a better match with the TCM scheme’s EXIT function.
More specifically, this would have enabled the EXIT chart tunnel to remain open and be
further narrowed as the channel SNR was reduced towards the channel’s capacity bound.
The described observation of Section 6.6 may be explained bythe area property of EXIT
charts [19], which states that the EXIT chart area enclosed by the threshold EXIT chart
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Chapter Scheme Outer codec Inner codec Modem Capacity Interleaver Capacity ACS complexity
Coding EXIT Coding EXIT bound – length bound – at 2 dB from

rate matched rate matched threshold [bits] operating capacity
Eb/N0 Eb/N0 bound

6 VDVQ/RVLC-TCM 0.667 No 0.75 No SP 16QAM 1.29 dB 1 485 3.04 dB N/A
74 250 1.79 dB N/A

7 SBVLC-TCM 0.52 No 0.75 No SP 16QAM 1.00 dB 217 500 1.10 dB 3.5 × 10
5

BBVLC-TCM 0.52 No 0.75 No SP 16QAM 1.00 dB 217 500 1.10 dB 4.7 × 10
4

SBIrVLC-TCM 0.52 Yes 0.75 No SP 16QAM 0.50 dB 217 500 0.60 dB 1.2 × 10
6

BBIrVLC-TCM 0.52 Yes 0.75 No SP 16QAM 0.50 dB 217 500 0.60 dB 8.1 × 10
4

Huffman-IrCC-TCM 0.52 Yes 0.75 No SP 16QAM 0.50 dB 217 500 0.80 dB 4.3 × 10
4

8 IrVLC-URC † 0.55 Yes 1 No BPSK 0.42 dB 100 000 1.41 dB 6.0 × 10
4

0.85 Yes 1 No BPSK 0.70 dB 100 000 1.15 dB 3.1 × 10
4

9 VLC-URC 0.53 No 1 No Gray-coded 1.40 dB⋆ 100 000 1.60 dB⋆ 5.0 × 10
4 ⋆

16QAM 1 000 000 1.45 dB⋆ 5.0 × 10
4 ⋆

IrVLC-URC-high 0.53 Yes 1 No Gray-coded 0.54 dB⋆ 100 000 0.76 dB⋆ 5.6 × 10
4 ⋆

16QAM 1 000 000 0.63 dB⋆ 5.6 × 10
4 ⋆

IrVLC-IrURC-high 0.53 Yes 1 Yes Gray-coded 0.04 dB⋆ 100 000 0.57 dB⋆ 8.6 × 10
4 ⋆

16QAM 1 000 000 0.22 dB⋆ 8.6 × 10
4 ⋆

IrVLC-IrURC-low 0.53 Yes 1 Yes Gray-coded 0.04 dB⋆ 100 000 0.67 dB⋆ 6.1 × 10
4 ⋆

16QAM 1 000 000 0.17 dB⋆ 6.1 × 10
4 ⋆

Table 10.1: Iterative decoding performance and complexityof the various schemes considered in Chapters 6 – 9.† The IrVLC comprises
the component VLEC codebooks{VLECn}22

n=12 of Table 8.6, which were designed using the GA of Section 8.3.⋆ The channel’s
attainableEb/N0 capacity bound is employed.
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Figure 10.7: EXIT charts for the schemes of Section 9.5.4. (d) VLC-URC arrangement. (c)
IrVLC-URC-high arrangement. (a) IrVLC-IrURC-high arrangement. (b) IrVLC-IrURC-low
arrangement. The inner EXIT functions are provided for the threshold channelEb/N0 values,
as specified in Table 9.1.
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tunnel is commensurate with the discrepancy between the channel’s capacity bound and the
threshold SNR.

Hence, in Section 7.3.2 we demonstrated that the inverted EXIT function of an outer
IrVLC codec can be shaped to match with an inner EXIT function. Here, the IrVLC scheme
generated particular fractions of the IrVLC-encoded transmission frame using different com-
ponent VLC codebooks of either the RVLC or the Variable Length Error Correction (VLEC)
[89] class. We showed that the inverted EXIT function of the corresponding APP SISO
IrVLC decoder depends on the specifically chosen fractions of the IrVLC-encoded trans-
mission frame that are generated by each component VLC codebook. More explicitly, the
inverted IrVLC EXIT function may be obtained using the equation of (7.4), which employs
the described fractions as weights during the averaging of the component VLC codebooks’
inverted EXIT functions.

Section 7.3.2 showed that the EXIT chart matching algorithmof [10] may be employed
to design specific parameterisations of the SBIrVLC-TCM andBBIrVLC-TCM schemes de-
tailed in Section 7.2. Here, the algorithm of [10] was employed to shape the inverted IrVLC
EXIT functions to match the EXIT function of the serially concatenated TCM codec. This
facilitated the creation of open EXIT chart tunnels at channel Eb/N0 values in excess of a
threshold that is 0.5 dB from the channel’s capacity bound, as shown in Table 10.1. This is
equal to the 0.5 dB discrepancy shown in Table 10.1 that was obtained, when matching the
inverted EXIT function of an Irregular Convolutional Code (IrCC) [175] to the TCM EXIT
function during the parameterisation of the Huffman-IrCC-TCM scheme of Section 7.4.1.

Furthermore, Table 10.1 shows that the open EXIT chart tunnel of Figure 10.7b was
achieved at a similarEb/N0 discrepancy of 0.54 dB from the channel’s attainable capacity
bound for the IrVLC-URC-high arrangement detailed Section9.5.4. Note that this scheme
employed a serial concatenation of an IrVLC outer codec and aURC inner codec. A URC
inner codec was also employed by the IrVLC-URC scheme of Section 8.4. Discrepancies
of 0.42 dB and 0.7 dB are shown in Table 10.1 for parameterisations of this scheme that
employed IrVLC coding rates of 0.55 and 0.85, respectively.This suggests that an improved
EXIT chart matching was achieved when employing lower IrVLCcoding rates, resulting in
open EXIT chart tunnels at channelEb/N0 values that are closer to the channel’s capacity
bound, as shown in Figures 8.12 and 9.9.

Owing to the aforementioned benefits of EXIT chart matching,the observed discrepan-
cies in the range of 0.42 dB – 0.7 dB are lower than those obtained when EXIT chart matching
was not employed, which are in the range of 1 dB – 1.4 dB, as described above.

10.8 Chapter 8: GA-aided Design of Irregular VLC Components
Chapter 8 showed that our ability to perform EXIT chart matching and to achieve an open
EXIT chart tunnel atEb/N0 values that are close to the channel’s capacity bound is com-
mensurate with the degree of diverse shapes exhibited by theinverted EXIT functions of the
component VLC codebook suite. For this reason, the conventional irregular coding design
process strives for obtaining a component VLC codebook suite having a wide variety of in-
verted EXIT functions, as shown in Figure 10.8. The component VLEC codebooks employed
by the IrVLC schemes of Chapters 7 and 8 were designed using Algorithm E of Section??.
As discussed in Section 8.1, this algorithm attempts to design VLEC codebooks having max-
imal coding rates that satisfy particular specified distance criteria. However, this algorithm
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does not facilitate the direct control or prediction of the inverted EXIT function shapes that
correspond to the designed VLEC codebooks. Hence, in the conventional irregular coding
design process depicted in Figure 10.8, a significant amountof trial-and-error based human
interaction is required. This involves the design of a high number of candidate component
VLEC codebooks, the characterisation of their inverted EXIT functions and the selection of
a suite having a wide variety of inverted EXIT functions, as exemplified in Chapter 7.

Design
component
fractionscodes

component
candidate
Design Characterise

candidate
component

codes

component
codes

Select

Figure 10.8: Conventional irregular coding design process.

The trial-and-error efforts required to design a suite of IrVLC component codebooks us-
ing Algorithm E of Section?? motivated the design of a novel Genetic Algorithm (GA) for
generating the VLEC codebooks of Section 8.3. Unlike Algorithm E of Section??, this GA
was shown to facilitate the direct control and prediction ofthe inverted EXIT function shapes
that result for the designed VLEC codebooks, eliminating the trial-and-error efforts in the
irregular coding design process. While maintaining desirable VLEC-encoded bit entropies
and IrVLC decoding complexities, the GA of Section 8.3 seeksVLEC codebooks having
arbitrary coding rates and Real-Valued Free Distance Metrics (RV-FDMs).

This novel RV-FDM was proposed in Section 8.2 as an alternative to the Integer-Valued
Free Distance (IV-FD) lower bound of [89] for the characterisation of a VLEC codebook’s
error correction capability. Like the IV-FD lower bound of [89], the RV-FDM considers
the minimum number of differing bits in any pair of equal-length legitimate VLEC-encoded
bit sequences, characterising the probability of occurrence for the most likely undetectable
transmission error scenario, as described in Section 8.1. However,unlike the IV-FD lower
bound, the RV-FDM of Section 8.2 also considers how susceptible the VLEC-encoded bits
are to this transmission error scenario. As a result, the RV-FDM exists within the real domain,
allowing the comparison of the error correction capabilities of two VLEC codebooks having
equal IV-FD lower bounds. This facilitates its employment within the objective function of
the novel GA proposed in Section 8.3.

In Section 8.2, we showed that a VLEC codebook’s RV-FDM affects the number of in-
flection points appearing in the corresponding inverted EXIT function. More specifically, we
showed that high RV-FDMs are associated with ‘S’-shaped inverted EXIT functions having
up to two points of inflection, whilst low RV-FDMs result in inverted EXIT functions hav-
ing no more than one point of inflection. Furthermore, we showed that the inverted EXIT
function of a VLEC codebook will reach the top right hand corner of the EXIT chart if its
RV-FDM is at least equal to two [161]. These findings complement the property [19] that the
area below an inverted VLEC EXIT function equals the corresponding coding rate. There-
fore, since the inverted VLEC EXIT function shape of a VLEC codebook depends on both its
coding rate and RV-FDM, the GA of Section 8.3 facilitates thedirect control and prediction
of the inverted EXIT function shapes that result for the designed VLEC codebooks.
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The employment of both the novel GA of Section 8.3 and Algorithm E of Section?? to
design suites of IrVLC component codebooks was investigated in Section 8.5. The suite of
component VLEC codebooks designed in Section 8.5.1 by our novel GA had the wide variety
of inverted EXIT functions shown in Figure 8.8. This was obtained by seeking component
VLEC codebooks having a wide variety of coding rates and RV-FDMs. In some cases, high
RV-FDMs were sought, resulting in ‘S’-shaped inverted EXITfunctions having up to two
points of inflection, whilst low RV-FDMs were sought for the remaining component VLEC
codebooks, which were associated with inverted EXIT functions having no more than one
point of inflection. Here, we found that more extreme RV-FDMscould be obtained for VLEC
codebooks having lower coding rates. This may be explained by the higher degree of design
freedom that is facilitated for lower coding rates owing to the longer codewords that this
implies.

Similarly to when the novel GA of Section 8.3 was employed to design component VLEC
codebooks, trial-and-error was not employed when Algorithm E of Section?? was used, fa-
cilitating a fair comparison. Instead, a different IV-FD lower bound was sought for each
component VLEC codebook designed using Algorithm E of Section ??. However, the resul-
tant component VLEC codebooks were found to have relativelyhigh RV-FDMs and only a
limited variety of coding rates, resulting in the limited variety of ‘S’-shaped inverted EXIT
functions shown in Figure 8.7.

Owing to its employment of a wider variety of coding rates andas a benefit of its both high
as well as low RV-FDMs, the suite of component VLEC codebooksdesigned by our novel
GA in Section 8.5.1 was found to be more suitable for use in EXIT chart matching than that
designed using Algorithm E of Section??. More specifically, open EXIT chart tunnels could
be created for the IrVLC-URC scheme of Section 8.4 at channelEb/N0 values within 1 dB of
the Rayleigh fading channel’s capacity bound for a wide range of effective throughputs, when
employing the suite of component VLEC codebooks generated using our GA, as shown in
Figure 8.12. By contrast, open EXIT chart tunnels could onlybe achieved when employing
the suite designed by Algorithm E of Section?? for a limited range of effective throughputs
and within a significantly higher margin of 4.4 dB from theEb/N0 capacity bound. This
confirmed the observation that our ability to perform EXIT chart matching depends on how
much variety is exhibited within the inverted EXIT functions of the suite of component VLEC
codebooks.

However, regardless of the component VLEC codebook suite employed, we observed
in Section 8.5.4 that the inverted IrVLC EXIT function can only be matched to the EXIT
functions of a regular inner codec with limited accuracy. This is because inverted outer EXIT
functions are constrained to starting from the(0, 0) point of the EXIT chart, while the inner
EXIT functions typically emerge from a relatively high point along theIi

e axis of the EXIT
chart, as described in Section??. As a result, we cannot create an arbitrarily narrow open
EXIT chart tunnel. Instead, a lower bound is imposed upon theenclosed EXIT chart area and,
hence, upon the discrepancy between the thresholdEb/N0 value and the channel’s capacity
bound, owing to the area property of EXIT charts [19].
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10.9 Chapter 9: Joint EXIT Chart Matching of IRVLCs and IRURC s
The above-mentionedfindings motivated the introduction ofnovel Irregular Unity Rate Codes
(IrURC) in Chapter 9, which encode different fractions of the transmission frame using dif-
ferent component URCs, having various EXIT functions. In analogy to those of IrVLCs and
IrCCs, IrURC EXIT functions may be shaped by specifically selecting the fraction of the
transmission frame that is encoded by each component URC. Inthis way, the IrURC EXIT
function may be shaped to emerge from a point on the EXIT chart’s Ii

e axis that is closer to
the inverted outer EXIT function’s starting point of(0, 0).

The serial concatenation and iterative decoding of an IrVLCouter codec with an IrURC
inner codec was demonstrated in Section 9.4. Here, the IrVLC’s suite of component VLEC
codebooks was designed using the GA of Section 8.3 in order togenerate the required di-
versity of inverted EXIT function shapes shown in Figure 9.5and repeated for convenience
in Figure 10.9. By contrast, the EXIT functions shown in Figure 9.7 and repeated for con-
venience in Figure 10.10 were obtained by selecting the IrURC’s suite of component URCs
from a large number of candidates, as described in Section 9.5.2. In Section 9.3, we proposed
a novel method for jointly matching the EXIT functions of thetwo serially concatenated ir-
regular codecs. This method iteratively applies the EXIT chart matching algorithm of [10] to
alternately match the outer EXIT function to the inner and vice versa, simultaneously seek-
ing the highest coding rate that offers an open EXIT chart tunnel. Note however, that the
novel modification of Section 9.2 was required in order to allow the EXIT chart matching of
the IrURC EXIT function, since all component URCs have the same unity coding rate. The
joint EXIT chart matching algorithm of Section 9.3 was shownto be able to exploit the in-
creased degree of design freedom that is afforded by employing two irregular codecs in order
to create an EXIT chart tunnel that is narrow at all points along its length. This facilitated
the creation of the marginally open EXIT chart tunnels shownin Figures 10.7c and 10.7d for
the IrVLC-IrURC-high and IrVLC-IrURC-low arrangements ofSection 9.5.4, respectively.
Owing to the area property of EXIT charts, these were obtained atEb/N0 values that were
just 0.04 dB from the channel’s attainable capacity bound, as shown in Figure 10.1.

Note that an open EXIT chart tunnel implies that iterative decoding convergence to an
infinitesimally low probability of error can be achieved, provided that the iterative decoding
trajectory approaches the inner and outer EXIT functions sufficiently closely, as described in
Section??. However, throughout this monograph we found that high quality reconstructions
could not be achieved at the thresholdEb/N0 values, where the EXIT chart tunnels open.
This is owed to the BCJR algorithm’s assumption [4] that all correlation within the LLR
frames exchanged by the APP SISO decoders is successfully mitigated by the intermediary
interleavers. If this is not the case, the iterative decoding trajectory will not match perfectly
with the inner and outer EXIT functions and the tunnel must befurther widened before the
trajectory can reach the top right hand corner of the EXIT chart, which is associated with an
infinitesimally low probability of error, as described in Section ??. Since the interleaver’s
ability to mitigate the correlation is proportional to its length, longer interleavers can be
expected to yield lower discrepancies between theEb/N0 value at which the EXIT chart
tunnel opens and that at which it is sufficiently widened to facilitate a high reconstruction
quality. Indeed, this relationship may be observed in Figure 10.11, which provides a scatter
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Figure 10.9: Inverted EXIT functions for the component VLECcodebooks employed by the
IrVLC-IrURC-high and IrVLC-IrURC-low arrangements of Section 9.5.4.
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Figure 10.10: EXIT functions corresponding to a Gray-coded16QAM-modulated Rayleigh
fading channel SNR of 8 dB for the component URC codes employed by the IrVLC-IrURC-
high and IrVLC-IrURC-low arrangements of Section 9.5.4.
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plot of the discrepancies and interleaver lengths given in Table 10.1, as will be detailed in our
forthcoming discussions.
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Figure 10.11: Scatter plot of the interleaver lengths provided in Table 10.1 and the corre-
sponding discrepancies between theEb/N0 value at which EXIT chart tunnel opens and that
at which it is sufficiently widened to facilitate a high reconstruction quality.

In Section 6.6, we characterised the discrepancy between the thresholdEb/N0 value at
which an open EXIT chart tunnel could be created for the VDVQ/RVLC-TCM video trans-
mission scheme and the operatingEb/N0 value at which it could achieve a high quality
reconstruction having a Peak Signal to Noise Ratio (PSNR) of29.5 dB. This discrepancy was
found to be 1.75 dB, when the interleaver length was equal to that of a single encoded video
frame, namely1 485 bits, as shown in Table 10.1. By contrast, when 50 encoded video frames
were concatenated to give an interleaver length of74 250 bits, the discrepancy was reduced
to just 0.5 dB, facilitating operation at 1.79 dB from the channel’sEb/N0 capacity bound.
However in Section 6.6, this scheme was shown to incur a 5 s latency, since the video frame
rate was 10 fps and because all 50 frames must be received before they can be deinterleaved.

The discrepancy between the thresholdEb/N0 value at which an open EXIT chart tunnel
could be created for the arrangements of Section 9.5.4 and the operatingEb/N0 value at
which they could achieve a BER of10−5 was characterised in Section 9.6. When a100 000-
bit interleaver was employed, the discrepancies for the VLC-URC and IrVLC-URC-high
arrangements were found to be 0.2 dB and 0.22 dB, respectively, as shown in Table 10.1.
However, these discrepancies were reduced to 0.05 dB and 0.09 dB, respectively, when we
employed a longer interleaver, having a length of1 000 000 bits. Larger discrepancies were
observed for the IrVLC-IrURC-high and IrVLC-IrURC-low arrangements, owing to their
narrow EXIT chart tunnels, as discussed in Section 9.6. These were 0.53 dB and 0.67 dB,
respectively, when the100 000-bit interleaver was employed, as compared to 0.18 dB and
0.13 dB, respectively, when the1 000 000-bit interleaver was employed. Note that the IrVLC-
IrURC-low arrangement using the1 000 000-bit interleaver could achieve a BER of less than
10−5 for Eb/N0 in excess of a limit that was just 0.17 dB from the channel’s attainable
capacity bound, as shown in Table 10.1. This is comparable tothe 0.13 dB discrepancy
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demonstrated for Irregular Low Density Parity Check (IrLDPC) codes [58,166] and superior
to the 0.25 dB discrepancy found for irregular turbo codes [59].

In Section 7.4, we showed that the SBVLC-, BBVLC-, SBIrVLC- and BBIrVLC-TCM
schemes using a217 500-bit interleaver could achieve a high quality source samplerecon-
struction SNR of 20 dB forEb/N0 values in excess of a limit that was 0.1 dB from the
threshold at which an open EXIT chart tunnel was created, as shown in Table 10.1. However,
in the case of the Huffman-IrCC-TCM scheme of Section 7.4.1,the corresponding discrep-
ancy was equal to the higher value of 0.3 dB. This was explained in Section 7.4.3 by the
relatively high sensitivity of the APP SISO IrCC decoder to any residual correlation within
the iteratively exchanged LLRs, that was insufficiently mitigated by the217 500-bit inter-
leaver. This resulted in the poor correlation between the iterative decoding trajectory and
the inverted IrCC EXIT function. More specifically, we concluded that an APP SISO IrCC
decoder’s sensitivity to this correlation increased if itscoding rate is reduced or if, in partic-
ular, we increase its coding memory. Hence, the high sensitivity of the Huffman-IrCC-TCM
scheme’s APP SISO IrCC decoder was attributed to its relatively high coding memory of 4.

Section 7.4.3 also concluded that an APP SISO VLC decoder’s sensitivity to the afore-
mentioned correlation depends only on its coding rate. Indeed, in Section 8.6, the APP SISO
IrVLC decoder’s sensitivity to this extrinsic informationcorrelation was found to increase
as the IrVLC coding rate was reduced. As shown in Table 10.1, the IrVLC-URC scheme of
Section 8.4 using a100 000-bit interleaver and an IrVLC coding rate of 0.85 could achieve
a BER of less than10−5 for Eb/N0 values in excess of a limit that was 0.45 dB from the
threshold at which an open EXIT chart tunnel was created. However, this discrepancy grew
to 0.99 dB when the IrVLC coding rate was reduced to 0.55, as shown in Table 10.1.

Throughout this book we have considered receivers in which soft information is itera-
tively exchanged between APP SISO decoders and in which a final hard decision is made by
a MAP sequence estimator. These components of the receiver apply the BCJR algorithm [4]
and the Viterbi algorithm [3] to suitably designed trellises [52, 90]. These require only Add,
Compare and Select (ACS) operations if all calculations areperformed in the logarithmic
probability domain and if a lookup table is employed for correcting the Jacobian approxima-
tion [197]. Since each individual ACS operation requires the same resources in a systolic-
array based chip, the number of ACS operations performed by areceiver may be employed
to characterise the complexity/area/speed trade-off required for its implementation.

In Section 7.4, we introduced the novel plot of Figure 7.12 for characterising the iterative
decoding complexity of a receiver. This plot provides the average number of ACS opera-
tions required per source symbol to achieve particular reconstruction qualities as a function
of the channel’sEb/N0 value. This plot, as well as those of Figures 7.13, 8.17, 8.18and 9.12,
showed that particular reconstruction qualities can be achieved with lower complexities as the
channel’sEb/N0 value is increased. This may be explained by the associated widening of the
open EXIT chart tunnel, requiring fewer decoding iterations for the iterative decoding trajec-
tory to reach the particular point on the EXIT chart that is associated with the reconstruction
quality considered.

Additionally, Figures 7.12 and 7.13 showed that lower complexities may be maintained,
provided that lower reconstruction qualities can be tolerated, since less decoding iterations
are required for the iterative decoding trajectory to reachthe particular point on the EXIT
chart that is associated with a lower reconstruction quality. However, Section 7.4.5 observed
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that in the approach of iterative decoding convergence, large reconstruction quality gains are
obtained for relatively small amounts of additional computational complexity. We concluded
that if the channelEb/N0 value is sufficiently high to create an open EXIT chart tunnel, then
we can typically justify the computational complexity required for the iterative decoding tra-
jectory to reach the(1, 1) point of the EXIT chart, owing to the infinitesimally low probability
of error that results.

In Sections 7.4.5, 8.6 and 9.5.4 we showed that outer APP SISOdecoding and MAP
sequence estimation are typically associated with significantly higher computational com-
plexities than inner APP SISO decoding. In the most extreme case considered in this volume,
the outer decoders of the SBVLC- and SBIrVLC-TCM schemes of Section 7.2 accounted for
about 97% of the ACS operations employed per source sample. By contrast, the outer de-
coders of the Huffman-IrCC-TCM scheme of Section 7.4.1 wereresponsible for about 60%
of the iterative decoding complexity, in the most balanced case considered.

In Table 10.1, we provide the average number of ACS operations required per source sym-
bol to achieve high quality reconstructions at anEb/N0 value that is 2 dB from the channel’s
capacity bound for each of the schemes considered in Sections 7.2 and 8.5.4. Additionally,
for the schemes of Section 9.6, the complexity at anEb/N0 value that is 2 dB from the
channel’sattainablecapacity bound is provided in Table 10.1. Furthermore, Figure 10.12
plots the complexities of the aforementioned schemes for a range ofEb/N0 discrepancies
from the capacity bounds. While the complexities shown in Table 10.1 and Figure 10.12
for the schemes of Section 7.2 are associated with obtaininga high-quality source sample
reconstruction SNR of 20 dB, those provided for the schemes of Sections 8.5.4 and 9.6 are
associated with achieving a BER of10−5. The comparison of the described complexities is
fair, since each of the schemes considered in Chapters 7 – 9 facilitates the transmission of
16-ary source symbols over an uncorrelated narrowband Rayleigh fading channel. Further-
more, in all cases, the source symbols have the probabilities of occurrence that result from
the Lloyd-Max quantisation [74, 75] of Gaussian distributed source samples, as described in
Section 7.2.1.

Note that Figure 10.12 illustrates the discrepancies between the channel’s appropriate
capacity bounds and theEb/N0 values above which the schemes considered in Chapters 7
– 9 may achieve high quality reconstructions, confirming thediscrepancies provided in Ta-
ble 10.1. Furthermore, at high discrepancies from the channel’s Eb/N0 capacity bounds,
Figure 10.12 shows that similar iterative decoding complexities may be observed for the
BBVLC-, BBIrVLC- and Huffman-IrCC-TCM schemes of Section 7.2 as well as for each
scheme introduced in Sections 8.5.4 and 9.6. Indeed, the corresponding ACS counts provided
in Table 10.1 can be seen to have similar values in the range of[3.1 × 104, 8.6 × 104]. This
similarity may be explained because all of these schemes employ bit-based trellises [52, 90]
as the basis of their outer APP SISO decoders and MAP sequenceestimators. By contrast,
the SBVLC- and SBIrVLC-TCM schemes of Section 7.2 employed the symbol-based VLC
trellis of [2] as the basis of their APP SISO decoders. For these schemes, Table 10.1 pro-
vides ACS operation counts of3.5× 105 and1.2× 106, respectively, which are significantly
higher than those provided for the schemes employing bit-based trellises, as illustrated in
Figure 10.12. This increased complexity may be attributed to the number of trellis transitions
that are employed in symbol-based VLC trellises, which is typically significantly higher than
the number employed in their bit-based equivalents, as described in Section??.



10.9. Chapter 9: Joint EXIT Chart Matching of IRVLCs and IRUR Cs 387

IrVLC-IrURC-low 1 000 000-bit interleaver
IrVLC-IrURC-low 100 000-bit interleaver

IrVLC-IrURC-high 1 000 000-bit interleaver
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Figure 10.12: Average number of ACS operations per source symbol required to achieve
high quality reconstructions at a range ofEb/N0 discrepancies from the appropriate capacity
bounds for the schemes of Chapters 7 – 9.
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The computational complexities provided in Figure 10.12 for the IrVLC-URC arrange-
ment of Section 8.5.4 having an IrVLC coding rate of 0.85 can be seen to be lower than that
associated with an IrVLC coding rate of 0.55. This may be explained by the higher number of
bit-based trellis transitions that are required to represent the longer codewords of the 0.55-rate
IrVLC, as discussed in Section 8.6. For this reason, we can expect lower computational com-
plexities to be associated with VLCs and IrVLCs having higher coding rates in general. This
is confirmed by the average numbers of ACS operations performed per source symbol that
are provided for VLEC codebooks having various coding ratesin Figures 8.7 – 8.10 and 9.5.
These figures additionally show that VLEC codebooks having relatively low RV-FDMs are
also associated with low computational complexities. Thiswas exploited during the design
of the IrVLC-IrURC-low arrangement of Section 9.5.4. More specifically, the novel modi-
fication of the EXIT chart matching algorithm [10] of Section9.2 was employed to jointly
perform EXIT chart matching, while seeking a reduced IrVLC computational complexity by
invoking component VLEC codebooks having a low RV-FDM. As a result, in Table 10.1,
the computational complexity of the IrVLC-IrURC-low arrangement can be seen to be 25%
lower than that of the IrVLC-IrURC-high arrangement, whichwas designed without seeking
a reduced IrVLC computational complexity. Note that a reduced computational complexity
could not be achieved when the IrVLC’s EXIT function was matched to that of a regular
URC, as discussed in Section 9.5.4. This was found to be because, unlike the ‘S’-shaped
inverted EXIT functions of the component VLEC codebooks having a high RV-FDM, those
associated with a low RV-FDM do not rise rapidly enough to match with the URC EXIT
function, which starts from a high point along the EXIT chart’s Ii

e axis.
In Section 7.2.1, we showed that the number of transitions employed by a symbol-based

VLC trellis, and hence its computational complexity and memory requirement, scales with
the square of the number of source symbols that it simultaneously decodes. For this reason,
the total computational complexity and memory requirementcan be reduced by decomposing
each source symbol frame into sub-frames, which are decodedseparately. However, owing
to the nature of VLCs, the lengths of VLC-encoded transmission sub-frames typically vary
from frame-to-frame. In order to facilitate their decodingin the receiver, the transmitter must
convey the lengths of the sub-frames as explicit side information, which should be protected
using a low-rate channel code, owing to its error sensitive nature. Hence, the choice of how
many sub-frames to employ is a trade-off between the amount of side information required
and the computational complexity as well as the memory requirements per source symbol.
Note that the complexities provided in Table 10.1 and Figure10.12 for the SBVLC- and
SBIrVLC-TCM schemes of Section 7.2 are therefore specific tothe particular considered
case, in which each source symbol sub-frame comprised 100 symbols. In this arrangement,
the required side information was found to account for 4% of the total information conveyed
in Section 7.3.

By contrast, Section 7.2.1 showed that the number of transitions per source symbol em-
ployed by a bit-based trellis is independent of the number ofsource symbols that it simultane-
ously decodes. Hence, the total computational complexity and memory requirementcannot
be reduced by decomposing each source symbol frame into sub-frames in this case. However,
the memory required to decode each source symbol sub-frame will be reduced if more sub-
frames are employed. If the sub-frames are decoded sequentially, this memory can be reused
for each sub-frame and a lower-cost implementation will result. By contrast, the amount of
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memory required by an implementation that decodes all sub-frames concurrently will not be
affected by the number of sub-frames employed.

In the schemes of Sections 8.5.4 and 9.6, the amount of side information required was
significantly reduced by employing just a single source symbol sub-frame for each IrVLC
component code. Using this approach, we found that less sideinformation was required when
a longer interleaver was employed, as described in Section 9.6. Indeed, the required side
information was reduced to just 0.006% of the total information conveyed when a1 000 000-
bit interleaver was employed.

10.10 Chapter ??: Iteratively Decoded VLC Space-Time Coded
Modulation

In this chapter an iteratively decoded variable length space-time coded modulation design
was proposed. The joint design of source-coding, space-time coded modulation and iterative
decoding was shown to achieve both spatial diversity and multiplexing gain, as well as coding
and iteration gains at the same time. The variable length structure of the individual codewords
mapped to the maximum ofNt transmit antennas imposes no synchronisation and error prop-
agation problems. The convergence properties of the proposed VL-STCM-ID scheme were
analysed using 3D symbol-based EXIT charts as well as 2D EXITchart projections. A signif-
icant iteration gain was achieved by the VL-STCM-ID scheme,which hence outperformed
both the non-iterative VL-STCM scheme as well as the FL-STCMbenchmarker with the
aid of Nt unity-rate recursive feedback precoders. The VL-STCM-ID scheme attains a near
MIMO channel capacity performance.

10.11 Chapter ??: Iterative Detection of Three-Stage Concatenated
IrVLC FFH-MFSK

In this chapter we investigated a serially concatenated IrvLC/FFH-MFSK Transceiver oper-
ating in a Rayleigh fading channel, when the transmitted signal was also corrupted by PBNJ.
Our EXIT chart analysis demonstrated that a two-stage concatenated FFH-MFSK requires the
employment of an additional unity-rate precoder for the sake of making the channel to appear
recursive. For the sake of ensuring near-capacity operation, the IrVLC codec was specifically
designed to ensure that the inverted EXIT curve of the IrVLC decoder matches the EXIT
curve of the inner decoder. In this way, an open EXIT chart tunnel may be created even
at low SNR values, providing source-correlation-dependent additional performance gains of
up to 1.1dB over the regular VLC-based benchmark scheme. Since the employment of the
VLC involves non-identical occurence probabilities for the source symbols, it is not possible
to provide a comparison of the proposed scheme with the state-of-the-art in the context of
coded FFH-MFSK which traditionally employs equiprobable source symbols or bits. How-
ever, we have provided a comparison of the IrVLC scheme with aVLC scheme dispensing
with the precoder; consequently we noted that the precoder-aided schemes yield aEb/N0

gain in excess of 7dB over the system dispensing with the precoder, which suffers from an
error floor when jamming is severe.

Moreover, we demonstrated that the 3-stage concatenation involving the demodulator,
the rate-1 decoder and the outer IrVLC decoder yields superior performance compared to
the 2-stage concatenation of the rate-1 decoder and the outer decoder. Naturally, the 3-stage
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scheme imposes a higher complexity. By contrast, we found that a precoder of memory 1 is
more suitable for the 3-stage IrVLC scheme, while the 2-stage scheme requires a precoder of
memory 3, thus the memory-3 rate-1 decoder imposes a somewhat higher complexity, than
its memory-1 counterpart.

In conclusion, the precoder-aided FFH-MFSK-VLC scheme constitutes a moderate-complexity
design option, which can be employed in systems communicating through channels contami-
nated by PBNJ for transmission of joint source and channel encoded audio or video signals. If
a higher complexity can be afforded, the IrVLC based scheme offers additional performance
improvements. In our future work, we will investigate more sophisticated three-stage itera-
tive decoding, exchanging extrinsic information amongst the demodulator, the rate-1 decoder
and the outer decoder.

10.12 Future work
As shown in Table 10.1, the schemes of Sections 6.2 and 7.2 employed aRTCM = 3/4-rate
TCM inner codec together with Set Partitioned (SP)MTCM = 16-ary Quadrature Ampli-
tude Modulation (16QAM) [129] to facilitate transmissionsover an uncorrelated narrowband
Rayleigh fading channel. However, in these schemes the maximum effective throughput is
limited toRTCM · log2(MTCM) = 3 bits per channel use. Owing to the less-than-unity TCM
coding rate, an effective throughput loss occurs for high channelEb/N0 values, where the
capacity of the 16QAM modulated channel will exceed the maximum effective throughput of
3 bits per channel use and will approachlog2(MTCM) = 4 bits per channel use.

This motivated the employment of an inner URC codec in Section 8.4, which usedMBPSK =
2 Binary Phase Shift Keying (BPSK) [116] to facilitate transmissions over an uncorrelated
narrowband Rayleigh fading channel, as shown in Figure 10.1. Here, the maximum effective
throughput was equal to the maximum capacity oflog2(MBPSK) = 1 bit per channel use and
no effective throughput loss was incurred. Indeed, the areas beneath the URC EXIT functions
provided in Figure 8.13 were found to be equal to the corresponding channel capacities, as
predicted by the area property of EXIT charts [19].

In the scheme of Section 9.4, we opted for employing a URC-based inner codec together
with MQAM = 16QAM instead of BPSK, since this facilitates a higher maximumeffective
throughput oflog2(MQAM) = 4 bits per channel use. In Section 9.5.2 we showed that the
receiver of Figure 9.3 would benefit from the iterative extrinsic information exchange of the
16QAM demodulator and the inner APP SISO decoder. However, for the sake of obtaining an
implementational and computational complexity saving, the receiver of Figure 9.3 employed
only the ‘one-shot’ activation of the 16QAM demodulator. However, as a result, when mul-
tiplied by log2(MQAM) = 4, the average area beneath the URC EXIT functions exemplified
in Figure 9.7 did not equal the corresponding channel capacities.

In Section 9.5.3, we defined the attainable capacity of a channel having a particular
Eb/N0 value as being equal to the average area beneath the corresponding URC EXIT func-
tions, multiplied bylog2(MQAM) = 4. We showed that the channel’s attainable capacity rep-
resents an upper bound to the maximum effective throughput for which an open EXIT chart
tunnel can be achieved. This is because a scheme’s effectivethroughput may be approximated
by multiplying the area beneath the inverted outer EXIT function by log2(MQAM) = 4 [19].
Since, this area must be lower than that beneath the inner EXIT function in order for an
open EXIT chart to be facilitated, iterative decoding convergence to an infinitesimally low
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probability of error is prevented when the effective throughput is higher than the channel’s
attainable capacity. The discrepancy between the channel’s capacity and itsattainablecapac-
ity therefore imposes an effective throughput loss.

Section 9.5.2 showed that this effective throughput loss was minimised by employing
Gray-coded 16QAM [141], since the corresponding EXIT function of Figure 9.8 is opti-
mised to emerge from the highest possible point on the EXIT chart’s Im

e axis. As shown in
Figure 9.9, the effective throughput loss resulted in a discrepancy of 0.29 dB between the
channel’sEb/N0 capacity bound and itsattainablecapacity bound. Hence, the 0.17 dB dis-
crepancy between the channel’s attainable capacity bound and theEb/N0 value at which the
IrVLC-IrURC-low arrangement could achieve a BER of10−5 that is shown in Table 10.1,
represents a 0.46 dB discrepancy from the channel’s capacity bound.

In this section, we propose a method for mitigating the effective throughput loss of the
IrVLC-IrURC scheme detailed in Section 9.4. However, this solution does not employ
iterative extrinsic information exchange between the 16QAM demodulator and the inner
APP SISO decoder. Instead, the benefit of iterative demodulation is mitigated by replac-
ing the bit-based IrURC inner codec of Figure 9.3 with a Symbol Based Irregular Unity
Code (SBIrURC). Unlike a bit-based IrURC, this SBIrURC can directly employ the symbol
probabilities obtained for the demodulator’sMQAM = 16 constellation points without first
converting them into sets oflog2(MQAM) = 4 bit probabilities. We refer to this proposed
solution as the IrVLC-SBIrURC scheme and Figure 10.13 provides its schematic, which is
reminiscent of the IrVLC-IrURC schematic provided in Figure 9.3.
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Figure 10.13: Schematic of the IrVLC-SBIrURC scheme.

In the IrVLC-SBIrURC scheme of Figure 10.13, IrVLC encoding, APP SISO decod-
ing and MAP sequence estimation are performed in exactly thesame way as in the IrVLC-
IrURC scheme of Figure 9.3. Furthermore, the source symbol frames, the transmission
frameu and the LLR framesLo

a(u) as well asLo
p(u) are composed ofN number of sub-

frames, as in the IrVLC-IrURC scheme of Figure 9.3. Likewise, the interleaved transmis-
sion frameu′ and the LLR framesLi

a(u
′) as well asLi

p(u
′) are composed ofR number of

sub-frames, as before. Additionally, iterative decoding is performed as in the IrVLC-IrURC
receiver of Figure 9.3, with the subtraction of thea priori LLR frames from thea posteriori
LLR frames and the interleavingπ of the resultant extrinsic LLR frames, as shown in Fig-
ure 10.13. Finally, as in the IrVLC-IrURC scheme of Figure 9.3, the outer and inner EXIT
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functions of the IrVLC-SBIrURC scheme may be shaped by specifically selecting the frac-
tions,{αn}N

n=1 and{αr}R
r=1, of the frames,u andu′, that are composed by the sub-frames,

{un}N
n=1 and{u′r}R

r=1, respectively. The IrVLC-SBIrURC scheme of Figure 10.13 differs
from the IrVLC-IrURC scheme of Figure 9.3 in terms of the operation of the irregular inner
codec and the modem.

In the IrVLC-SBIrURC transmitter of Figure 10.13, each interleaved transmission sub-
frameu′r is decomposed into sets oflog2(MQAM) = 4 consecutive bits, which are con-
verted intoMQAM = 16-ary symbol values. In analogy with the IrVLC-IrURC scheme of
Figure 9.3, theMQAM = 16-ary symbol values corresponding to each interleaved transmis-
sion sub-frameu′r are encoded using a Symbol-Based Unity Rate Code (SBURC) having a
different symbol-based Linear Feedback Shift Register (LFSR) design. For example, these
LFSRs could employ the designs of Figure 9.6 if they were modified to employ modulo-16
additions and memory elements. Following SBURC encoding inthe IrVLC-SBIrURC trans-
mitter, the sub-framevr of SBURC-encodedMQAM = 16-ary symbol values is obtained, as
shown in Figure 10.13.

In the IrVLC-SBIrURC transmitter of Figure 10.13, theMQAM = 16-ary symbol val-
ues of each SBURC-encoded sub-framevr are mapped toMQAM = 16QAM constellation
points in order to generate the corresponding channel inputsymbol sub-framexr. How-
ever, a different mapping scheme may be employed for each SBURC-encoded sub-framevr ,
facilitating irregular modulation, as shown in Figure 10.13. SuitableMQAM = 16QAM map-
ping schemes include Gray coding [116], SP [129], Modified Set Partitioning (MSP) [206],
the mixed mapping of [206], the Maximum Squared Euclidean Weight (MSEW) mapping
of [207] and theM16a andM16r mappings of [208].

Following modulation, the resultant channel input symbol sub-frames{xr}R
r=1 are con-

catenated in order to obtain the channel input symbol framex. This is transmitted over an
uncorrelated narrowband Rayleigh fading channel and received as the channel output sym-
bol framey, as shown in Figure 10.13. In the IrVLC-SBIrURC receiver of Figure 10.13,
the channel output symbol framey is decomposed intoR number of sub-frames{yr}R

r=1,
each of which is interpreted by a differentMQAM = 16QAM demodulator. More specifi-
cally, for each channel output symbol, the demodulators determine the probability that the
corresponding channel input symbol conveyed each of theMQAM = 16 constellation points.
Following this, theMQAM = 16 probabilities associated with each channel output symbol
in the sub-frameyr are provided asa priori information to the corresponding APP SISO
SBURC decoder by means of the LogarithmicA PosterioriProbability (Log-APP) sub-frame
Li

a(vr), as shown in Figure 10.13.
In the IrVLC-SBIrURC receiver of Figure 10.13, eacha priori LLR sub-frameLi

a(u′r)
is decomposed into sets oflog2(MQAM) = 4 consecutive LLRs, which are converted into
sets ofMQAM = 16 Log-APPs in a manner similar to that of TCM [129]. The TCM symbol-
based trellis [129] is employed to interpret these Log-APPs, together with those of the Log-
APP sub-frameLi

a(vr) provided by the demodulator. Here, the BCJR algorithm [4] isem-
ployed to determine sets ofMQAM = 16 a posterioriLog-APPs, which are converted into
sets oflog2(MQAM) = 4 LLRs for thea posterioriLLR sub-frameLi

p(u
′r).

In addition to mitigating the effective throughput loss of the IrVLC-IrURC scheme of Fig-
ure 9.3, the IrVLC-SBIrURC scheme facilitates a higher degree of design freedom, owing to
its employment of irregular modulation. While a different EXIT function may be obtained for
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each component URC code in the IrVLC-IrURC scheme of Figure 9.3, the IrVLC-SBIrURC
scheme benefits from a different EXIT function for eachcombinationof the component URC
code and component 16QAM mapping. As a result, a greater variety of inner EXIT function
shapes can be obtained, facilitating the improved joint matching of the inner and outer EXIT
functions, as described in Section 9.3.

Note however, that APP SISO SBURC decoders are associated with a significantly higher
computational complexity than their bit-based equivalents, owing to the significantly higher
number of trellis transitions that they employ [129]. For example, aMQAM = 16-ary SBURC
employing just one memory element in its LFSR is associated with a trellis that employs
MQAM = 16 transitions from each ofMQAM = 16 states for each set oflog2(MQAM) = 4
bits. By contrast, the equivalent bit-based URC employs twotransitions from each of two
states for each bit. We can therefore expect the APP SISO decoder of the described SBURC to
have a 16 times higher complexity than that of the equivalentbit-based URC. With reference
to Table 9.7, we may observe that a 16 times increase in the inner APP SISO decoder’s
complexity would cause it to eclipse that of the outer APP SISO decoder and dominate the
iterative decoding complexity. This could be countered, however, by employing the novel
modification to the EXIT chart matching algorithm [10] of Section 9.2 for the sake of jointly
perform EXIT chart matching while seeking a reduced SBIrURCcomputational complexity.

In the light of these discussions, our future work will consider the design and characteri-
sation of the IrVLC-SBIrURC scheme of Figure 9.3.

10.13 Closing remarks
Throughout this book we have introduced novel IrVLC-aided wireless telecommunication
schemes and methodologies for their design, in the pursuit of near-capacity operation. In
Chapter 6, we developed a scheme without making any particular effort to facilitate its near-
capacity operation. Here, EXIT chart analysis was only employed in order to quantify how
close to capacity the scheme may operate. By contrast, EXIT chart analysis was employed as
an integral part of the design process in Chapter 7. More specifically, EXIT chart matching
was employed to shape the IrVLC EXIT function to match that ofthe serially concatenated
inner codec and hence to facilitate near-capacity operation. Further gains were achieved in
Chapter 8 by challenging the conventional irregular codingdesign process of Figure 10.8.
Instead of selecting a suite of IrVLC components having a wide variety of EXIT function
shapes from a set of many candidates, a suite was directly designed using the RV-FDM of
Section 8.2 and GA of Section 8.3. In Chapter 9, we invoked an irregular inner codec to
complement the IrVLC, facilitating a higher degree of design freedom. This was exploited
by the joint EXIT chart matching algorithm of Section 9.3 in order to match the IrVLC and
inner EXIT functions to each other, facilitating even ‘nearer-to-capacity’ operation. Finally,
in Section 10.12 outlining our future work, we proposed a method for mitigating the effective
throughput loss that was associated with the scheme of Chapter 9, as well as for facilitating
the employment of irregular modulation and for providing aneven higher degree of design
freedom. With these benefits, we may expect to achieve ‘very-near-capacity’ operation.
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